
The Impact of Serverless Computing on IoT Application Development: A Study on
Cold Start Latency and State Management Challenges

Naresh Kalimuthu*

Citation: Kalimuthu N. The Impact of Serverless Computing on IoT Application Development: A Study on Cold Start Latency
and State Management Challenges. J Artif Intell Mach Learn & Data Sci 2025 3(3), 2895-2900. DOI: doi.org/10.51219/JAIMLD/
naresh-kalimuthu/604

Received: 02 September, 2025; Accepted: 18 September, 2025; Published: 20 September, 2025

*Corresponding author: Naresh Kalimuthu, USA, E-mail ID: naresh.kalimuthu@gmail.com

Copyright: © 2025 Kalimuthu N., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 3 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/naresh-kalimuthu/604

 A B S T R A C T
Serverless computing, notably Function-as-a-Service (FaaS), serves as an appropriate execution model for Internet of

Things (IoT) applications because of its scalability and pay-as-you-go model. Paradigm shifts like this come with their own
sets of challenges. This paper examines serverless computing's IoT application development impact on "cold start" and state
management as primary challenges and considers their impacts. The analysis documents performance degradation suffered
by ergonomically IoT-sensitive systems and correlates that suffering with the scale-to-zero principle of serverless economics.
In addition, the inherent statelessness of FaaS complicates the design of stateful IoT applications. The focus of this research is
on mitigation techniques and architectural patterns used to address the challenges and real-world case studies are analyzed to
demonstrate that the model is effective with careful implementation.

Keywords: Serverless Computing, Function-as-a-Service (FaaS), Internet of Things (IoT), Cold Start Latency, State Management,
Cloud Computing, Edge Computing, Microservices

1. Introduction
A. The serverless paradigm: A shift in cloud execution models

Serverless computing marks a significant advancement in the
development of cloud execution models. Centered around the
FaaS model, applications are broken into smaller, independent
units called functions, which the cloud provider activates in
response to designated triggers. Each paradigm that contributed
to the rise of serverless computing possesses certain key
features, with IaaS and PaaS offerings being the most similar to
traditional models.

First, execution is fundamentally event-driven. Wrapping
functions are triggered by various types of events across the entire
system. These include an HTTP request via an API gateway, a
database update, a queue message or a data point received from
an Internet of Things (IoT) sensor. Second, these functions

emphasize stateless and ephemeral processing. They run in
short-lived, isolated containers or micro virtual machines and
are expected to be stateless and short-lived between functions.
Third, the platform guarantees automatic and seamless scaling
within the system. Multiple events arriving simultaneously
lead to automatic adjustments with no external control-from
zero to thousands of concurrent function instances and vice
versa. Finally, this model is supported by a very fine grained,
pay-per-use billing system. Users are charged during function
execution based on the approximate milliseconds of memory
and computing time, with no costs for inactive resources. This
“deliver on demand, never pay for idle” policy is the primary
economic reason for its widespread adoption.

B. Architectural requirements of the internet of things (IoT)

The Internet of Things continues to be characterized by the
widespread and increasingly complex network of connected

https://doi.org/10.51219/JAIMLD/naresh-kalimuthu/604
https://doi.org/10.51219/JAIMLD/naresh-kalimuthu/604
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/naresh-kalimuthu/604

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Kalimuthu N.,

2

devices, currently estimated at around 75 billion and expected to
grow significantly. The devices forming the ecosystem produce
vast amounts of raw data, which must be managed through
advanced, flexible and scalable computational architectures. The
distinctive workload patterns of data and computation shape the
architectural standards of IoT applications.

The connectivity and use of IoT devices are often examined
in terms of traffic. Devices can transmit data at irregular intervals,
for example, when a sensor triggers an alarm or a smart device
uploads data periodically. This results in sparse and random data
stream traffic, which doesn’t align with server-focused systems.
IoT systems that play a significant role typically have low internal
latency. Critical IoT applications such as industrial automation,
transportation systems and monitoring devices require real-
time data processing and immediate responses. This is vital for
their effectiveness and security. The architecture of IoT devices
must support and manage data inflow from billions of devices
simultaneously. This is crucial for IoT, as the architecture needs
to be easily and cost-effectively adaptable to meet constant
changes in demand.

