
The Power of Cryptography: Hashing and Encryption for Data Protection

Azra Jabeen Mohamed Ali*

Independent Researcher, California, USA

Citation: Ali AZM. The Power of Cryptography: Hashing and Encryption for Data Protection. J Artif Intell Mach Learn & Data 
Sci 2023, 1(1), 1857-1861. DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411

Received: 02 February, 2023; Accepted: 18 February, 2023; Published: 20 February, 2023

*Corresponding author: AzraJabeen Mohamed Ali, Independent researcher, California, USA, E-mail: Azra.jbn@gmail.com

Copyright: © 2023 Ali AZM., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411

 A B S T R A C T 

This paper explores the foundational techniques of hashing and encryption, which are essential for ensuring data protection 
and integrity in various applications, from secure communications to safeguarding stored data. In today’s digital age, securing 
sensitive information is paramount and cryptography plays a critical role in achieving this goal. Hashing is used to convert input 
data into fixed-size hashes, providing a way to verify data integrity without exposing the original data, while encryption ensures 
that information is transformed into unreadable formats, only accessible by authorized parties. Through a detailed examination 
of popular cryptographic algorithms, such as SHA-256 for hashing and AES for encryption, the paper highlights how these 
methods are applied in real-world scenarios to protect privacy, prevent unauthorized access and guarantee data authenticity. 
Additionally, the paper discusses the strengths and weaknesses of each technique, their respective use cases and the evolving 
challenges in the cryptographic landscape, including computational threats and the potential impact of quantum computing. 
Ultimately, this study underscores the significance of hashing and encryption as cornerstones of modern cybersecurity practices, 
offering solutions to safeguard digital assets in an increasingly interconnected world. 

Keywords: Cryptography, Encryption, Hashing, Security, Data protection, Algorithms, Decryption, decode, ciphertext

1. Introduction
1.1. Cryptography

Cryptography is the study and application of protecting data 
and communications from outside influence or manipulation. 
Data confidentiality, integrity and authenticity are safeguarded 
through the development of algorithms, protocols and systems. 
From data storage and digital signatures to online banking and 
secure messaging, cryptography is a fundamental component of 
contemporary information security.

There is no way for entities to communicate securely over 
public networks like the Internet. Unauthorized third parties 
may be able to view or even alter communications across 
these networks. In addition to providing a safe method of 
communicating over otherwise insecure channels, cryptography 
also helps prevent data from being viewed and offers methods 
for determining whether it has been altered. For instance, a 

cryptographic technique can be used to encrypt data, which can 
then be delivered in an encrypted state and decrypted by the 
intended recipient. It will be challenging to decode encrypted 
data if it is intercepted by a third party.

In C#, a namespace is used to organize code into groups, 
making it easier to manage and maintain. When working 
with cryptography in C#, the System, Security. Cryptography 
namespace is used, which contains classes that provide 
cryptographic functionality, such as hashing, encryption and 
digital signatures.

Fundamental principles of cryptography:

1. Confidential: Ensuring that only those with permission can 
access information.

2. Integrity: Ensuring that data is not changed while being 
sent or stored.

https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/411


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Ali AZM.,

2

AES-128 encryption. Typically, AES supports key sizes of 128, 
192 or 256 bits and here we use 128 bits (16 bytes). The IV 
(Initialization Vector) is set to a zeroed byte array of 16 bytes. 
In real applications, it’s recommended to use a random IV for 
enhanced security. GenerateKey and GenerateIV methods are 
available to generate multiple keys and IV.

Figure 1.

1.4.2. CryptoStream: This stream encrypts data in real-time 
as it’s being written. It reads plaintext and writes ciphertext 
(unreadable data) in the underlying MemoryStream.

1.4.3. Base64 Encoding: The result is a byte [] array (ciphertext), 
which is then converted to a Base64 string. Base64 encoding is 
used because it ensures the encrypted data can be represented as 
readable text, suitable for storage or transmission.

Benefits of Symmetric Encryption:

1. Speed and Efficiency: In general, symmetric encryption 
algorithms such as AES, DES and 3DES are quicker and 
more effective than asymmetric encryption, particularly 
when handling big data sets.

2. Security with Key Management: Symmetric encryption 
can offer robust secrecy and privacy when combined with a 
secure key management system (for example, via a secure 
key exchange procedure).

