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 A B S T R A C T 
Wheel-rail force is a key indicator for revealing the action between wheel and rail, describing the performance evolution 

laws of wheel sets and rails. The direct measurement method of wheel-rail force has a high cost, while the identification process 
of wheel-rail force based on mechanism models is cumbersome, computationally intensive, and of low accuracy. To solve these 
issues, a wheel rail force identification method based on the combination of vehicle dynamics response and convolutional 
long short-term memory network is proposed. Firstly, the feature set is constructed based on the vehicle vibration responses, 
vehicle body positions and attitudes, running status and other multi-source information, and further an effective feature subset 
is retained through feature selection to construct samples with multiple time step input and single time step output. Then, 
convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) networks are combined to fully 
extract the spatio-temporal characteristics of wheel-rail force data. Finally, a fully connected layer is designed as the output 
wheel-rail force identification result. Taking the C80 vehicle as an example for analysis, the performance of the proposed 
method is evaluated from three aspects: model identification accuracy, generalization, and robustness. The results show that 
compared to traditional algorithms and single network models, the proposed method reduces the MSE value of wheel-rail lateral 
force identification by 44.4%~78.5%, and increases the R2 value by 1.3%~132.4%; the MSE value of wheel rail vertical force 
identification by 36%~75.9%, and the R2 value by 4.4%~87.9%. The proposed method can be applied to data of different working 
conditions and different noise levels.
Keywords: wheel-rail force identification; C80 vehicle; convolutional neural network; bidirectional long short-term memory 
network; different working conditions
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Introduction
The development of railway transportation continues to head 

towards the direction of high speed, heavy load, multi-system, 
and new structure1, resulting in various operating conditions 
and complex wheel-rail interactions. To secure safe operations 
of train, it is of great importance to reveal the relationships 
between wheels and rails, more specifically, to obtain high-
precision data of wheel-rail force. Therefore, this issue has been 
extensively and deeply studied in recent years2-3. At present, the 
measurement methods of wheel-rail force mainly include direct 
measurement method and indirect measurement method. The 

direct measurement uses the force-measuring wheel set to obtain 
wheel-rail force. The measurement accuracy is high. However, 
due to the structural characteristics and cost of the force-
measuring wheelset, it is difficult to install it on all vehicles. 
Moreover, the installation, calibration, and data acquisition of 
the force-measuring wheelset is quite complicated. The cost of 
operation and maintenance is high, and the measurement period 
is long. Thus, the actual application of force-measuring wheelset 
is limited4-6. The indirect measurement method takes the wheel-
rail force as the input of the vehicle dynamic system, and takes 
the vibration response of each component of the vehicle as 
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the output. The algorithm model is used to learn the mapping 
relationship between wheel-rail force and the vibration response, 
so that wheel-rail force can is identified7-11 through the measured 
vibration response. The indirect measurement methods are 
mainly divided into models based on the mechanism and models 
based on data.

For researches on indirect measurement wheel-rail force 
based on mechanism model, Uhl12 used Bellman dynamic 
programming theory to identify the wheel-rail force. Ronasi H 
et al.13 proposed a strain measurement based wheel-rail contact 
force estimation method. It determined the wheel-wheel contact 
force by minimizing the least square difference between the 
measured radial strain and the corresponding calculated strain 
in the three-dimensional finite element model of the wheel. 
Pedro Urda et al.14 applied strain gauges and distance lasers 
to measure wheel-rail force on railway vehicles. Based on the 
theory of structural dynamics, Zhu Tao et al. utilized Duhamel 
integral and combined with the characteristics of the rail vehicle 
system to derive the analytical load identification methods. Wu 
J et al.15 discussed a Truncated Singular Value Decomposition 
(TSVD) parameter selection method based on Wilson- method 
and minimum response error principle. It improved the 
accuracy of wheel-rail force identification. Wang Mingmeng 
et al.16 used the inverse structural filtering method to identify 
wheel-rail force with structural response parameters as input. 
Zhou Yabo17 adopted the Kalman filtering technology to the 
wheelset lateral-vertical coupling model, and used the vibration 
acceleration of the railway vehicle to identify wheel-rail force. 
The deduction process of the method based on the mechanism 
model is rather complex, with a large amount of calculation. 
Due to the limitation of the equations, a model has to be built 
for each different working condition to obtain output results of 
the wheel-rail force. The adaptability to complex and various 
working conditions is therefore restricted.