C. The synergy and conflict of serverless and IoT

Initially, the serverless server paradigm appears well suited
for IoT needs. The function-as-a-service (FaaS) model’s event-
driven approach matches perfectly with the event-based data
generation of IoT devices and the auto-scaling capabilities can
easily manage bursty and unpredictable data flows. The system’s
economic value is increased by the organization’s payments for
computation, which handles sporadic IoT events and by avoiding
the costs associated with dormant servers.

A closer investigation shows that serverless computing and
some specific IoT applications face a set of underlying conflicts.
These conflicts stem from two distinct architectural disconnects.
First, the ‘scale-to-zero’ feature of a serverless cost model is
a primary reason why serverless computing suffers from the
so-called ‘cold start’ problem. With this problem, function calls
triggered after a period of dormancy experience high latencies.
These high latencies are highly unpredictable and, as a result,
are not suitable for real-time IoT applications. Furthermore,
the stateless architecture and design of ‘Function-as-a-Service’
(FaaS) functions conflict with the needs of IoT applications, which
often require tracking devices, user sessions and historical data.
Consequently, application developers are forced to use inefficient
systems for state control and management. This contradicts the
simplicity promised by serverless computing. The stark realities
of these issues are the focus of this paper, especially regarding
their impact on IoT application development. The paper then
explores and analyzes existing architectural frameworks and
patterns aimed at easing the practical challenges faced by IoT
and serverless computing.

2. Core Research Challenges in Serverless IoT
Architectures
A. Cold start delays in latency-sensitive IoT workflows

A cold start and any other form of latency are two distinct
concepts. Cold start refers to the latency in cloud computing
that occurs the first time a serverless function is triggered or
when a function has not been used for a period. This is a normal
occurrence. Essentially, it relates to the ability to “scale to zero,”
a crucial feature for the serverless business model. When a

task arrives and no warm execution environment is available,
the platform must perform several time-consuming steps to
prepare the serverless function for execution: reserving a new
container, fetching the function and its buffers, configuring
the language runtime and finally executing the function. This
process can be time-consuming. Research shows that cold
start latency, depending on the specific functions running in a
microservices environment, can range from a few milliseconds
to several seconds. This can be much greater than the actual
function’s execution time. In complex designs with multiple
function executions, this cold start issue can cause extended total
response times, which in extreme cases may account for more
than 90% of the total response time.

This creates a paradox for serverless IoT. The most
valuable aspect of IoT serverless computing-paying for active
computation on sporadic data—comes with the cost of Scaling
to Zero. However, sporadic IoT traffic guarantees a sufficient
load to always be active, idle or transitioning between the
two. Therefore, for IoT offerings, this feature of serverless
architectures is the most cost-effective, but cold starts are a
significant disadvantage, often called a “massive pay-for-what-
you-get” syndrome. For some IoT applications, the additional
latency, which can be unpredictable and sometimes substantial,
renders the system ineffective. Smart health monitoring,
connected vehicles and Industrial Process Control Systems
suffer greatly from this latency. This paradox presents challenges
in efficient resource allocation, as the conflicting economic and
performance characteristics of the serverless model complicate
real-world IoT deployments.

B. The state management dilemma for stateful IoT systems

Storage and computing function platforms rely on the
assumption of statelessness, where each function call is
treated as an independent, isolated transaction and executed
as if previous calls did not occur. This design choice makes it
easier for providers to manage resources and scale in the cloud.
However, the most important IoT applications are inherently
stateful. These applications need to monitor the state of a device
(for example, the temperature setting on a thermostat or the lock
status on a door), retain user session context (such as smart home
configurations) or analyze data streams based on historical data.

This architectural disparity requires developers to export the
entire application state to an external persistence layer, which
could be a NoSQL database, an object store or a distributed
cache. While this approach is pragmatic, it introduces significant
architectural complexity and performance issues. Every function
call that involves reading or writing state results in an external
service network round-trip, increasing latency and negatively
affecting the critical path. Additionally, developers must handle
the scaling, cost and security of the external state store, which
partly contradicts the ‘zero-ops’ promise of serverless computing.