3. Lower Computational Load: Symmetric encryption 
puts less computational load on devices than asymmetric 
encryption since it employs fewer mathematical procedures.

1.5. Challenges of Symmetric Encryption

1.5.1. Key Distribution Issue: The requirement that 
communicating parties safely exchange and maintain the 
secret key is the main drawback of symmetric encryption. The 
encryption is rendered unsafe if the key is compromised.

1.6. Symmetric Decryption

Below code (Figure 2) demonstrates the Decrypt method 
with the implementation of AES decryption in C#. It decrypts a 
cipherText (which is assumed to be in Base64 format) using a given 
password. The method converts the Base64-encoded cipherText 
back into a byte array using Convert.FromBase64String (). The 
byte array is passed into a MemoryStream that acts as a buffer 
for the encrypted data. The CryptoStream is used to decrypt 
the data, transforming the byte data into readable plaintext. A 
StreamReader reads the decrypted data from the CryptoStream 
and returns it as a string.

1.7. Asymmetric Encryption

Asymmetric encryption is also known by several other 
names, including Public Key Encryption, Two-Key Encryption, 

3. Authentication: Verifying the identity of the sender or 
receiver of the data.

4. Non-repudiation: Ensuring that a party cannot deny the 
authenticity of their message.

1.2. Core Cryptographic Mechanism components

The core cryptographic mechanism components are 
Encryption, Hashing, Digital signatures, Public key Infrastructure 
(PKI), Cryptographic Protocols.

1.3. Encryption

Encryption in cryptography is the process of converting 
plaintext (readable data) into ciphertext (unreadable data) using a 
specific algorithm and a key. Encryption serves to safeguard data 
secrecy by limiting access and comprehension to only those who 
are permitted. The foundation of contemporary cryptography 
is encryption, which guarantees the security of private data, 
communications and passwords while they are being transmitted 
or stored. It is classified into two types

1. Symmetric encryption is also known as Secret Key 
Encryption or Private Key Encryption or Single Key 
Encryption.

2. Asymmetric Encryption also known as Public Key 
Encryption or Two Key Encryption.

1.4. Symmetric Encryption

Symmetric Encryption uses the same single secret key 
for encryption and decryption. Because of this, it is known 
as symmetric encryption and its methods are far faster than 
public-key algorithms. The sender and receiver must both 
possess the same secret key, which must be kept confidential. 
AES (Advanced Encryption Standard), DES (Data Encryption 
Standard), 3DES (Triple DES), RC4, Blowfish algorithm classes 
are used to implement symmetric encryption. It is necessary 
to create a key and an initialization vector (IV) for symmetric 
algorithms. This key must be secret so it would be encrypted and 
IV does not need to be secret so it can be sent as plain text. When 
a new instance of one of the managed symmetric cryptographic 
classes is created using the parameterless Create () function, a 
new key and IV are automatically generated. Anybody who is 
permitted to decode data needs to have the same key, IV and 
algorithm.

A unique stream class known as a Crypto Stream is used 
with the managed symmetric cryptography classes to encrypt 
data that is read into the stream. A managed stream class, a 
class that implements the ICryptoTransform interface (derived 
from a class that implements a cryptographic algorithm) and 
a CryptoStreamMode enumeration that specifies the kind of 
access allowed to the CryptoStream are used to initialize the 
CryptoStream class. Any class that inherits from the Stream 
class, such as FileStream, MemoryStream and NetworkStream, 
can be used to initialize the CryptoStream class. These classes 
allows us to symmetrically encrypt a range of stream objects.

Below code (Figure1) demonstrates how to encrypt a 
plaintext string using the AES algorithm and a password as the 
key.

1.4.1. AES Encryption: The Aes.Create() method is used to 
create an AES encryption object. The Key is a 16-byte key, 
padded with PadRight(16) to ensure it’s the correct size for 



3

Ali AZM., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Public/Private Key Encryption. A public key for encryption and 
a private key for decryption is the two keys used in asymmetric 
encryption. The private key is kept safe, but the public key is 
readily exchanged. Many contemporary cryptographic systems, 
including those that protect communications over the internet, 
are based on this encryption technique. No need for the sender 
and receiver to share the same secret key. RSA, ECC (Elliptic 
Curve Cryptography), DSA (Digital Signature Algorithm) are 
used to implement asymmetric encryption.

