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 A B S T R A C T 
In this manuscript, we describe several methods to achieve interpretability in machine learning. Explainability implies the 

use of well-sound algebraic and probabilistic tools. These depend on the algorithms used in the training phase. It also translates 
into the graphical capabilities of each method. We present methods based on algebra and probability. Both approaches converge 
with the well-known nonnegative matrix factorization techniques after transforming observations into probabilities. Those 
techniques enable the introduction of a probability-based measure that generalizes and unifies multiple methods. We introduce 
the description of the methods from a historical perspective.
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Introduction
AI (Artificial Intelligence) has been an increasing field in 

recent years. It uses the methods of ML (Machine Learning). 
This last discipline is the intersection of computer engineering 
and statistics1. The objective is to execute the tasks as humans 
do. The methods require learning a task with a metric for its 
evaluation. The acceptance of these methods by the scientific 
community for data compression, summarization, classification 
or prediction has given rise to the appearance of many competing 
methods. Those methods involve several families of approaches 
and they do not offer the same results in many cases.

In the basic sciences, the results obtained with mathematical 
tools are highly reliable. In the case of ML, the discussion 
becomes complex. The main idea of ML is to select a model 
(a function model), determine its parameters and evaluate the 
quality of the conclusions. This last step is the validation phase. 
The parameters are selected from examples and they constitute 
the training phase. Depending on whether the examples are 

previously classified (or labeled) or not, the methods are 
supervised or unsupervised. The training phase is sensitive to 
extreme values (outliers), zeros (stability), overlapping variables 
and variation. A problem shared by many methods is that they 
may favor the researcher’s requirements and abilities2.

The most classic interpretable methods are related to statistical 
regression and they are well-sound. Another widespread family 
of methods is clustering. Clustering methods involve grouping 
similar observations into homogeneous groups, which constitutes 
a partition of the set of observations. Then, the estimation of the 
observation’s similarity is done by introducing a metric based on 
distance. There are also probabilistic methods (or fuzzy methods, 
although there is a difference between them). These methods 
do not create a partition in which each observation uniquely 
belongs to a single group, but they assign a certain degree of 
probability to each group. The SVM (Support Vector Machines) 
relies on the idea of kernelization. They use the matrix of scalar 
products to assess the similarity between observations. This 
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property is called spatial separability. In practice, separability 
requires transforming the observation space (input space) into 
another space, not necessarily of the same dimension (feature 
space). Another family of methods, constituting a field and 
gaining popularity, is NN (neural networks). These methods 
are inspired by the brains of biological organisms and introduce 
the concept of neurons as connected nodes that simulate brain 
function. Formally, the connection of nodes grouped into layers 
constitutes a computational graph. The electrical transmission of 
signals circulating in biological brains is the activation function. 
The training phase is weighing the neuron connections. Despite 
their heuristic justification, some authors claim that they allow 
for obtaining any mathematical function3.

As a result, for each family of methods, there is a diaspora 
of algorithms. Many of them are difficult to understand. In this 
context, explainability gains interest. Recently, this topic has 
experienced growing interest. This issue, contextualized in NNs, 
is presented in4. A more general treatment that offers a discussion 
of the problem of the concept of explainability is5. Explainability 
needs formalisms. In the presence of uncertainty, it is achieved by 
using analytical tools, algebra, probability theory and statistics. 
Nonnegative-entry matrices with an appropriate normalization 
condition support the algebraic structures of probabilistic 
methods. This algebra unifies algebraic and probabilistic 
statements, leading to multivariate density estimations.

To illustrate this viewpoint, the place of causality and 
uncertainty in the formation of qualitative models is briefly 
described (section Science Models). The tools for achieving 
explainability from algebraic-probability theory constitute 
the section Formal Tools. The Explainable Machine Learning 
Landscape section introduces the primary techniques with 
explainable outcomes before concluding.

Science Models Evolution
The classic methods for modeling problems are differential 

equations (DE). With the development of physics, every branch 
has given rise to its specific differential equations. The set of 
many of these equations for solving particular problems is 
known as Mathematical Physics. This method is the backbone 
of the work of scientists in the 18th and 19th centuries and has 
extended to many other branches of science. The phenomena 
modeled in this way are both interpretable and explainable in the 
sense of the introduction.

