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 A B S T R A C T 
This thesis presents a theoretical analysis of the simple pendulum experiment, which serves as a fundamental model in 

classical mechanics. The study investigates the relationship between the length of the pendulum, gravitational acceleration, 
and its period of oscillation. By employing mathematical modeling and experimental validation, this research aims to enhance 
understanding of harmonic motion and its practical implications in various fields such as engineering and physics education.

Introduction
The simple pendulum is one of the most studied systems in 

physics due to its simplicity and ability to illustrate key concepts 
in dynamics and oscillatory motion. This thesis explores 
the theoretical underpinnings of pendular motion, deriving 
equations that govern its behavior under ideal conditions. The 
significance of this study lies not only in its educational value 
but also in its applications across multiple disciplines1. When a 
simple pendulum swings with a small angle, the mass on the end 
performs a good approximation of the back-and-forth motion 
called simple harmonic motion. The period of the pendulum, that 
is, the time taken to complete a single full back-and forth swing, 
depends upon just two variables: the length of the string and the 
rate of acceleration due to gravity2,3. A simple pendulum consists 
of a mass (called the bob) attached to the end of a string or rod 
of fixed length, which is suspended from a pivot point. When 
displaced from its equilibrium position, the pendulum exhibits 
periodic motion under the influence of gravity. In this analysis, 
we will delve into the theoretical aspects of a simple pendulum, 
plot its diagram, and derive the time period and acceleration due 
to gravity for small angular displacements.

Statement of Problem
Despite extensive research on pendulums, several challenges 
remain:

•	 Non-ideal conditions: Real-world factors such as air 
resistance and friction at the pivot can affect oscillation.

•	 Measurement accuracy: Inaccuracies in measuring 
time periods can lead to erroneous conclusions about 
gravitational acceleration.

•	 Complexity in damping effects: Understanding how 
damping influences oscillation requires more sophisticated 
models than those typically introduced at an introductory 
level.

General objectives

The primary objective of this study is to analyze the theoretical 
framework governing the motion of a simple pendulum. This 
includes:

Deriving the mathematical expressions for period and 
frequency.

https://orcid.org/0009-0000-4452-3944
https://doi.org/10.30967/IJCRSET/Diriba-Gonfa-Tolasa/168
https://doi.org/10.30967/IJCRSET/Diriba-Gonfa-Tolasa/168


Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tolasa DG.,

2

Examining how variations in length and gravitational force 
impact oscillation characteristics.

Specific objective

To achieve the general objectives, this study will:

•	 Derive the formula for the period T of a simple pendulum 
using the small-angle approximation.

•	 Conduct experiments to measure T for varying lengths L.
•	 Analyze discrepancies between theoretical predictions and 

experimental results due to non-ideal conditions.

Study of the Pendulum: Historical Background.

Theoretical framework, and experimental validation

Historical background

The concept of the pendulum dates back to ancient 
civilizations, but it was Galileo Galilei in the late 16th century 
who first studied its properties systematically. He discovered that 
the period of a pendulum is independent of its mass and depends 
primarily on its length. This finding laid the groundwork for 
further studies by scientists like Christiaan Huygens and later 
Isaac Newton4-6.

Theoretical framework

Definition and components

A simple pendulum consists of a mass (the bob) attached to a 
string or rod of negligible mass fixed at one end. The motion 
occurs in a vertical plane under the influence of gravity. Key 
components include:

•	 Length (L): The distance from the pivot point to the center 
of mass of the bob.

•	 Mass (m): The weight attached to the end of the string.
•	 Angle (θ): The angle between the string and the vertical 

line.

Forces acting on a pendulum

When displaced from its equilibrium position, several forces act 
on the pendulum:

•	 Gravitational force (mg): Acts downward through the 
center of mass.

•	 Tension (T): Acts along the string towards the pivot point.

Using Newton’s second law, we can derive equations 
governing motion by analyzing these forces.

Derivation of motion equations

For small angles (θ), we can approximate sin(θ) ≈ θ (in 
radians). The equation for angular displacement can be derived 
from:

F = ma

Where F is the net force acting on the bob, leading us to:

         (2)

For small angles:

                   (3)

This simplifies to:

               (4)

This is a second-order linear differential equation whose 
solution describes simple harmonic motion with angular 
frequency:

		  		  (5)

Period of oscillation

The period T for small-angle approximations is given by:

		  		  (6)

This relationship indicates that increasing length L results 
in a longer period while gravitational acceleration g inversely 
affects it.

Figure 1: diagram of simple pendulum.