State application centralization remains integrated within
an external data monolith and is divided within the compute
architecture into separate microservices. Although the
microservices framework improves network latency and reduces
single points of failure, the pivot functionalities reorganize
the performance bloat. Adding serverless functionalities at
the network edge further increases the complexity of the
challenge. Among unresolved issues are maintaining invariant
state across multiple self-governing, loosely connected edge

3

Kalimuthu N., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

nodes containing mobile IoT devices, ensuring consistent data
duplication and managing relocated state.

C. Trade-off between performance and cost

On commercial serverless platforms, resource allocation is
managed through a single dial - memory settings. The amount of
allocated memory determines the CPU and network bandwidth
assigned to the function. This creates a complex optimization
challenge for developers, often called right-sizing the function.
Under-provisioned memory can lead to longer execution times
due to CPU starvation, which paradoxically increases costs if
the extended duration exceeds the cheaper per-millisecond rate.
Conversely, over-provisioned memory is a sunk cost, since
the function will consume unnecessary additional CPU power.
This forces developers to choose between balancing cost and
performance for each function within an application or setting
constraints.

This extends to strategic decisions at a higher level of the
architecture, especially regarding function size. Developers
can either create an application as many small, single-purpose
functions or combine related tasks into fewer, larger functions.

•	 Single-purpose functions: This approach follows
microservices principles, offering greater modularity, easier
maintenance and independent scaling. However, it can
increase end-to-end latency due to network delays between
function calls and the risk of cascading cold starts. It may
also result in direct costs for orchestration service state
transitions, such as AWS Step Functions.

•	 Function fusion: Lowering inter-function latency and
orchestration costs can be achieved by combining multiple
steps into a single function. This approach sacrifices
modularity and can lead to inefficient resource allocation
because the fused function needs to reserve the most
memory and CPU for the most computationally intensive
task, even when handling less demanding ones.

In the case of large-scale IoT deployments, such resource
management choices become even more critical. Within the
context of a memory function, a slight efficiency loss or subpar
architectural decision can lead to significant and unexpected
cost overruns when scaled for a billion monthly invocations for
a fleet of IoT devices.

3. Mitigation Strategies and Architectural
Recommendations
A. Taming cold start latency

Addressing the cold start problem requires using both
platform-level features and disciplined application-level
optimizations. Strategies can be categorized into those that aim
to eliminate cold starts and those that aim to reduce the duration
of unavoidable cold starts.

a) Platform level and proactive techniques (Reducing the
Frequency)

•	 Provisioned Concurrency: This is a feature offered by
cloud providers where a specified number of function
execution environments are kept in a warm state and are
therefore pre-initialized. Even at very low warm reachability
levels, these warm instances can handle a small subset
of requests. This eliminates cold starts for a predictable

volume of traffic. While most cloud providers offer this at a
cost and it is the most reliable method for reducing cold start
latency, the resources are paid for even when not in use,
which goes against the goal of minimizing operating costs
through a pay-per-use model.

•	 Function warming (pinging): This is a developer-
implemented strategy that uses a scheduled task to call a
function at fixed intervals (every 5 minutes or more) to keep
the function warm. This approach is effective for thermal
pinging and is therefore limited by other deployed pods in
the environment. Due to the dynamics of platform behavior,
acting this way can still result in losing funds; thus, it is
not guaranteed, even though it is a more cost-effective
alternative to provisioned concurrency.

•	 Predictive pre-warming: These more advanced systems
use machine learning to analyze historically captured
invocation patterns to forecast traffic. By predicting function
demand, systems can efficiently warm the necessary number
of function instances just in time for usage. This approach
aims to reduce the frequency of cold starts and the costs
associated with unneeded warm function instances.

b) Application-level optimizations (Reducing Duration)

•	 Code and dependency management: A function package
is a key reason for initiating a cold start, as it requires
uploading, downloading and unzipping a deployment
package to initialize the function. This time can be reduced
by minimizing dependencies (frameworks and libraries)
and using tree-shaking techniques to remove unnecessary
code. Techniques like FaaSLight show that, in some cases,
only the code needed for a specific invocation path can be
loaded, which can decrease code loading latency by up to
79%.