The quantitative study of other phenomena linked to heredity 
and evolution is a debt to the great British mathematician and 
statistician Karl Pearson. Leaving aside his many fundamental 
contributions, he modeled uncertainty in terms of probabilities 
to predict the outcomes of future generations, expounding these 
results with clarity and instructiveness in the ancient book The 
Grammar of Science6.

Any scientific discipline falls within the paradigmatic 
extremes based on its degree of uncertainty. Between these two 
positions, there is a gradation depending on whether a greater 
or lesser degree of uncertainty is assumed. The methods that 
constitute the foundations of AI can be classified in this way, as 
shown in (Figure 1).

Formal Tools
The formal tools for explainability are those of multivariate 

statistics. They are matrix algebra, especially the SVD 

(Singular Value Decomposition) Theorem, probability theory 
and some basic analytical tools. It is essential to consider that 
the probabilistic space data transformation enables the use 
of probability as a measure of similarity. Additionally, it has 
geometrical significance.

Figure 1: Degree of uncertainty assumed by descriptive models 
of reality in the sciences. Mechanical models, both classical and 
relativistic, are modeled by differential equations (in this case, 
mainly with the help of tensor algebra and differential geometry) 
and they are deterministic. Electromagnetic theory shares this 
position, perhaps to a lesser extent, due to the behavior of 
waves. Statistical mechanics introduces more uncertainty into 
the underlying hypotheses. The methods used in the learning 
phase of tasks have a much greater component associated with 
uncertainty. We omit Quantum Mechanics from the classification 
due to its complexity and place Optics within electromagnetic 
theory (they are the propagation of the visible spectrum waves).

Singular value decomposition

One of the most relevant concepts in pure and applied 
mathematics is the Singular Value Decomposition Theorem. 
It plays a crucial role in pure and applied mathematics, a field 
known as Eigenanalysis. From the point of view of applications, 
it finds a place in almost all branches of Physics, structural 
engineering and data analysis. For real entries-matrices, it is 
currently stated as7:

Where X ϵ Rmxn is the data matrix, U ϵ Rmxk, V ϵ Rkxn are 
orthogonal matrices and

are the eigenvalues. For k the rank of X, the case k < min (m, 
n) is the low-rank approximation and k=min (m, n) the full-rank 
case.

The PCA (Principal Components Analysis) is a direct 
application of the SVD, after centering and normalizing 
the columns of X. The trace is the variance of the data, also 
called inertia. PCA provides graphical representations for the 
orthogonal projections of observations on the planes formed by 
the consecutive pairs of columns of the matrix V. In applications, 
the terms SVD and PCA are sometimes confusing.

Probabilistic latent semantic analysis

PLSA (Probabilistic Latent Semantic Analysis) is an 
unsupervised learning technique developed for information 
retrieval purposes, also known as PLSI (Probabilistic Latent 
Semantic Indexing). The classical reference is Unsupervised 
Learning by Probabilistic Latent Semantic Analysis by 
Hofmann8. PLSA is a probabilistic remake of LSA (Latent 
Semantic Analysis)9. This model crosses two categorical 
variables to obtain a table of co-occurrences. Arranged as 
a matrix, the SVD space span is a set of multinomial latent 
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variables. The adjustment of the probabilities is done with the 
EM (Expectation-Maximization) algorithm. The estimation of 
the similarity between categorical variables is a distance.

This model was first formulated in the context of IR 
(Information retrieval): for a set of di (i=1, …, m) documents, 
containing wj (j=1, …, n) words of a thesaurus, the pairs are 
frequencies. Then, exist k (k=1, …, k) latent variables (intuitively, 
the documents’ subjects), arranged as the count matrix N ( di. 
wj) leads to the probabilities:

Using the Bayes rule, this expression admits the factorizations

And

According to Hofmann, Formulas (3) and (4) are the 
asymmetric and symmetric formulations, providing the 
generative models shown in (Figure 2). P(di) is the probability 
of a document (also, observation). P(zk)  are probabilities of the 
k latent variables, modelized as a uniform distribution. P (·|·) are 
conditional probabilities.