Figure 2.

To safeguard the encrypted data, the private key is maintained 
secure and should never be lost or disclosed.

(Figure3) Below code demonstrates the method to encrypt 
a message using RSA with OAEP padding and SHA-256 as the 
hashing algorithm.

1.7.1. RSA Key Creation: RSA.Create() initializes a new RSA 
object. This method is modern and should be used in place of the 
older RSACryptoServiceProvider.

1.7.2. Loading the Public Key: The method rsa.
ImportRSAPublicKey(Convert.FromBase64String(publicKey), 
out _) is used to load the public key into the RSA instance. The 
public key is expected to be in Base64-encoded format.

1.7.3. Encrypting the Message: Encoding.UTF8. GetBytes 
(message) converts the message (string) into a byte array 
so that it can be processed by the RSA algorithm. rsa.
Encrypt(messageBytes, RSAEncryptionPadding.OaepSHA256) 
encrypts the byte array with the public key using OAEP padding 
with SHA-256.

1.7.4. RSA Encryption: The rsa.Encrypt() method encrypts the 
message. In this case, OAEP padding with SHA-256 is used, 
which is more secure than the older PKCS#1 v1.5 padding. It 
ensures that the encrypted data is protected against certain types 
of cryptographic attacks.

Base64 Public Key: The public key is assumed to be in Base64 
format (publicKey). 

Public Key Format: With an XML format, it is to use rsa.
FromXmlString() instead of ImportRSAPublicKey(). If we are 
using a PEM file format, we need to use a proper PEM parser. 

RSA Limitations: RSA is generally not used to encrypt large 
data directly due to limitations on the size of the message it 
can encrypt based on the key size (typically around 256 bytes 
for 2048-bit keys). For larger messages, RSA is often used to 
encrypt a symmetric key (e.g., AES key) and then the symmetric 
algorithm is used to encrypt the actual data.

Figure 3.

1.8. Benefits of Asymmetric Encryption

Key Distribution: The issue of key distribution that symmetric 
encryption faces is resolved by asymmetric encryption. It is 
simple to send encrypted messages without requiring a secure 
channel for key exchange because the private key is kept secret 
while the public key can be published publicly.

Digital Signatures: The generation of digital signatures is 
made possible by asymmetric encryption. With the private key, a 
message can be signed and with the public key, the recipient can 
confirm the signature. By doing this, the message’s integrity and 
authenticity are guaranteed.

Secure Communication: It enables secure communication 
over insecure channels, such as the internet. Public keys can be 
shared openly, while private keys remain confidential.

1.9. Challenges of Asymmetric Encryption

Slower Performance: Because of the intricacy of the 
mathematical calculations required, asymmetric encryption 
performs more slowly than symmetric encryption, particularly 
when dealing with huge data quantities.

Key Management: It still necessitates rigorous private 
key management even though it circumvents the symmetric 
encryption problem of key distribution. It is impossible to 
decipher encrypted data if a private key is lost.

1.10. Asymmetric Decryption

(Figure 4) Below code is an example of asymmetric 
decryption using RSA in C#. It decrypts an encrypted message 
with the RSA private key and returns the decrypted message as 
a string.

1.10.1. RSA Object: RSA.Create() initializes a new RSA 
object. The “using” block ensures the RSA object is disposed of 
properly once it’s no longer needed.

1.10.2. Private Key import: The private key is expected to be 
Base64-encoded and is loaded into the RSA object using rsa. 
ImportRSAPrivateKey(). This method expects the private key to 
be in a specific format, often generated from the corresponding 
public key used in encryption.

1.10.3. Decryption: The encrypted message is passed in as a 
byte array (encryptedMessage). rsa.Decrypt() decrypts the data 
using OAEP padding with SHA-256, which ensures security.

1.10.4. Return Decrypted Message: The decrypted byte array 
is then converted to a UTF-8 string using Encoding.UTF8. 
GetString(decryptedBytes).

1.10.5. Public Key Encryption: The message is encrypted 
using the public key with OAEP SHA-256 padding for modern 
security.