The development of artificial intelligence algorithms 
and vehicle system sensor technology provides a wealth of 
algorithms and data support for the data-based wheel-rail 
force identification method18-19. A technology proposed by 
Li Y et al.20 can continuously monitor the wheel-rail contact 
force. It adopted the radial basis function network model and 
provided a new approach for the researches on wheel-rail force 
identification. Zhang Ranjia et al.21 made use of the BP neural 
network to learn the mapping relationship between the force-
measuring wheelset bridge output and wheel-rail force, and 
optimized the network with a genetic algorithm to perform the 
identification of wheel-rail force. Urda P et al.22 demonstrated 
an experimental measurement method of wheel-rail lateral 
contact force based on artificial neural network (ANN), and 
used artificial neural network to identify the lateral contact 
force between the wheel and the track. Teng F et al.23 illustrated 
a lightweight wheel-rail force inversion model (LFIM). It was 
based on convolutional neural network and adopted vibration 
signals collected from vehicle systems to identify wheel-rail 
force at flat line and curved track running conditions. Pires AC 
et al.24 used a machine learning model to indirectly identify the 
wheel-rail contact force of heavy-haul railway vehicles. A tree-
based pipeline optimization tool (TPOT) trained and optimized a 
total of 24 embedded machine learning models, and selected the 
optimal model to perform wheel-rail force identification. To sum 
up, most of the current researches are carried out with simple 
neural network models, a better accuracy is still in great need. 
In addition, the above studies are often limited to the study of 
preset data sets, and lack of consideration of different working 

conditions and different signal-to-noise ratio data. Therefore, the 
generalization and robustness of the model need to be improved.

Hence, a data-driven wheel-rail force identification model is 
proposed in this paper, and its identification performances for 
the wheel-rail force at different working conditions and different 
signal-to-noise ratios are analyzed. This model adopts deep 
learning algorithm, and uses the collected vibration response 
data to establish the mapping relationship between variables 
and the wheel-rail force. In this way, the wheel-rail force is 
identified. The main contributions of this paper are as follows:

1. A multiple time step input and single time step output 
database is established, covering information such as 
vehicle vibration response, vehicle body position and 
attitude, running status, as well as wheel-rail force data. 
A Filter-Wrapper feature screening algorithm is proposed. 
Combining the rapidity of Filter feature screening algorithm 
with the high accuracy of Wrapper feature screening 
algorithm, the feature dimension is effectively reduced and 
redundant features are deleted.

2. A wheel-rail force identification method is designed to 
combine one-dimensional convolutional neural network and 
bidirectional long short-term memory network. It integrates 
the advantage of CNN in digging data out of discontinuous 
data in high dimensional space with the advantage of 
BiLSTM in capturing hidden information of time series 
data, and therefore obtains enhanced ability of extracting 
data features.

3. A variety of model performance evaluation indicators are 
proposed, covering the model identification accuracy, the 
application performance of the evaluation model at different 
operation conditions and the anti-interference performance 
with input data of different signal-to-noise ratios.

1. Wheel-rail force identification model

In this paper, the wheel-rail lateral force and vertical force 
are taken as the research objects, and the wheel-rail forces are 
identified based on the vibration responses generated by the 
railway vehicle system during operation. The framework of the 
model system is shown in Fig. 1. Firstly, a rigid-flexible coupled 
multi-body dynamic model of vehicle-rail is established by 
using dynamics software. Then, the dynamic model is used to 
simulate the real vehicle data at different working conditions of 
typical scenes such as operations on small curvature track and 
flat railway line. After data preprocessing and feature selection, 
the effective features are extracted as the input sample, and the 
wheel-rail force is taken as the label of the sample to construct 
a sample set of multiple time step input and single time step 
output. Finally, the end-to-end wheel-rail force identification 
model between the vibration response, vehicle body position 
and attitude, running status data of railway vehicles and the 
wheel-rail force is established by using such sample data sets.