In his original work, Hofmann pointed out the analogy of 
the PLSA and the SVD (for the symmetric formulation) by 
assimilating Formula (3) as:

On the other hand, the conditional probability

can be written in matrix form as

Where  and , indication the tilde symbol 
that each sum column is one and accomplishing that

Several researchers relate the PCA to probabilistic techniques 
in a more precise way, as is done in the PLSA. Klingenberg 
provides a geometrical interpretation compared with classical 
PCA10. The dimension problem reduction has a probabilistic 
significance. An attempt to find the optimal dimension of the 
PLSA is due in11. Since PCA solutions are not unique (they 
depend on the dimension reduction), it is not guaranteed to 
extract the latent variables involved in a problem.

Nonnegative matrix factorization

Many authors attribute the introduction of the NMF 

(Non-negative Matrix Factorization) techniques to Paatero12. We 
prefer to do it to Chen13. The work of Chen connects with the 
early 20th-century findings on the properties of singular values. 
Currently, the standard formulation is14:

for a matrix of non-negative inputs X, where matrices 
 and  is the factorization and , the error 

approximation matrix, also of non-negative entries.

and generalizing the PLSA to every non-negative real entry’s 
matrix.

Figure 2: Generative models for the PLSA. Reproduced from8: 
(a) asymmetric formulation. (b) symmetric formulation

There exist three families of algorithms to solve this 
approximation problem: (i) the gradient methods, (ii) alternating 
least squares and (iii) the iterative updates methods. From 
the point of view of explainability, the most interesting are 
the iterative updates, since they use a loss function related to 
geometrical or statistical properties. The loss function is a 
distance or a divergence (distances d are maps that satisfy, for 
vectors a, b and c, the axioms: (i) d(a,b)=d(b,a) (symmetry); 
(ii) d(a,b)=0 if a=b (identity); and (iii) d(a,c)+d(c,b) ≥ d(a,b) 
(triangular inequality). A divergence does not satisfy one of these 
axioms, usually symmetry and it is more suitable for measuring 
how densities are similar.

Obtaining matrices W and H requires selecting the dimension 
of the factorization space, initializing them and an iterative 
process until a satisfactory fit between Y and the product of W 
and H is achieved. The dimension of this space is the number of 
model components.

The NMF applications are numerous, ranging from text 
mining and text classification to analysis of linguistic knowledge 
acquisition, labeling, computational biology, clustering 
algorithms, image classification and speech recognition, among 
others. This technique has furnished new methods for data 
analysis for experimental sciences as well as Economics, Social 
Sciences and a wide range of areas. It is not possible to list it 
briefly.

Writing conditional probabilities of Formulas (2) and (3) as 
matrices, a consequence is that any local maximum solution of 
the PLSA is a solution to the NMF problem15. Devarajan16 unifies 
various models and provides a rigorous proof of monotonicity 
for multiplicative updates, generalizing the relationship of 
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NMF and PLSI within this framework. Studies on the NMF 
correlation have been conducted by He17. Further generalization 
and establishing more rigorous conditions for the equivalence 
between PLSA and SVD are studied in18, stating the equivalence 
between the SVD and PLSA.

Explainable Machine Learning Landscape
Explainability is achieved by mathematically well-sound 

methods. Interpretability refers to the ability to associate 
results with the underlying data. Furthermore, a human 
operator needs to intuitively understand the results, especially 
in big data environments and it is achieved through a graphical 
representation (Table 1).

Table 1: Log-linear models apply the logarithm function for 
a linear transformation. They are extensively used in binary 
classification. Multiple regression uses several explanatory 
variables to introduce a model of the form Y = β0+ β1X1+…+ 
βpXp+ε where the Xi (i=1,…,p) vectors take their values in the 
p explanatory variables and the βp are the parameters to be 
determined. Logistic regression is helpful in binary classification.

Explanatory 
variable

Response variable

Binary Multinomial Discrete Continuous

Binary Logistic regression. Log- l inear 
models

Log-
linear 
models.

 

Multinomial Log-linear models.

Continuous Logistic regression.  Multiple 
regression.

Covariates  

Random 
effects

Mixed models.

Regression

The main idea is to estimate an expectation function 
m(x)=E(Y|X=x) for the known values   X=(x1,…, xm) or 
predictors for the random variable Y.  It takes the form Y=β0+ 
β1X+ϵ. A model fits the data for new  observations if a loss 
function of the form f(Y, X) is minimized (usually the Euclidean 
distance). From the point of view of ML, the learning problem 
is the estimation of the coefficients βi Regression methods have 
been successfully used in different fields before the emergence 
of contexts related to ML. Furthermore, there are many variants 
depending on the type of data. Table 1 shows the main types 
of regression. A classical and authoritative introduction to the 
regression methods is19.

