
Web Assembly (Wasm): An Innovation to Client-Side Improvement

Chakradhar Avinash Devarapalli*

Software Developer, USA

Citation: Chakradhar Avinash Devarapalli. Web Assembly (Wasm): An Innovation to Client-Side Improvement. J Artif Intell
Mach Learn & Data Sci 2024, 2(1), 170-172. DOI: doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/63

Received: January 03, 2024; Accepted: January 28, 2024; Published: January 30, 2024

*Corresponding author: Chakradhar Avinash Devarapalli, Software Developer, USA, E-mail: avinashd7@gmail.com

Copyright: © 2024 Devarapalli CA., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

 A B S T R A C T

Web Assembly is a new target compilation for web applications. It is a groundbreaking technology that allows the browser to
run native languages like C, C++, Python, and Rust. The Code in different native languages is highly computed and optimized
code which does not affect the performance of the Web Application. This research paper comprehends the web assembly
integration to elevate the front-end code of Web applications. The usage of web assembly in web applications has a plethora
of benefits including speed, security, portability, and independence of the environment where it is used. The Web assembly
takes the complex computation to its module to offload the client side of a web application for better high-powered computing.
WebAssembly is a new language like the assembly language which is near to machine language and easy to compute for the
hardware, it gives the standard binary format code, making it fast to load and decode enabling different programming languages
to use without affecting the speed. The maturation of the web platform has boomed the sophisticated and challenging application
which includes Computer Vision, Machine learning web apps which include large datasets, Augmented and virtual reality,
and Rendering of Geographic Apps. JavaScript is a very optimized and dynamic type language, but it all demands other than
JavaScript, so then web assembly comes into action on the way to accelerate the web in different domains.

Keywords: Web Assembly, high-powered computing, frontend performance, interactive frontend, Wasm integration

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/63

1. Introduction
The Web started from a simple document page to exchange

information on the network. However, it has become popular due
to its accessibility and different operating systems and hardware.
Historically JavaScript is only a web programming language
that is natively run on the browser1. The web is widespread
throughout the different sectors of business, which introduce
many other languages like C, C++, Python, and Rust but issues
arise with speed and performance.

Although JavaScript offers the modern virtual machine and it
has become a compilation target for other languages as well and
even C, and C++ but inconsistent performance and some other
pitfalls. Then Wasm comes into the action. The emergence of
the addresses the problem of safe, secure and portable low-level
code on the web. Wasm is a short form of the web assembly.

The Wasm elevates the frontend code of the web application
by passing the complex computation to its module and making
the client side lightweight so that the user gets low latency in
response.

Web Assembly is a low-level (machine code), statically
typed language and does not require any garbage collection. Web
Assembly is the alternative way to the V8 engine of JavaScript
to extract the difficulty and enhance the performance which
serves as a universal compiler that can run on a browser.

Web assembly plays a key role in elevating the frontend
code of the web app by integrating the wasm. The significant
increase in performance, and web assembly usage is increasing
as interactive web is going to be sophisticated. The simple
strategy is to offload the computationally intensive task to the
web assembly module to decrease the load on the client side.

doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/63
https://urfpublishers.com/journal/artificial-intelligence
doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/63

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Devarapalli CA.,

2

Developers can reduce the burden on the browser JavaScript
engine, which results in fast loading time and interactive user
experiences. Another main factor of using web assembly is
binary format is more compact than JavaScript source code,
which leads to smaller file size and quicker downloads at the
client side which elevates the frontend code.

Web assembly provides an extra layer of security. Wasm
codes run in sandboxed environments, which are isolated from
the rest of the system, reducing the risk of security vulnerabilities.
This feature enables the developer to run the untrusted code on
web applications securely.

2. Literature Review
The primary goal of developing the web assembly is to be

faster than JavaScript. The result shows that when the C program
is compiled with the web assembly rather than JavaScript, it runs
34% faster in Google Chrome1. Web assembly is continuously
gaining popularity in Web Applications like Figma (User
interface and experience tool) where C++ and Rust language
are used and optimize the performance of the Figma application
without using the hardware of the computer. The front end of
the web application is very smooth and handy. Many other
tech companies like eBay, Norton, and Google are using web
assembly in their service to improve performances that were
previously written in JavaScript2. TensorFlow.js machine
learning application for instance is based on WebAssembly and
is widely used in applications of Google3.