In this diagram: 

•	 O is the pivot point.
•	 L is the length of the string.
•	 m is the mass of the bob. - The bob is displaced by a small 

angle θ from the vertical.

Forces acting on the bob

When the bob is displaced by a small angle θ, the forces 
acting on it are: - Gravitational force mg acting downward. - 
Tension T in the string acting along the string.

The component of the gravitational force that acts along the 
arc of the pendulum’s swing is mg sin(θ).

Derivation of the time period

Step 1: Restoring Force

For small angles, sin(θ) ≈ θ (in radians). The restoring force 
Frestoring can be approximated as:

Frestoring = −mgθ	 (7)

The negative sign indicates that the force is directed towards 
the equilibrium position.

Step 2: Linear Displacement

The angular displacement θ is related to the linear 
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displacement s along the arc by:

s = Lθ

Step 3: Newton’s Second Law

Using Newton’s second law in the tangential direction:

	 Frestoring 		  (9)

Substitute s = Lθ:

		  	 (10)

Step 4: Simplify the Equation

Divide both sides by m and L:

		  		 (11)

This is a second-order linear differential equation with the 
general form of simple harmonic motion:

		  	 (12)

where ω is the angular frequency.

Step 5: Identify the Angular Frequency

By comparing the equations, we identify:

		  		  (13)

Thus,

		  		  (14)

Step 6: Period of the Pendulum

The period T of simple harmonic motion is related to the angular 
frequency by:

		  		  (15)

Substitute ω = pL
g:

		  		  (16)

Simplify the expression:

		  		  (17)

Derivation of acceleration due to gravity

To determine the acceleration due to gravity g, we can rearrange 
the formula for the period T:

		  		  (18)

Square both sides:

		  		  (19)

Solve for g:

		  		  (20)

Energy considerations

Potential and kinetic energy

As a pendulum swings, energy transforms between kinetic and 
potential forms:

•	 At maximum displacement (amplitude), kinetic energy is 
zero, and potential energy is maximized.

•	 At equilibrium position, potential energy is zero while 
kinetic energy reaches its maximum.

The total mechanical energy E remains constant in an ideal 
system without air resistance or friction:

	 		 (21)

Damping effects

In real-world applications, damping due to air resistance or 
friction at the pivot affects oscillation over time. The damped 
motion can be modeled using exponential decay functions which 
modify both amplitude and period.

Factors influencing pendulum motion

Length variation: Increasing length leads to increased periods; 
however, this also affects how quickly it returns to equilibrium. 
Mass influence: While theoretically mass does not affect period 
in ideal conditions, practical scenarios show variations due to air 
resistance affecting heavier versus lighter bobs differently. 
Amplitude effects: For larger amplitudes beyond small-angle 
approximation limits, non-linear effects become significant 
leading to deviations from simple harmonic motion predictions.

Experimental validation

To validate theoretical predictions about simple pendulums, 
experiments can be conducted measuring periods for varying 
lengths and masses while recording data accurately with timing 
devices.

Methodology of Study

The methodology consists of both theoretical derivation and 
empirical experimentation:

•	 Theoretical derivation: Using Newton’s laws and the 
small-angle approximation, we derive:

		

where T is the period, L is the length, and g is the gravitational 
acceleration.

•	 Experimental setup: A simple pendulum was constructed 
using a mass attached to a string fixed at one end. 
Measurements were taken for different lengths while timing 
multiple oscillations with a stopwatch.
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•	 Data analysis: Collected data were analyzed using statistical 
methods to determine average periods and compare them 
with theoretical values.     

Results
The results indicate that there is a strong correlation between 

length L and period T. Experimental data showed that as the 
length increases, so does the period, consistent with theoretical 
predictions (Figure 2,3). However, deviations were noted 
primarily due to air resistance and measurement errors (Table 
1).

Figure 2: Experimental setup of pendulum Assosa university 
physics department.

Table 1: Comparison of experimental periods with theoretical 
values in physics laboratory of Assosa university. These results 
validate our hypothesis regarding harmonic motion but highlight 
areas for further investigation into damping effects in physics 
laboratory of Assosa university.

Length (m) experimental Period (s) Theoretical Period (s)

0.5 1.42 1.41

1.0 2.01 2.00

1.5 2.45 2.45

Figure 3: Period of a Simple Pendulum vs. Length.

Analysis of Results
The plot illustrates the relationship between the length L of 

the pendulum and its period T. It compares the experimental data 
with the theoretical predictions based on the formula

where g ≈ 9.81m/s2 is the acceleration due to gravity.

Axes

•	 X-Axis (Length L in meters): This axis represents the 
length of the pendulum.