Clustering

The introduction of clustering techniques is a debt to James 
MacQueen in 196720, with the classical k-means method. The 
main idea is to assume that there exists a certain number of 
groups and each observation can be assigned exclusively to a 
group, creating a partition. Assigning coordinates to the data 
points representing each group, an iterative algorithm provides 
the means and the observations are classified according to the 
distance to this point. It is an unsupervised method.

The fuzzy clustering methods assume a different degree of 
association with each cluster and the partition is not disjoint. 
The emergence of fuzzy methods is due to the ability of PCA 
to solve classification problems. The development is related to 
the introduction of probability as a measure in the classification 
problem21. These methods are well-sound. Probability, from a 
mathematical point of view, is an evaluator of the measure. From 
the point of view of explainability, it represents a milestone.

The use of NMF techniques on a probabilistic basis is 
introduced by Ding22. Those results require the identification 
of the space span factorization with clusters, converting the 
factorization problem into a classification problem, which 
is currently a classical problem. Furthermore, in this case, 
the introduction of a Bayes classifier leads to a partitional 
classification (it is equivalent to k-means).

Example 1a

For a data set containing seven documents {d1, …, d7} 
containing items {a, b, c, d, e, f}, if the matrix X containing the 
co-occurrences is:

A simple visual inspection suggests that k = 2 or 3 groups. 
The transformation with relations (9) and (10) provides the 
matrix:

Selecting k=3, the matrix W and the qualitative matrix Wd 
obtained by replacing the row labels in each column are

Applying a Bayes classifier (wi=max(wij) s.t. wijϵW) provides 
a result analogous to k-means:

The number of groups is a critical parameter. In many cases, 
this is a subjective question and adjusted a posteriori through 
a process known as clustering validation. This branch of 
techniques has experienced rapid development in recent years.

In the case of the previous example, it consists of deciding 
if k=3 is a good choice. Clustering validation is a crucial step 
to decide if the parametrization is suitable. There exist several 
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studies focused on using probability for validation. Perhaps, 
it can be attributed to Har23, who introduced an chi-square 
indicator function for observations based on kernelization and 
the null hypothesis as a classifier. Smyth21 used likelihood 
cross-validation to infer information on the number of model 
components. Differently, a is used to measure how similar two 
clusters are24. More recent works include Olivares25, which, in 
the scope of astronomical observations and under the hypothesis 
of normality and the existence of a correlation, presents an 
algorithm in which the posterior of the correlation follows a 
gamma pdf (probability density function). The work of Hamid26 
presents a purely algebraic approach, in which elements are 
clustered by co-linearity. A review work, centered on the 
impact and importance of clustering validation in the context 
of bioinformatics is provided by Ullmann27. The NMF matrix 
factorization is a powerful tool to solve this problem. To select 
the number of clusters, a gamma pdf represents the credibility of 
the number of clusters28.

Example 1b

The next step is to decide if the selection of k=3 is a good 
choice. Gamma density modeling has the parameters α= 2 and 
λ= 0.5 and it is shown in the (Figure 3).

Figure 3: Gamma Model for Clustering Validation. For details 
on its obtention, we refer the reader to28

The NMF applications are numerous, ranging from text 
mining and text classification to analysis of linguistic knowledge 
acquisition, labeling, computational biology, clustering 
algorithms, image classification and speech recognition, among 
others. This technique has furnished new methods for data 
analysis in experimental sciences as well as Economics, Social 
Sciences and a wide range of areas. It is not possible to list it 
briefly.

Writing conditional probabilities of Formulas (2) and (3) as 
matrices, a consequence is that any local maximum solution of 
the PLSA is a solution to the NMF problem15. Devarajan16 unifies 
various models and provides a rigorous proof of monotonicity 
for multiplicative updates, generalizing the relationship of 
NMF and PLSI within this framework. Studies on the NMF 
correlation have been conducted by He17. Further generalization 
and establishing more rigorous conditions for the equivalence 
between PLSA and SVD are studied in18, stating the equivalence 
between the SVD and PLSA.

Support vector machines

The significance of the kernel is different depending on the 

mathematical branch. In our context, we refer to the dot product 
matrices (or Gramm matrices). In this context, kernel methods 
are a family of supervised tools used for classification.

