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 A B S T R A C T 
Background: Idiopathic scoliosis is a structural spinal deformity characterized by a coronal plane curvature with no definite 
etiology that may lead to neurological complications if left untreated in a fraction of patient. Surgical intervention remains 
the cornerstone of treatment for severe cases, but the risk of neurological injury necessitates the integration of intraoperative 
neurophysiological monitoring (IONM) to enhance surgical safety and preserve neural function. This case report underscores 
the role of multimodal IONM in preventing neurological injury in a 17-year-old male with idiopathic scoliosis and preexisting 
neurological deficits who underwent scoliosis deformity correction surgery. 

Case Presentation: A 17-year-old male presented with progressive gait disturbances, lower limb weakness and sensory deficits over 
the past 6 months. Preoperative MRI revealed severe leftsided scoliosis with convexity at D8 level. Multimodal IONM, including 
somatosensory evoked potentials (SSEPs), transcranial motor evoked potentials (TcMEPs) and free-run electromyography 
(EMG), was employed throughout the procedure. Despite preexisting deficits, postoperative assessment showed 85% deformity 
correction without any new neurological impairment. 

 Conclusion: Multimodal IONM is indispensable in complex spinal deformity surgeries, particularly in patients with preoperative 
neurological compromise. The integration of SSEPs, TcMEPs and EMG enhances the efficacy of intraoperative spinal cord 
monitoring. These minimizes the risk of neurological injury by allowing surgeons to adjust surgical techniques accordingly 
bestowing them with the flexibility and precision needed to optimize patient outcomes.
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Introduction
Scoliosis is a structural spinal deformity defined as the 

curvature of spine in the coronal plane of Cobb angle more than 
10 degrees accompanied by a variable degree of rotation of the 
spinal column. Progression of curvature during periods of rapid 
growth can result in significant abnormality, which may be even 
accompanied by cardiopulmonary compromise1. Idiopathic 
scoliosis is scoliosis for which there is no definite etiology, 
unlike neuromuscular, congenital or syndromic types. The 
prevalence of adolescent idiopathic scoliosis is estimated to be 
2-3% but only 10 percent of these patients require treatment2-5. 
Surgical Correction for scoliosis is often required for severe 
cases with significant curvature progression or neurological 
involvement6,7. However, the risk of neurological injury during 
deformity correction is welldocumented, with reported rates 
ranging from 0.5% to 17%8,9. The risk of neurological injury 
during scoliosis correction is multifactorial, arising from 
mechanical stress, vascular compromise and altered spinal cord 
dynamics. Overcorrection or excessive distraction may lead to 
ischemia, while tethering effects can further predispose patients 
to neurological deficits10,11. Intraoperative neurophysiological 
monitoring (IONM) has emerged as a critical adjunct in spine 
surgery to mitigate spinal cord distress thereby significantly 
reducing the incidence of postoperative neurological deficits12,13. 
IONM helps assess the integrity of neural structures during 
complex spine surgeries by real time monitoring of spinal cord 
function employing multiple modalities including somatosensory 
evoked potentials (SSEPs), transcranial motor evoked potentials 
(TcMEP) and electromyography (EMG). This allows surgeons to 
adjust surgical techniques accordingly bestowing them with the 
flexibility and precision needed to optimize patient outcomes14,15. 

This case report showcases the critical role of multimodal 
IONM in a 17-year-old male with idiopathic scoliosis and 
preexisting neurological deficits undergoing deformity 
correction by Ponte osteotomy and pedicle screw fixation. By 
continuously assessing intraoperative electrophysiological 
responses and analyzing postoperative outcomes, we demonstrate 
the effectiveness of multimodal IONM in enhancing surgical 
safety, enabling real-time intervention and preventing further 
neurological deterioration in complex spinal deformity surgeries.

Case Report
A 17-year-old male presented with progressive difficulty 

in walking, lower limb weakness (right > left) and sensory 
deficits over six months. Neurological examination revealed 
reduced muscle strength in the lower limbs, with hip flexors 
graded at 2/5 and distal muscles at 4/5. Reflexes were brisk, with 
exaggerated knee jerk (3+) and ankle jerks accompanied by well 
sustained clonus (4+) bilaterally. The Babinski sign was positive 
bilaterally and sensory deficits were observed corresponding to 
L3 dermatome and below. Upper limb muscles were normal with 
normal tone and reflexes. Preoperative MRI revealed severe left-
sided scoliosis with a maximum convexity at D8 level. (Figure 
1).