1.1 Establishment of dynamic model and selection of features

The method proposed in this paper is verified with data of 
a C80 heavy-haul train. For the C80 train, various physical 
parameters of the bogie were tested on the rolling test bench, 
and the structural characteristic parameters of the vehicle 
were measured based on the standard experiment. A dynamic 
model was established for it by using a dynamics software. 
The feasibility and accuracy of this model were verified by 
comparing its results with the vehicle’s response at actual line 
conditions. This model is used to construct the initial data set of 
vehicle response under different working conditions. The data 
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set mainly includes the vehicle vibration response, vehicle body 
position and attitude, running status, wheel-rail force and other 
information. Fig. 2 shows positions of virtual sensors on some 
vehicle components in this dynamic model.

Figure 1: Framework diagram of model system.

Figure 2: Positions of virtual sensors in the dynamic model.

In order to effectively improve the performance of network 
training, the multi-source data were normalized or standardized 
to convert them into dimensionless index evaluation values. 
Due to the complex and diversified working conditions during 
the train operation, there would be abnormal fluctuation values 
and extreme deviation values in the data, which would reduce 
the effect of data normalization. Therefore, this paper used the 
Z-Score standardization method25 to process the data and the 
calculation formula is as follows:

In formula (1), is the converted z-score, is the original score 
value, μ is the mean score value of the overall sample space, then 
is the standard deviation of the overall sample space.

In vehicle systems, sensors are used in a wide range of 
applications, from radar, accelerometers, displacement sensors 
to gyroscopes. With data collected from each sensor, a complete, 
representative sample can be built. However, because of the 
wide variety of sensors and the different mounting locations of 
each sensor, it is extremely difficult to obtain accurate original 
features.

By introducing two combined algorithms of Filter and 
Wrapper26, irrelevant features in the input data can be effectively 
reduced, thereby greatly improving the operating efficiency of 
the model and helping to reduce the occurrence of dimensionality 
hazard. Filter is an effective method. It can effectively reduce 
incoherent features, thereby reducing the dimensionality of 
features. The Wrapper method is used to screen out the valid 
information, so as to eliminate redundant information. Filter 
method is based on mutual information. It can detect the 
interaction between various information and markers, whether 
positive or negative, and its formula is as follows:

( , )( ; ( , ) log
) ( )x X y Y

p x yI X Y p x y
p x p y∈ ∈

= ∑∑）
（

                      (2)

In equation (2), p(x) represents the probability that X=xi 
occurs, and p(y) represents the probability that Y=yi occurs. 
p(x,y) represents the probability that X=xi and Y=yi occur 
simultaneously, that is, the joint probability. I(X;Y) denotes 
mutual information measures the information shared by two 
random variables.

The return value is between 0 and 1, with 0 indicating that 
the two features are not connected at all and 1 indicating that the 
two features are very close. The accuracy of the feature subset 
was ensured by four steps: (1) extracting out the best feature 
subset; (2) evaluating the goodness of the best feature subset; (3) 
confirming the optimal solution; (4) checking the reliability of 
the feature subset.

Taking the carbody and front bogie as the research objects, 
the parameter characteristics of the vehicle system were 
preliminarily screened based on the feasibility and convenience 
principle of collecting various parameter characteristics in 
practical engineering applications, and then the Filter-Wrapper 
algorithm was used to remove invalid redundant characteristics; 
Finally, 21 parameter features that are easier to measure and have 
a greater influence on wheel-rail force were retained as the input 
for wheel-rail force identification, as shown in X1~ X21 in Table 
1. The wheel-rail lateral force and vertical force were considered 
to be output of the model, that is, FL and FQ in Table. 1.