A widespread use of the kernel matrices is the SVM (Support 
Vector Machine). A label identifies the instances or observations. 
The set of similar observations is a region of the space, creating 
a separation line29. This concept gives rise to a classification rule. 
(Figure 4) illustrates this idea.

Figure 4: Accuracy of the SVM classification. Because the dot 
product is a projection, the vectors located in the area above 
the separation line (observations identified with +) have a dot 
product greater than 1. The opposite occurs for the vectors in 
the zone of the points identified with - (their dot product is less 
than 1). The zone w- - w+=2b is the street, representing the 
misclassification rate

There exist many types of kernels, but the Fisher kernel, 
introduced by Jaakkola30, deserves special attention. It provides 
a metric for a probabilistic model and a consistent estimator (the 
density converges in probability to the value of the parameter 
that generates the distribution) for the posterior (density of the 
data)31.

A reformulation of the work of Jaakkola is Hofmann32. Based 
on PLSA, assumes multinomial distributions. Chappelier relaxes 
this hypothesis, postulating only iid (independent and identically 
distributed) distributions33.

More recently, NMF techniques have allowed to obtain 
kernels34,35: under suitable normalization conditions, the obtained 
matrices are stochastic, allowing us to relate NMF to the Fisher 
kernel. In this case, the parameters are the product matrices of 
Formula (11). This statement, under Gaussian assumptions, 
leads to more understandable and stable classifications36.

Neuronal networks

NN (Neural Networks) are techniques that aim to utilize 
biological learning mechanisms. The elements for simulating 
the behavior of neurons are nodes, which exhibit a relationship 
between their inputs and outputs called an activation function. 
Nodes are grouped according to graphs, giving rise to different 
families of NNs. The training phase involves assigning weights 
to the connections between nodes.

The choice of the activation function, the number of nodes 
and their connections is a subject that some authors consider 
more of an art than well-defined criteria. On the other hand, NN 
allows for any mathematical function2.
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Among the typologies of NNs, RBMs (Restricted Boltzmann 
Machines) have their basis in the geometry of information, making 
them explainable. They are probabilistic models of binary states 
of nodes and represent latent variables. Furthermore, activation 
functions can be related to the partition function (in physics, the 
function that associates particles with the energy states37,38).

Conclusion
Explainability in ML is a topic attracting the attention 

of researchers recently. The computational complexity, in 
terms of the methods involved, has obscured many of the 
techniques as well as the results obtained. It can be explained 
by the predominance of applications and the need for results 
in research, rather than theoretical and fundamental issues and 
justified for commercial needs. ML provides powerful tools, 
giving rise to fields of application that are, in turn, the subject 
of active research areas: recommender systems, information 
retrieval, visual and auditory recognition systems and a long list 
of other fields that are difficult to enumerate. However, these 
fields reveal several commonalities between the techniques. The 
solidity of their foundations allows for explainability.

Furthermore, the path we have explained is not exclusive. 
We have chosen works that use a probabilistic transformation 
and then apply statistical and/or algebraic techniques due to the 
more robust properties of the (non-orthogonal) projection of the 
data into the probability space (the almost sure convergence or 
probability convergence, at the limit is a Cauchy sequence and 
therefore also converges in the ordinary sense). We believe this 
is a path worth pursuing and that it offers significant research 
opportunities by providing a framework that connects with 
Information Geometry.

The path outlined is not unique. Some authors focus 
exclusively on a purely algebraic treatment, relying solely on the 
properties of the eigenvalues37. Other approaches from a strictly 
probabilistic point of view38, with implications for the work 
of39,40. The NMF with suitable normalization conditions does 
not make any hypothesis on the nature of the parameters, with 
sufficient not minimal parameters W referred to the base H. It 
provides an algebraic-probabilistic explainable environment and 
allows the construction of supervised and unsupervised methods 
for current ML paradigms.

References

1. Mitchell T. The discipline of machine learning. Carnegie Mellon 
University, School of Computer Sci 2006;9.

2. Aggarwal CC, Chandan KR. Data clustering: Algorithms and 
applications. Chapman & Hall. CRC Data mining and Knowledge 
Discovery Series 2014.

3. Aggarwal CC. Neural Networks and Deep Learning. Springer 
2023.

4. Heuillet A, Couthouis F, Díaz-Rodríguez N. Explainability in 
deep reinforcement learning. Knowledge-Based Systems 
2021;214:106685.