1.10.6. Private Key Decryption: The encrypted message is 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Ali AZM.,

4

decrypted using the private key with the same OAEP SHA-256 
padding to ensure that the decryption process matches the 
encryption scheme. OAEP with SHA-256 provides a more secure 
encryption method compared to the older PKCS#1 padding.

1.10.7. RSA Key Format: This code assumes that the public 
and private keys are Base64-encoded strings. If keys are in XML 
or PEM format, they will need to be converted to Base64 first or 
handled with appropriate parsers.

Figure 4.

Table1: Comparison between Symmetric and Asymmetric.

 Symmetric Encryption
Asymmetric 
Encryption

Algorithm speed Fast Slow

No of Keys for 
encryption and 
decryption 1 2

Algorithm class used

AES (Advanced 
Encryption Standard), 
DES (Data Encryption 
Standard), 3DES (Triple 
DES), RC4, Blowfish

RSA, ECC (Elliptic 
Curve Cryptography), 
DSA (Digital 
Signature Algorithm)

Alias name Single Key Encryption Two Key Encryption

1.11. Hashing

The process of transforming an input (or “message”) into 
a fixed-length string of characters, usually a digest, is known 
as hashing in cryptography. Usually, a hash function produces 
the outcome, which is known as the hash value or hash code. 
Hashing is a one-way conversion and they are frequently used to 
safeguard private information, including digital signatures and 
passwords. Hashing in C# is straightforward with the System.
Security. Cryptography library. Hashing in C# is typically 
accomplished with the use of libraries that offer a variety of 
cryptographic techniques, including MD5 (Message Digest 
Algorithm 5) and SHA (Secure Hash Algorithm).

Common hashing Algorithms in C#:

• SHA-256: A member of the SHA-2 family, it produces a 
256-bit hash value and its widely used.

• SHA-512: Another member of the SHA-2 family, it 
generates a 512-bit hash value and more secure than SHA1 
and SHA256.

• SHA1: Deprecated for most cryptographic purposes due to 
vulnerabilities, but still supported.

• MD5: While still widely used, MD5 is considered 
cryptographically broken and unsuitable for security 
purposes due to vulnerabilities.

(Figure 5) Below is an example of hashing data using 
SHA-256 in C#

Figure 5.

• SHA256.Create(): Creates an instance of the SHA-256 
algorithm. It’s used to generate the hash.

1.11.1. Compute Hash(): This method takes the byte array of 
the input data (rawData converted to UTF-8 bytes) and returns 
the hash as a byte array. The length of the hash is fixed at 32 
bytes (256 bits) for SHA-256.

1.11.2. Hexadecimal Conversion (x2): builder. 
Append(byteValue.ToString(“x2”)): For each byte in the hash 
array, this converts the byte to a two-digit hexadecimal string 
(x2 stands for hexadecimal format with two digits). This is done 
to represent the hash as a readable hexadecimal string.

1.11.3. StringBuilder: The StringBuilder class is used to 
efficiently append each hexadecimal byte to the result string. It’s 
generally more efficient than using regular string concatenation 
inside a loop.

1.11.4. return builder.ToString();: Finally, the StringBuilder is 
converted into a string and returned, which is the final SHA-256 
hash in hexadecimal format.

SHA-256 is one of the most secure cryptographic hash 
functions and is widely used for password hashing, data integrity 
verification and digital signatures. Using StringBuilder for 
constructing the hexadecimal string is optimal for performance, 
especially when hashing larger inputs or using this function 
repeatedly. This function is ready to use and can be incorporated 
into larger cryptographic operations, such as password storage 
or file integrity checks.

1.12. Benefits of Hashing

Data Integrity: Data integrity is ensured through hashing. 
The hash is an effective instrument for confirming the integrity 
of data because it will vary drastically if even a single bit of data 
changes. Digital signatures and file verification benefit greatly 
from this.

Efficiency: Hash functions are quick and low-cost to 
compute. Even for big datasets, they can produce a hash value 
fast.



5

Ali AZM., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

Password Storage: Hashing is a popular technique for safely 
storing passwords. A password is hashed when it is created by 
the user and only the hash is saved. In the event of a data breach, 
the danger of exposure is decreased because the actual password 
is never saved.

Fixed Output Size: The hash value (e.g., SHA-256) has a 
fixed length, regardless of the input size. This makes handling 
data simpler and more reliable.