Table 1: Features and Label Settings.
Signal type State parameter Symbol

Vibration re-
sponse

Lateral acceleration of the left frame X1

Lateral acceleration of the right frame X2

Vertical acceleration of the left frame X3

Vertical acceleration of the right frame X4

Lateral acceleration of bolster X5

Vertical acceleration of bolster X6

Wheelset lateral acceleration X7

Wheelset vertical acceleration X8

The displacement of the wheel with respect to the track X9

Lateral angular displacement of wheelset X10

Vertical angular displacement of wheel set X11

Body position

Body roll Angle speed X12

Body nodding angular velocity X13

Body shaking angular velocity X14

Angular speed of wheel to side roll X15

Wheelset nodding angular velocity X16

Wheelset shaking angular velocity X17

Running sta-
tus

yaw angle X18

Lateral winding of wheel and rail X19

Vertical winding of wheel and rail X20

Wheel-rail torsional winding X21

 W h e e l - r a i l
(force (output

Wheel-rail lateral force FL

Wheel-rail vertical force FQ

Construction of sample set and network design

After construction the feature set with selected features, a 
sample data set of multiple time step input and single time step 
output is established. After normalization, m channel data were 
spliced, intercepted and slid to construct samples for l×m time 
series input and 2 output. The label of each sample was wheel-
rail force response, and its features include vehicle body position 
and attitude, running status information, and the vibration 
response at l time steps before and after this moment. Compared 
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with the samples corresponding to only single-time input and 
output, the sample construction method in this paper fully 
considers the uniqueness of the timing signal, and fully retains 
the complete time-dimensional characteristic information in 
each sample through the time clip sampling method. Compared 
with the characteristic prediction output of a single time step, 
this construction method can effectively prevent issues such as 
the phase difference between multiple measuring points, the 
time lag between the input and output of the dynamic system, 
and the abnormal damage of the data of a single time step. The 
sample was constructed as shown in Fig. 3.

Figure 3: Construction of sample set

For the lack of ability of the single network model CNN27 to 
extract hidden information of time series data and the disadvantage 
of the BiLSTM network28 in capturing discontinuous data 
features in high-dimensional space, CNN and BiLSTM were 
fused to form a CNN-BiLSTM hybrid model. It not only has 
the ability of CNN model to extract spatial features, but also can 
call the ability of BiLSTM model to extract temporal features29. 
As the change of parameters in the training process will lead to 
a large change in the data distribution of each layer, this paper 
added a BN layer to constrain the data distribution to improve 
the convergence and training rate of the network. At the same 
time, the Dropout layer was introduced to randomly block the 
output of some neurons. In order to adapt to the sparse gradient 
and alleviate the gradient oscillation, so that the model can better 
learn the mapping relationship between input and output, the 
Adam optimization algorithm is adopted. The designed network 
structure of CNN-BiLSTM hybrid model is shown in Fig. 4. 

The input of a single sample contains time series data of 21 
channels and 1000 time steps, generating wheel-rail force values 
of intermediate time points. In order to make full use of the data, 
sliding sampling was carried out on the input sample, with a 
sampling window size of 20×21 and a step size of 1. A total of 
980 groups of 20×21 small fragments arranged in chronological 
order were obtained. For these small fragments, two rounds of 
convolution and maximum pooling operations were carried out 
respectively to extract the spatial characteristics of the data. Two 
convolution operations were performed using a one-dimensional 
convolution kernel with a size of [1, 1] and a step size of 1. The 
depth of the first convolution was 21 and the depth of the second 
convolution was 128. LeakyReLU activation function was 
adopted. The size of the largest applied pooling layer was [2,1] 
and step size was 1. No padding was applied during convolution 
and pooling, resulting characteristic data of 64 channels. 
These 980 sets of characteristic data input of 64 channels were 
transmitted into the BiLSTM layer to bidirectionally extract the 
potential information of timing data. The number of hidden units 
of the BiLSTM layer was initially set to 20. Finally, data were 
input into three fully connected layers, and a Dropout rate of 0.2 

was applied. The number of cells in the fully connected layer 
was set to 64, 8, and 1, respectively, to produce an identified 
value output of wheel-rail force.

Figure 4: Structure of wheel-rail force identification network 
integrating CNN and BiLSTM.

Experiment Result Analysis
The experimental results are presented and analyzed here. 

The experiment consists of 3 parts. Part 1 was a comparative 
analysis of the accuracy and error of different wheel-rail force 
identification models. The wheel-rail force identification 
performance of the proposed CNN-BiLSTM model was 
compared with that of other wheel-rail force identification 
models. Part 2 verified the generalization performance of 
CNN-BiLSTM model and analyzed the wheel-rail lateral force 
identification performance of the model at different working 
conditions; Part 3 validated the practicability of CNN-BiLSTM 
model, and compared and analyzed the identification results 
with data of different noise degrees.