5. Hickling T, Zenati A, Aouf N, Spencer P. Explainability in deep 
reinforcement learning: A review into current methods and 
applications. ACM Computing Surveys 2023;56(5):1-35.

6. Pearson K. The Grammar of Science. Dover Publications 1892.

7. Zhang XD. Matrix Analysis and Applications. Cambridge 
University Press 2017.

8. Hofmann T. Unsupervised learning by probabilistic latent 
semantic analysis. Machine Learning 2001.

9. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman 
R. Indexing by latent semantic analysis. J American society for 
Information Sci 1990;41(6).

10. Klingenberg, B, Curry J, Dougherty A. Non-negative matrix 
factorization: Ill-posedness and a geometric algorithm. Pattern 
Recognition 2009;42(5):918-928.

11. Donghwan K. kfda: Kernel Fisher Discriminant Analysis. R 
package version 2017.

12. Paatero P, Tapper U. Positive matrix factorization: A non-negative 
factor model with optimal utilization of error estimates of data 
values. Environmetrics 1994;5(2):111-126.

13. Chen JC. The nonnegative rank factorizations of nonnegative 
matrices. Linear algebra and its applications 1984;62:207-217.

14. Cichocki A, Zdunek, Phan, AH, Amari S. Non-negative Matrix 
and Tensor Factorizations. Applications to Exploratory Multi-way 
Data Analysis and Blind Source Separation. John Willey and 
Sons Ltd 2009.

15. Gaussier E, Goutte C. Relation between PLSA and NMF and 
implications. Proceedings 28th annual international ACM SIGIR 
conference on Research and development in information 
retrieval (SIGIR’05).

16. Devarajan K, Wang G. Ebrahimi N. A unified statistical approach 
to non-negative matrix factorization and probabilistic latent 
semantic indexing. Machine Learning 2015.

17. He Y, Wang C, Jiang C. Correlated matrix factorization for 
recommendation with implicit feedback. IEEE Transactions on 
Knowledge, Data Eng 2018;31(3):451-464.

18. Figuera P, Bringas PG. On the Probabilistic Latent Semantic 
Analysis Generalization as the Singular Value Decomposition 
Probabilistic Image. J Stat Theory App 2020;19:286-296.

19. McCullagh P, Nelder JA. Generalized Linear Models. 2nd 
Edition, Chapman and Hall 1989.

20. MacQueen J. Some methods for classification and analysis 
of multivariate observations. Proceedings of the fifth Berkeley 
symposium on mathematical statistics and probability 1967:281-
297.

21. Smyth P. Model selection for probabilistic clustering using cross-
validated likelihood. Statistics and computing 2000;10(1):63-72.

22. Ding C, Li T, Peng W. On the equivalence between non-negative 
matrix factorization and probabilistic latent semantic indexing. 
Computational Statistics, Data Analysis 2008;52:3913-3927.

23. Har-Even M, Brailovsky V. Probabilistic validation approach for 
clustering. Pattern Recognition Letters 1995;16(11):1189-1196.

24. Pallis G, Angelis L, Vakali A, Pokorny J. A probabilistic validation 
algorithm for web users’ clusters. 2004 IEEE Int Conf Systems, 
Man and Cybernetics 2004;5:4129-4134.

25. Olivares J, Sarro LM, Bouy H, et al. Kalkayotl: A cluster distance 
inference code. Astronomy and Astrophysics 2020;664(A7).

26. Hamid U. Clustering, multicollinearity and singular vectors. 
Computational Statistics, Data Analysis 2022;173.

27. Ullmann T, Hennig C, Boulesteix AL. Validation of cluster 
analysis results on validation data: A systematic framework. 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery 2022:1444.

28. Figuera P, Cuzzocrea A, Bringas PG. Probability Density 
Function for Clustering Validation. Hybrid Artificial Intelligent 
Systems 2023:133-144.