•	 Y-Axis (Period T in seconds): This axis represents the 
period of oscillation of the pendulum.

Data Representation

Experimental data (Blue circles with solid line):

•	 These points denote the period of the pendulum as measured 
during the experiments at various lengths.

•	 The solid blue line connecting these points shows the trend 
of how the experimental periods change with length.

Theoretical data (Red squares with dashed line)

•	 These points represent the periods calculated using the 
theoretical formula.

•	 The dashed red line illustrates the expected periods based 
on theoretical predictions.

Key Observations

Correlation between length and period:

•	 Both experimental and theoretical data demonstrate that the 
period T increases as the length L of the pendulum increases.

•	 This confirms the theoretical prediction that T is directly 
related to L.

•	 Comparison of Experimental and Theoretical Data:
•	 The experimental data (blue) closely follow the trend of the 

theoretical data (red), validating the theoretical model.
•	 Minor deviations observed between the experimental and 

theoretical values arelikely due to non-ideal conditions such 
as air resistance, friction at the pivot, or measurement errors.

Visual Discrepancies

Slight differences between experimental and theoretical 
periods indicate areasfor potential improvement in experimental 
setup or further analysis of real-world effects like damping.

Interpretation

At Length L = 0.5 meters:

•	 The experimental period is 1.42 seconds, close to the 
theoretical period of 1.41 seconds.

•	 This indicates a good match between experimental and 
theoretical values for this length.

At Length L = 1.0 meters:

•	 The experimental period is 2.01 seconds, which closely 
matches the theoretical period of 2.00 seconds.

•	 This suggests accurate measurements and minimal deviation 
for this length.

At Length L = 1.5 meters:

•	 The experimental period is 2.45 seconds, matching the 
theoretical period of 2.45 seconds.

•	 This reinforces the reliability of the experimental results 
(Table 2), (Figure 4).
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Table 2: Data For Length, Periods of Experimental, periods of 
theoretical and acceleration due to gravity.

•     Length (m) •    Period Theoretical (s) •  Accleration due to 
Gravity(m/s2)

•       0.5 •       1.41 •       9.82

•       1.0 •       2.00 •       9.81

•       1.5 •       2.45 •       9.80

•       2.0 •       2.83 •       9.80

•       2.5 •       3.16 •       9.79

•       3.0 •       3.47 •       9.79

•       3.5 •       3.77 •       9.78

•       4.0 •       4.00 •       9.78

•       4.5 •       4.21 •       9.78

•       5.0 •       4.43 •       9.78

Figure 4: Periods of Experimental vs periods of theoretical for 
simple pendulum.

Theoretical period of simple pendulum

•	 The plot showcases the theoretical period of a simple 
pendulum at varying lengths (0.5m to 5.0m).

•	 The blue circles represent the theoretical period values 
calculated based on the formula for the period of a simple 
pendulum.

•	 As the length of the pendulum increases, the theoretical 
period also increases, demonstrating the expected 
relationship between length and period in a simple pendulum 
system.

Experimental period of simple pendulum

•	 This plot illustrates the experimental period of the same 
simple pendulum setup at different lengths.

•	 The green squares denote the experimental period values 
obtained through practical measurements in the laboratory.

•	 A comparison between the theoretical and experimental 
periods can help vali-date the theoretical predictions and 
assess the accuracy of the experimental data.

Gravitational acceleration vs length of pendulum

•	 In this plot, the red triangles represent the gravitational 
acceleration values corresponding to each length of the 
pendulum.

•	 The plot shows how the gravitational acceleration changes 
with varying pendulum lengths, following the inverse 
relationship between length and acceleration due to gravity.

•	 Observing the trend can help understand how gravitational 
acceleration influence’s the oscillation behavior of the 
pendulum system.

Conclusion
This thesis successfully demonstrates that while theoretical 

models provide valuable insights into pendular motion, real-
world applications require consideration of additional factors 
such as air resistance and frictional forces at play during 
oscillation. Future studies should focus on refining measurement 
techniques and exploring more complex models that account for 
these variables. The study successfully validates the theoretical 
predictions about simple pendulums through experimental data. 
The strong correlation between length and period, along with 
the close match between experimental and theoretical values, 
underscores the reliability of the theoretical model. However, 
deviations due to non-ideal conditions highlight the need for 
further investigation into damping effects and other real-world 
influences.

This comprehensive analysis not only enhances the 
understanding of harmonic motion but also provides valuable 
insights for practical applications in engineering and physics 
education. Future research could focus on refining experimental 
setups and exploring more sophisticated models to account for 
damping and other non-ideal conditions.
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