The experiment was carried out with a 64-bit Windows 10 
system, a Python 3.7 integrated development environment, 
CPU AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz, 
and a16GB DDR4 3200MHZ running memory. The model 
parameters were set as described in Section 2.2. In this section, 
the signal-to-noise ratio of the original data was 6db, the running 
condition was a speed of 60 km/h and a curvature of 400 m 
radius, the data sampling frequency was 200 Hz, and the track 
irregularity excitation input of this dynamic model simulation 
was the US Class 5 track frequency.

In the experiment, the mean square error (MSE)29 was 
selected as the loss function in the network training process, and 
its calculation was performed as follows:

 

( )( ) 2

1

1(y y ( )
n ii

i
MSE y y

n =

= −∑，）
                (3)

At the same time, the coefficient of determination R2 score29 
was used to evaluate the accuracy of the model, and it was 
determined by below equation:





( )
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In equation (3) and (4), ( )iy \* MERGEFORMAT is the 

predicted data, 
( )i

y \* MERGEFORMAT is the original data, 
and n is the number of samples.

Comparative experiment

In order to verify the effectiveness of the CNN-BiLSTM 
model proposed in this paper, it was compared with 7 other 
wheel-rail force identification models of CNN27, BiLSTM28, 
GRU30, SVM31, GDBT32, XGBOOST33, and decision tree 
regression.

Comparative experiment on identification performances for 
wheel-rail lateral force

The wheel-rail lateral force were identified with above-
mentioned 8 different models. The changes of error and 
accuracy with time on training data of CNN, BiLSTM, GDBT, 
CNN-BiLSTM are shown in Fig. 5 (a), and the changes of error 
and accuracy on test data with time are shown in Fig. 5 (b). 
Hereby, a training cycle refers to the process of inputting all data 
into the network to complete a forward propagation and error 
backpropagation.

In Table. 2, the MSE and R2 index results of each model on 
the training set and test set in the last training cycle are listed. 
It can be seen clearly from Table. 2 that the difference between 
the error on the test set and the one on the training set is small, 
for each wheel-rail force identification model. The identification 
performances of both CNN and BiLSTM single models on 
wheel-rail lateral force are worse than that of CNN-BiLSTM. 
This indicates that the hybrid model has better identification 
ability than the single model. The errors of BiLSTM model are 
greater than those of CNN model. This is due to the influence of 
a large amount of noise on the original sample data. By using 
the convolutional neural network and multi-time step input 
sample construction, the characteristics of the time period can 
be effectively extracted, thus resisting the interference to a 
certain extent. With the same noise level of data environment, 
the CNN-BiLSTM model proposed in this study reaches an 
MSE of 0.1113 on the final test set. This value is reduced by 
44.4%~78.5% compared with those of other models; Meanwhile, 
its R2 value is 0.8133, increased by 1.3%~132.4% compared 
with those of other models. The above results demonstrate that 
the identification error of the proposed model is smaller than 
those of other models when dealing with the data of actual 
working conditions containing noise signals.

                          
(a) Training set

 
                              (b) Test set

Figure 5: Errors and accuracies of different models (wheel rail 
lateral force).

Table 2: Comparison of errors and accuracies of different 
models (wheel rail lateral force).

Model
Training set Test set

MSE R2 MSE R2

CNN 0.0879 0.9143 0.2137 0.6342

BiLSTM 0.2715 0.8009  0.3690 0.3499

GRU 0.2613 0.8235 0.3568 0.4398

SVM 0.3165 0.7998 0.5169 0.4136

GDBT 0.2911  0.8190 0.3005 0.6871

XGBOOST 0.1569 0.9136 0.2003 0.8031

Decision tree regression 0.2913 0.8333 0.3106 0.6789

Mentioned herein CNN-BiLSTM 0.0576 0.9613 0.1113 0.8133

Comparative experiment on identification performance of 
wheel-rail vertical force