29. Cortes C, Vapnik V. Support-vector networks. Machine Learning 
1995;20.

https://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf
https://www.cs.cmu.edu/~tom/pubs/MachineLearning.pdf
https://charuaggarwal.net/clusterbook.pdf
https://charuaggarwal.net/clusterbook.pdf
https://charuaggarwal.net/clusterbook.pdf
https://link.springer.com/book/10.1007/978-3-031-29642-0
https://link.springer.com/book/10.1007/978-3-031-29642-0
https://www.sciencedirect.com/science/article/abs/pii/S0950705120308145
https://www.sciencedirect.com/science/article/abs/pii/S0950705120308145
https://www.sciencedirect.com/science/article/abs/pii/S0950705120308145
https://dl.acm.org/doi/10.1145/3623377
https://dl.acm.org/doi/10.1145/3623377
https://dl.acm.org/doi/10.1145/3623377
https://www.amazon.in/Grammar-Science-Karl-Pearson/dp/1602060878
https://assets.cambridge.org/97811084/17419/frontmatter/9781108417419_frontmatter.pdf
https://assets.cambridge.org/97811084/17419/frontmatter/9781108417419_frontmatter.pdf
https://link.springer.com/article/10.1023/A:1007617005950
https://link.springer.com/article/10.1023/A:1007617005950
https://asistdl.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://asistdl.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://asistdl.onlinelibrary.wiley.com/doi/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://cran.r-project.org/web/packages/kfda/kfda.pdf
https://cran.r-project.org/web/packages/kfda/kfda.pdf
https://onlinelibrary.wiley.com/doi/10.1002/env.3170050203
https://onlinelibrary.wiley.com/doi/10.1002/env.3170050203
https://onlinelibrary.wiley.com/doi/10.1002/env.3170050203
https://www.fresnel.fr/perso/marot/Documents/Nonnegative_Matrix_and_Tensor_Factorizations.pdf
https://www.fresnel.fr/perso/marot/Documents/Nonnegative_Matrix_and_Tensor_Factorizations.pdf
https://www.fresnel.fr/perso/marot/Documents/Nonnegative_Matrix_and_Tensor_Factorizations.pdf
https://www.fresnel.fr/perso/marot/Documents/Nonnegative_Matrix_and_Tensor_Factorizations.pdf
https://dl.acm.org/doi/10.1145/1076034.1076148
https://dl.acm.org/doi/10.1145/1076034.1076148
https://dl.acm.org/doi/10.1145/1076034.1076148
https://dl.acm.org/doi/10.1145/1076034.1076148
https://pubmed.ncbi.nlm.nih.gov/25821345/
https://pubmed.ncbi.nlm.nih.gov/25821345/
https://pubmed.ncbi.nlm.nih.gov/25821345/
https://dl.acm.org/doi/abs/10.1109/tkde.2018.2840993
https://dl.acm.org/doi/abs/10.1109/tkde.2018.2840993
https://dl.acm.org/doi/abs/10.1109/tkde.2018.2840993
https://link.springer.com/content/pdf/10.2991/jsta.d.200605.001.pdf
https://link.springer.com/content/pdf/10.2991/jsta.d.200605.001.pdf
https://link.springer.com/content/pdf/10.2991/jsta.d.200605.001.pdf
https://www.scirp.org/reference/referencespapers?referenceid=1851775
https://www.scirp.org/reference/referencespapers?referenceid=1851775
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://projecteuclid.org/ebooks/berkeley-symposium-on-mathematical-statistics-and-probability/Proceedings-of-the-Fifth-Berkeley-Symposium-on-Mathematical-Statistics-and/chapter/Some-methods-for-classification-and-analysis-of-multivariate-observations/bsmsp/1200512992
https://link.springer.com/article/10.1023/A:1008940618127
https://link.springer.com/article/10.1023/A:1008940618127
https://ideas.repec.org/a/eee/csdana/v52y2008i8p3913-3927.html
https://ideas.repec.org/a/eee/csdana/v52y2008i8p3913-3927.html
https://ideas.repec.org/a/eee/csdana/v52y2008i8p3913-3927.html
https://cris.tau.ac.il/en/publications/probabilistic-validation-approach-for-clustering
https://cris.tau.ac.il/en/publications/probabilistic-validation-approach-for-clustering
https://gnosis.library.ucy.ac.cy/handle/7/54669
https://gnosis.library.ucy.ac.cy/handle/7/54669
https://gnosis.library.ucy.ac.cy/handle/7/54669
https://arxiv.org/abs/2010.00272
https://arxiv.org/abs/2010.00272
https://ideas.repec.org/a/eee/csdana/v173y2022ics0167947322001037.html
https://ideas.repec.org/a/eee/csdana/v173y2022ics0167947322001037.html
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1444
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1444
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1444
https://wires.onlinelibrary.wiley.com/doi/10.1002/widm.1444
https://www.researchgate.net/publication/373468458_Probability_Density_Function_for_Clustering_Validation
https://www.researchgate.net/publication/373468458_Probability_Density_Function_for_Clustering_Validation
https://www.researchgate.net/publication/373468458_Probability_Density_Function_for_Clustering_Validation
https://www.scirp.org/reference/referencespapers?referenceid=1150668
https://www.scirp.org/reference/referencespapers?referenceid=1150668