Feature Hashing Symmetric Encryption Asymmetric Encryption

Security Provides data integrity and 
authenticity

Ensures confidentiality of data with 
shared key

Secures communication without sharing 
a secret key

Speed Very fast and efficient Faster than asymmetric encryption Slower than symmetric encryption

Use Cases Password storage, file integrity, 
digital signatures

Data encryption, VPNs, secure 
communications

Secure communications, digital 
signatures, blockchain

Key Management No keys to manage for 
verification

Requires secure key distribution/
management

Easy key distribution (public key), 
private key needs protection

Reversibility One-way process (irreversible) Reversible (with the same key) Reversible (with private key for 
decryption)

Non-repudiation Provides data verification No inherent non-repudiation Provides strong non-repudiation

Table 2: Summary of Benefits.

2. Conclusion
Cryptography is an essential technology for ensuring 

the security and privacy of digital information in today’s 
interconnected world. It enables secure communication, protects 
sensitive data and supports trust in various systems. With ongoing 
advancements, cryptography continues to evolve, meeting the 
challenges of emerging technologies while safeguarding digital 
assets. The best cryptographic method to use depends on the 
specific security requirements and the context in which it is 
being applied. Often, a combination of these techniques is used 
to achieve robust security in modern systems (e.g., combining 
asymmetric encryption for key exchange with symmetric 
encryption for bulk data encryption).

3. References

1. https://www.c-sharpcorner.com/article/cryptography-in-net/

2. https://learn.microsoft.com/en-us/dotnet/api/system.security.
cryptography?view=net-9.0

3. https://learn.microsoft.com/en-us/dotnet/standard/security/
cryptographic-signatures

4. https://learn.microsoft.com/en-us/dotnet/standard/security/
decrypting-data 

5. https://learn.microsoft.com/en-us/dotnet/standard/security/
walkthrough-creating-a-cryptographic-application

6. https://learn.microsoft.com/en-us/dotnet/standard/security/
ensuring-data-integrity-with-hash-codes

7. Joseph Albahari and Ben Albahari, “C# 7.0 in a Nutshell 7Th 
Edition” O’Reilly Media, 2017.

8. Joseph Albahari and Ben Albahari, “C# 9.0 in a Nutshell” O’Reil-
ly Media, 2021.

9. Joseph Albahari and Ben Albahari, “C# 10.0 in a Nutshell” 
O’Reilly Media, 2022.

10. Matthew Macdonald, Eric Johansen “C# Data Security Handbo-
ok” Apress Publication, 2003.

11. Rod Stephens, “C# 5.0 Programmer’s Reference” Wrox Publi-
cation, 2014.

12. Marius Iulian Mihailescu, Stefania Loredana Nita “Pro Crypto-
graphy and Cryptanalysis: Creating Advanced Algorithms with 
C# and .NET “Apress Publication, 2020.

https://www.c-sharpcorner.com/article/cryptography-in-net/
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://learn.microsoft.com/en-us/dotnet/standard/security/cryptographic-signatures
https://learn.microsoft.com/en-us/dotnet/standard/security/decrypting-data
https://learn.microsoft.com/en-us/dotnet/standard/security/decrypting-data
https://learn.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-cryptographic-application
https://learn.microsoft.com/en-us/dotnet/standard/security/walkthrough-creating-a-cryptographic-application
https://learn.microsoft.com/en-us/dotnet/standard/security/ensuring-data-integrity-with-hash-codes
https://learn.microsoft.com/en-us/dotnet/standard/security/ensuring-data-integrity-with-hash-codes
https://www.amazon.in/C-9-0-Nutshell-Definitive-Reference/dp/1098100964
https://www.amazon.in/C-9-0-Nutshell-Definitive-Reference/dp/1098100964
https://www.amazon.com/Data-Security-Handbook-Matthew-Macdonald/dp/1861008015
https://www.amazon.com/Data-Security-Handbook-Matthew-Macdonald/dp/1861008015
https://www.wiley.com/en-us/C%23+5.0+Programmer's+Reference-p-9781118847299
https://www.wiley.com/en-us/C%23+5.0+Programmer's+Reference-p-9781118847299
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669
https://www.amazon.in/Pro-Cryptography-Cryptanalysis-Creating-Algorithms/dp/1484263669

	_GoBack