In order to verify the applicability of the model in identifying 
wheel-rail force at different working conditions such as flat 
line, small curvature line, long uphill and downhill slopes, 18 
working conditions and 16 different long uphill and downhill 
slopes with straight lines and curvature radii of 400 m, 600 m, 
800 m, 1000 m and 1200 m at the running speeds of 60 km/h, 80 
km/h and 100 km/h were simulated, respectively. Taking wheel-
rail vertical force identification as an example, the identification 
performance of this model at the above 34 working conditions 
was explored under the same noise environment and track 
irregularity excitation. Among them, 12 kinds of identification 
performances are shown in Fig. 7. It can be seen that the proposed 
model can better fit the change trend of vehicle wheel-rail force 
at different working conditions. Table 4 shows the root mean 
square error MSE and coefficient of determination R2 indicators 
obtained by the CNN-BiLSTM model at different working 
conditions with flat line and small curvature track. It can be seen 
that R2 of the proposed model is above 0.91 and the MSE is 
below 0.1 with curved track conditions at different operating 
speeds and different curvature radii. Combining the data given 
in Table. 5, it can be seen that although the wheel-rail force 
identification accuracies for working conditions of flat line and 
small curvature track are slightly worse, the overall performance 
of the model is better, as R2 is above 0.89 and MSE is below 0.2. 
To sum up, it can be concluded that the proposed model has high 
wheel-rail force identification accuracy, strong generalization 
ability, and is suitable for different working conditions.
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Figure 6: Errors and accuracies of different models (wheel rail 
vertical force)

Table 3: Comparison of errors and accuracies of different models 
(wheel rail vertical force).

Model
training set Test set

MSE R2 MSE R2

CNN 0.0781 0.9005 0.2081 0.6236

BiLSTM 0.2813 0.8111 0.372 0.4913

GRU 0.1613 0.8465 0.3721 0.4612

SVM 0.3301 0.7818 0.5061 0.4266

GDBT 0.2311 0.8391 0.3125 0.6915

XGBOOST 0.1439 0.9188 0.1903 0.7681

Decision tree regression 0.2812 0.8133 0.3098 0.6833

Mentioned herein

CNN-BiLSTM
0.0636 0.9699 0.1218 0.8016

Evaluation of model generalization performance

In order to verify the applicability of the model in identifying 
wheel-rail force at different working conditions such as flat 
line, small curvature line, long uphill and downhill slopes, 18 
working conditions and 16 different long uphill and downhill 
slopes with straight lines and curvature radii of 400 m, 600 m, 
800 m, 1000 m and 1200 m at the running speeds of 60 km/h, 80 
km/h and 100 km/h were simulated, respectively. Taking wheel-
rail vertical force identification as an example, the identification 
performance of this model at the above 34 working conditions 
was explored under the same noise environment and track 
irregularity excitation. 

Table 4: Prediction error and accuracy under different working 
conditions.

车速 线路 外轨实设超高 MSE R2

V=60km/h

直线 0.0587 0.9304

R=400m 188mm 0.0656 0.9301

R=600 125 0.0683 0.9208

R=800 94 0.0576 0.9281

R=1000 75 0.0638 0.9500

R=1200 63 0.0863 0.9108

V=80km/h

直线 0.0473 0.9351

R=400m 188mm 0.0816 0.9199

R=600 125 0.0395 0.9549

R=800 94 0.0491 0.9417

R=1000 75 0.0317 0.9605

R=1200 63 0.0431 0.9689

V=100km/h

直线 0.0531 0.9403

R=400m 188mm 0.0483 0.9516

R=600 125 0.0531 0.9613

R=800 94 0.0419 0.9514

R=1000 75 0.0387 0.9619

R=1200 63 0.0399 0.9589

Among them, 12 kinds of identification performances are 
shown in Fig. 7. It can be seen that the proposed model can 
better fit the change trend of vehicle wheel-rail force at different 
working conditions. Table. 4 shows the root mean square error 
MSE and coefficient of determination R2 indicators obtained 
by the CNN-BiLSTM model at different working conditions 
with flat line and small curvature track. It can be seen that R2 
of the proposed model is above 0.91 and the MSE is below 0.1 
with curved track conditions at different operating speeds and 
different curvature radii. Combining the data given in Table. 5, 
it can be seen that although the wheel-rail force identification 
accuracies for working conditions of flat line and small curvature 
track are slightly worse, the overall performance of the model is 
better, as R2 is above 0.89 and MSE is below 0.2. To sum up, it 
can be concluded that the proposed model has high wheel-rail 
force identification accuracy, strong generalization ability, and 
is suitable for different working conditions.