Web Assembly is supported in all major browsers and
adopted by many programming languages for the backend like
C, C++, Go, and Rust4,5. Code written in this programming can be
executed in a web browser using web assembly efficiently. The
long list of languages can be compiled directly to web assembly.
Also, these can have virtual machines in WebAssembly6. This
enables many developers to deal with the robust and old system
which includes old technologies and languages.

Web Assembly is widely used in the field of graphics
rendering and mathematical simulation because web apps at
the client side are optimized and the backend is coped up with
wasm. Mozilla demonstrated a 20x performance improvement
in parsing the JSON data using Web Assembly when compared
to JavaScript7. Web Assembly can used to throttle the machine
learning algorithms, enabling real-time inference directly in the
browser, according to Google Results8.

Web assembly significantly improves on the state of
the art of efficient computation on the web. Web assembly
attains popularity due to the well-furnished distribution of its
implementation. Web Assembly has global report support for
roughly 80% of all users (including mobile devices).

3. Benefits of Web Assembly
The Web Assembly offers diverse benefits and therefore it

would be difficult to achieve efficient outcomes from the system
without the use of Wasm. The list of benefits is therefore given
below:

•	 It is efficient to execute the Code as .wasm has a smaller
size.

•	 The sandbox environment offers secure access from the
user’s system.

•	 The developers are provided with a variety of programming

languages and they can choose according to their expertise.

•	 It is hardware and platform (Operating system) Independent

•	 It is compatible with a diverse range of browsers and any
code written in languages like C, Cpp, JS, or Rust can run
on any browser with the latest updates without requiring
further modifications.

•	 With the use of Wasm, it is simple to validate and compile
the code.

•	 It has the potential to expand further in the future providing
more benefits to developers and end users.

1. Problem Statement

Web assembly is assembly language that is used for the web.
Web assembly has unreadable code for humans because of its
machine-level language, which is a challenge for the developer
to debug the code. Inspection of the code is more challenging
than the JavaScript.

Wasm can compute different complex tasks efficiently,
but it has limited access to Document Object Model (DOM)
and Browser API. So developer has to bridge the Wasm and
JavaScript to interact with the browser environments. Larger
file size of the wasm may decrease the speed of the page load
time in a slow internet connection. But it can be coped up by
understanding the tools and techniques of wasm.

2. Solutions

Elevating the frontend code of the wasm can be achieved
by understanding the architecture which is given in (Figure 1)
below. The background knowledge of tools and technology used
by Wasm paves the path to achieving optimization on the client
side.

Figure 1: Architecture of Web Assembly for web-based systems

1. Appropriate Tools

Choose appropriate tools and techniques for compiling and
optimizing code for the Web Assembly. Several tools such as

3

Devarapalli CA., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

Emscripten and Rust Language can help developers compile
code to Web assembly and optimize it for performance. Web
Assembly code extension is .wasm which is low-level code that
is only machine-understood code.

2. Integration

Once the compiler generates the web assembly code, a
developer can integrate the web assembly using JavaScript. The
web assembly module is loaded using JavaScript API, allowing
the developer to selectively reduce the burden of the frontend
code by sending the complex task to web assembly code.

3. Memory Management

The developer can use best practices to minimize memory
usage and avoid unnecessary computation. The language the
developer used like Rust, C, or any other, uses advanced methods,
libraries, and environments. Optimize code in the programming
language you are using so that it contains less number of lines
when web assembly is generated it contains a small size of file,
which improves the performance.

4. Compatibility

Compatibility across different operating systems and
hardware can be tested in a variety of environments.
BrowserStack is a simulator that allows developers different
browser configurations, allowing them to identify and fix
computability issues in the early stage of development as well.

The simulators are helpful for quick testing as they provide
automated testing for the systems. For, a detailed view of how
different frameworks help to test systems based on various
programming languages, the following picture in (Figure 2)
may help in understanding. The BrowserStack provides access
to multiple platforms like Selenium, Playwright, and more for
automated testing of the system.

Figure 2: An overview of Testing Frameworks with programming
languages.

4. Research Impact
Given the detailed analysis of WebAssembly and how it

affects the performance of front-end systems specifically for
the web, the writing allows to equip the developers with this
useful technology to reflect efficiency in their systems as well as
the process of development. Certain difficulties for the browser
can only be solved with the use of WebAssembly and solutions
are suggested following that for the developers to overcome the
hindrances existing to use Wasm.