7

Figuera P., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 3

30. Jaakkola T, Diekhans M, Haussler D. A discriminative framework 
for detecting remote protein homologies. J Computational 
biology 2000;7(1-2):95-114.

31. Tsuda K, Akaho S, Kawanabe M, Müller KR. Neural computation 
2004;16(1):115-137.

32. Hofmann T. Learning the similarity of documents: An information-
geometric approach to document retrieval and categorization. 
Advances in neural information processing systems 2000:914-
920.

33. Chappelier JC, Eckard E. Plsi: The true fisher kernel and 
beyond. Joint European Conf Machine Learning and Knowledge 
Discovery in Databases 2009:195-210.

34. Zhang D, Zhou ZH, Chen S. Non-negative matrix factorization 
on kernels. Pacific Rim Int Conf Artificial Intelligence 2006:404-
412.

35. Lee H, Cichocki A, Seungjin C. Kernel nonnegative matrix 
factorization for spectral EEG feature extraction. Neurocomputing 
2009;72(13-15):3182-3190.

36. Salazar D, Rios J, Aceros S, López-Vargas O, Valencia C. 
Kernel Joint Non-Negative Matrix Factorization for Genomic 
Data. IEEE Access 2021;9:101863-101875.

37. Hopfield JJ. Neural Networks and Physical Systems with 
Emergent Collective Compuational Abilities. National Academy 
of the Sciences of the USA 1982;79(8):2554-2558.

38. https://www.netflixprize.com/community/topic_1537.html 

39. Jialu L, Han J. Spectral clustering. Data clustering. Chapman 
and Hall/CRC 2018:177-200.

40. Valiant LG. A Theory of the Learnable. Communications of the 
ACM 1984;27(11):1134-1142.

https://pubmed.ncbi.nlm.nih.gov/10890390/
https://pubmed.ncbi.nlm.nih.gov/10890390/
https://pubmed.ncbi.nlm.nih.gov/10890390/
https://papers.nips.cc/paper_files/paper/1999/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://papers.nips.cc/paper_files/paper/1999/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://papers.nips.cc/paper_files/paper/1999/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://papers.nips.cc/paper_files/paper/1999/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://www.researchgate.net/publication/221419966_Non-negative_Matrix_Factorization_on_Kernels
https://www.researchgate.net/publication/221419966_Non-negative_Matrix_Factorization_on_Kernels
https://www.researchgate.net/publication/221419966_Non-negative_Matrix_Factorization_on_Kernels
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9a286a4a4b62a32b608a86a992d9382c71b63829
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9a286a4a4b62a32b608a86a992d9382c71b63829
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9a286a4a4b62a32b608a86a992d9382c71b63829
https://www.researchgate.net/publication/353342886_Kernel_Joint_Non-Negative_Matrix_Factorization_for_Genomic_Data
https://www.researchgate.net/publication/353342886_Kernel_Joint_Non-Negative_Matrix_Factorization_for_Genomic_Data
https://www.researchgate.net/publication/353342886_Kernel_Joint_Non-Negative_Matrix_Factorization_for_Genomic_Data
https://pmc.ncbi.nlm.nih.gov/articles/PMC346238/
https://pmc.ncbi.nlm.nih.gov/articles/PMC346238/
https://pmc.ncbi.nlm.nih.gov/articles/PMC346238/
https://www.netflixprize.com/community/topic_1537.html
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315373515-8/spectral-clustering-jialu-liu-jiawei-han
https://www.taylorfrancis.com/chapters/edit/10.1201/9781315373515-8/spectral-clustering-jialu-liu-jiawei-han
https://cacm.acm.org/research/a-theory-of-the-learnable/
https://cacm.acm.org/research/a-theory-of-the-learnable/