Assessment of model robustness

During the actual operation of the train, the signals collected 
by sensors are affected by noise. Especially in the case of poor 
track conditions, the noise content will increase significantly, and 
affect the identification performance of wheel-rail force models. 
Therefore, in order to have greater engineering application value 
and practical significance, and maintain good performance, the 
wheel-rail force identification model should be able to effectively 
overcome noise interference with different intensities, should be 
of excellent robustness, adapt to various noise environments and 
maintain a stable working state.
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Figure 7: Prediction performance for wheel-rail vertical force at 
different working conditions.

Table 5: Prediction error and accuracy of different working 
conditions with long uphill and downhill slop

speed

(km/h)

L e n g t h 
of relax-
ation cur-
ve（m）

r a d i u s 
of verti-
cal cur-
ve（m）

slope

（°）

Clip length

(m）

MSE R2

60 120 1500 20

12.5 0.1436 0.9126

25 0.1355 0.9308

37.5 0.1175 0.9265

50 0.1241 0.8975

62.5 0.1163 0.8889

80 0.1079 0.9075

92.5 0.1369 0.9268

110 0.1277 0.9109

80 120 1500 10

12.5 0.1581 0.8997

25 0.1132 0.9103

37.5 0.1218 0.8706

50 0.0991 0.9013

62.5 0.1018 0.9226

80 0.1109 0.9088

92.5 0.0989 0.9153

110 0.1087 0.9009

When the signal-to-noise ratio decreased from 1000 dB to 
1 dB, the MSE and R2 values of the four kinds of models had 
significant changes. MSE became lower than 0.1, while the R2 
value was higher than 0.9, indicating a strong identification. 
In addition, when the signal-to-noise ratio was 100 dB, the 
identification ability of these models was also significantly 
improved. When the signal-to-noise ratio was less than 100 dB, 
the accuracy of GDBT and LSTM models would drop sharply, 
and might even reach extremely low levels; In contrast, the 
accuracy of CNN and the CNN-BiLSTM model proposed in this 
paper would also be affected, but by a relatively small extent 
and could still maintain a high prediction accuracy level. When 
the signal-to-noise ratio reached 1 dB, R2 values of GDBT, 
BiLSTM, CNN and CNN-BiLSTM models were 0.1623, 0.1733, 
0.6571 and 0.7495, respectively. The identification ability of 
CNN-BiLSTM model is the best, which shows that the proposed 
model is of good robustness in harsh noise environments, and 
capable of effectively identifying the wheel-rail force.

                             (a)

                                    (b)
Figure 8: Error and accuracy of each model under different 
signal-to-noise ratios

Conclusions
Against the issues of high cost and complex process for 

wheel-rail force direct measurement, of tedious deduction 
process and large calculation amount for mechanism model-
based models, a data-driven wheel-rail force identification 
method is proposed based on multi-source information such as 
vehicle vibration response, vehicle body position and attitude, 
and running status. Based on the simulation data of a dynamic 
model, a multi-source information database of vehicle dynamic 
response is established, and the Filter-Wrapper filtering feature 
algorithm is used to better retain the valid features of the data. 
Data of a C80 freight train is taken as an example, based on 
the above database. A data-driven wheel-rail force identification 
model CNN-BiLSTM containing physical information is 
established to identify the wheel-rail force of heavy-haul train at 
34 different working conditions of straight line, small curvature, 
long uphill and downhill slope, etc. The experiment results 
show that the proposed method can identify the wheel-rail force 
with higher accuracy. The performance of it is better than that 
of traditional identification algorithms and the single network 
models. It has the ability to identify wheel-rail force at various 
working conditions and in harsh noise environments, therefore 
it is of practical value for actual engineering applications. 
Although the end-to-end wheel-rail force identification model 
has lower wheel-rail force measurement cost and simpler 
deduction process, the data-driven identification algorithm is a 
black box model, so the interpretability of the method proposed 
in this paper needs to be further studied.
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