5. Future Developments
Web assembly has huge potential; in this paper, we have

discussed many applications already using web assembly in the
field of machine learning, and pattern recognition9. It will be used
in Web-based games and video applications where computer
vision is involved which is hardware hardware-intensive task.
Web assembly is very practical in the field of Metaverse because
it is very necessary to put less burden on the front end and keep
resource-intensive tasks using the Web Assembly. Internet
of thing is becoming daily use by different companies and
individuals, it involves communication with hardware through
an internet connection when applications are increasing day by
day, web assembly is the solution to reduce the frontend burden
and tackle it in web assembly where low-level code is involved
helpful for the IOT device communication10.

6. Conclusion
In Conclusion, WebAssembly (Wasm) is a binary instruction

format which is a powerful tool for developers as it is equipped
with numerous advantages. The deployment of programming
languages code over the web for client and server applications
is easy with the use of this format. The interaction between
programs and their platforms becomes easy. It offers benefits in
terms of performance, diversity, code sharing, security, and cross-
browser compatibility. However, there are certain difficulties
associated with the use of Wasm but these are addressed in this
article with appropriate solutions.

7. References
1.	 Haas A, Rossberg A, Schuff DL, et al. Bringing the web up

to speed with Web Assembly. Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2017.

2.	 Yan Y, Tu T, Zhao L, Zhou Y, Wang W. Understanding the
performance of WebAssembly applications. Proceedings of the
21st ACM Internet Measurement Conference, 2021.

3.	 Smilkov D, Thorat N, Yuan A. Introducing the WebAssembly
backend for TensorFlow.js, TensorFlow, 2020.

4.	 https://github.com/gopherjs/gopherjs

5.	 A. Zakai, Emscripten: an LLVM-to-JavaScript compiler. in
Companion to the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, 2011.

6.	 https://github.com/appcypher/awesome-wasm-langs

7.	 https://www.smashingmagazine.com/2019/04/webassembly-
speed-web-app/

8.	 https://www.w3.org/2020/06/machine-learning-workshop/
talks/a_proposed_web_standard_to_load_and_run_ml_
models_on_the_web.html

9.	 https://webassembly.org/docs/use-cases/

10.	 Ray PP. An Overview of WebAssembly for IoT: Background,
tools, state-of-the-art, challenges, and future directions. Future
Internet, 2023;15: 275.

https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://people.mpi-sws.org/~rossberg/papers/Haas,%20Rossberg,%20Schuff,%20Titzer,%20Gohman,%20Wagner,%20Zakai,%20Bastien,%20Holman%20-%20Bringing%20the%20Web%20up%20to%20Speed%20with%20WebAssembly.pdf
https://dl.acm.org/doi/abs/10.1145/3487552.3487827
https://dl.acm.org/doi/abs/10.1145/3487552.3487827
https://dl.acm.org/doi/abs/10.1145/3487552.3487827
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://blog.tensorflow.org/2020/03/introducing-webassembly-backend-for-tensorflow-js.html
https://github.com/gopherjs/gopherjs
https://dl.acm.org/doi/abs/10.1145/2048147.2048224
https://dl.acm.org/doi/abs/10.1145/2048147.2048224
https://dl.acm.org/doi/abs/10.1145/2048147.2048224
https://dl.acm.org/doi/abs/10.1145/2048147.2048224
https://github.com/appcypher/awesome-wasm-langs
https://www.smashingmagazine.com/2019/04/webassembly-speed-web-app/
https://www.smashingmagazine.com/2019/04/webassembly-speed-web-app/
https://www.w3.org/2020/06/machine-learning-workshop/talks/a_proposed_web_standard_to_load_and_run_ml_models_on_the_web.html
https://www.w3.org/2020/06/machine-learning-workshop/talks/a_proposed_web_standard_to_load_and_run_ml_models_on_the_web.html
https://www.w3.org/2020/06/machine-learning-workshop/talks/a_proposed_web_standard_to_load_and_run_ml_models_on_the_web.html
https://webassembly.org/docs/use-cases/
https://www.mdpi.com/1999-5903/15/8/275
https://www.mdpi.com/1999-5903/15/8/275
https://www.mdpi.com/1999-5903/15/8/275

	_GoBack