The patient underwent Ponte osteotomy at multiple levels 
by removing the spinous processes, laminae and facet joints, 
followed by pedicle screw fixation from D3 to L4. After rod 
placement, convex compression followed by concave distraction 
was applied, achieving 85% correction of the scoliotic curve. 
Multimodal IONM was employed throughout the surgery 

to monitor spinal cord integrity. Both preoperatively and 
perioperatively, SSEPs were well-formed in the upper limbs 
but poorly formed or absent in the lower limbs. TcMEPs 
were recordable from the abductor pollicis brevis and rectus 
abdominis but non-recordable from the lower limb muscles 
(vastus lateralis, tibialis anterior, abductor hallucis longus and 
anal sphincter), consistent with preexisting deficits. During rod 
fixation, a transient decrease in rectus abdominis amplitude 
(<50%) was noted, but no significant intraoperative alarms were 
triggered. Free-run EMG revealed no neurotronic or abnormal 
discharges, suggesting the absence of nerve root irritation or 
injury. Anesthetic induction was done using intravenous agents, 
Fentanyl 140 mcg and Propofol 140 mg and was maintained 
with air, oxygen, isoflurane (MAC 0.2-0.3) and propofol 
infusion. Lighter plane of anesthesia was maintained throughout 
the surgery by monitoring the train-of-four stimulus (TOF). 
Hemodynamic parameters remained stable throughout the 
surgery.

Figure 1: Preoperative MRI revealed severe left-sided scoliosis 
with maximum convexity at D8.

Postoperative Outcome
The patient was monitored closely postoperatively. Clinical 

examination on POD 7 revealed no new neurological deficits 
were observed and preoperative symptoms remained stable. 
Radiographs confirmed 85% deformity correction (Figure 2). 
The integration of IONM allowed real-time assessment of spinal 
cord function, enabling proactive intervention and ensuring 
optimal surgical outcomes.

Discussion
The prevention of neurological injury during spinal deformity 

correction requires a multimodal approach, particularly in 
patients with preexisting deficits9,10. SSEPs assess dorsal column 
function, TcMEPs evaluate corticospinal tract integrity and EMG 
detects nerve root irritation or injury16. In this case, the absence 
of lower limb SSEPs and TcMEPs preoperatively underscored 
the severity of neurological compromise, necessitating vigilant 
intraoperative monitoring17. The transient decrease in rectus 
abdominis amplitude during rod fixation was promptly identified 
and continuously monitored which enabled intraoperative 
adjustments to prevent potential postoperative deficits (Figure 
3).
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Figure 2: Free Run and TcMEP and IONM and SSEP recording 
during surgery.

Extensive clinical evidence supports the role of multimodal 
IONM in reducing postoperative neurological deficits in 
scoliosis surgery18,19. In a landmark multicenter study, Nuwer, 
et al20. demonstrated a significant reduction in paralysis risk 
with the integration of IONM, reinforcing its indispensable role 
in deformity correction procedures. Additionally, Thirumala, 
et al21. found that the combination of SSEPs and TcMEPs 
improved diagnostic accuracy in detecting intraoperative spinal 
cord distress. Our findings align with these reports, reinforcing 
the necessity of real-time intraoperative monitoring. Notably, 
in this case, preoperative TcMEPs were absent in the lower 
limbs, emphasizing the severity of the patient’s neurological 
compromise. Despite this, careful monitoring and intraoperative 
adjustments facilitated successful correction without 
exacerbating neurological deficits, further validating the efficacy 
of IONM in high-risk cases.

 
Figure 3: X-Ray Image showing 85% correction of the spinal 
deformity postoperatively.

Despite the benefits, IONM has limitations, including 
variability in interpretation and false- positive or false-negative 
results22. Factors such as anesthetic variability, patient factors such 
as positioning and body temperature and underlying pathology 
may influence signal reliability23. Anesthetic management is 
critical for IONM reliability, as high-dose inhalational agents 
can suppress SSEP and TcMEP signals. TIVA with propofol 
and remifentanil is preferred for signal preservation, while 
precise neuromuscular blockade titration maintains EMG 
responsiveness24-26. Standardization of monitoring protocols 
and improved signal-processing algorithms could further refine 
its diagnostic precision. Also, studies have emphasized the fact 
that the combined use of SSEPs, TcMEPs and EMG enhances 
diagnostic precision, mitigating these challenges27,28.

Conclusion
This case report underscores the indispensable role of 

multimodal IONM in mitigating neurological injury during 
complex spinal deformity surgeries. The integration of 
somatosensory evoked potentials (SSEPs), transcrania motor 
evoked potentials (TcMEPs) and electromyography (EMG) 
facilitates real-time assessment of spinal cord function, enabling 
early intervention and optimizing patient outcomes. Given its 
demonstrated efficacy, multimodal IONM should be regarded as 
a standard of care in scoliosis surgery and should be routinely 
adopted, particularly in patients with preexisting neurological 
deficits.
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