•	 Runtime selection: Initialization duration is affected by the
time needed to process the chosen programming language.
Within interpreted languages, faster options include
Python and Node, while heavier compilers like Java and
.NET, dominated by the Java Virtual Machine (JVM) and
Common Language Runtime (CLR), tend to have longer
cold start times.

•	 Container reuse and snapshotting: Startup latency
improves through FaaS platforms that reuse invoked
containers. An example of a more sophisticated method
of environment snapshotting is used by AWS Lambda
SnapStart for Java. This method captures an environment
snapshot, considering the fully initialized execution
environment, the loaded JVM and the application code.
The snapshot can be resumed within milliseconds on new
instances, reducing initiation time compared to a cold start
(Table 1).

B. Engineering stateful applications on a stateless substrate

Achieving state within an inherently stateless FaaS
environment requires specific methodological frameworks for
externalizing state with minimal performance impact.

a) External persistence patterns: In most cases, the preferred
approach is to offload some of the state to an external service
that is both readily available and highly scalable.

•	 Databases: Managed NoSQL databases like Amazon
DynamoDB are very popular for storing and retrieving

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Kalimuthu N.,

4

device or session state. Their low-latency key-value access
patterns match well with the request-response nature of
FaaS functions, offering both durable and scalable state
storage.

•	 Object storage: The primary storage layer for large
unstructured data such as logs, firmware updates or media
files from IoT devices is object storage services like Amazon
S3. For serverless functions, there’s the ability to trigger

them directly with S3 events (for example, when a new file
is added) and then the data is processed.

•	 Distributed caches: For a frequently accessed and time-
sensitive state, placing an in-memory distributed cache
(such as Redis or Memcached) in front of a primary
database can reduce latency. This setup decreases the load
on the database and enables access to sensitive data in
approximately sub-millisecond time.

Table 1: Comparison of Cold Start Mitigation Techniques.
Technique Goal Advantages Trade-offs

Provisioned Concurrency Reduce Frequency eliminates cold starts for configured capacity. Higher cost (billed for idle time

Function Warming (Pinging) Reduce Frequency Low cost; simple to implement. Not guaranteed; platform may reclaim
resources

Predictive Pre-warming Reduce Frequency Balances cost and performance; adapts to traffic patterns. High complexity; requires historical data

Code Optimization Reduce Duration Reduces cost and latency for all cold starts; good
practice.

Requires developer discipline

Runtime Selection Reduce Duration Simple decision with significant impact on startup time. May conflict with team skills.

Environment Snapshotting Reduce Duration Drastically reduces initialization time for supported
runtimes (e.g., Java).

Limited to specific runtimes

b) Using state machines for workflow orchestration: For
complex IoT processes that span multiple functions and require
several tiers to maintain state, such as in multi-stage device
provisioning or distributed transactions, a state machine offers an
effective solution. The expressive CRUD workflow diagramming
features of services like AWS Step Functions enable users to
design complex workflows as visual state machines. AWS Step
Functions not only manage state but also handle the invocation
of Lambda functions at each state, perform error handling related
to states and oversee retries associated with states. As a result,
the Saga pattern is implemented, serving as the primary method
for maintaining data consistency across services in a distributed
system without using traditional database locks (Figure 1).

Figure 1: The Illustration Shows How the Saga Pattern
Implements an Order Processing System by Using Aws Step
Function.

c) Stateful serverless frameworks:New research concentrates
on integrating state more naturally into the serverless model rather
than merely externalizing it. The Serverless State Management
Systems (SSMS) class of systems aims to reduce the challenges
of stateful scaling and fault tolerance. These systems frequently
use an actor-like programming model where developers create
stateful message handlers and the platform manages the actor
state using persistent storage checkpoints for recovery.

Numerous frameworks reflect this trend, including
Cloudburst, which first introduced the principle of logical
disaggregation with physical colocation. It uses a persistent,
scalable and auto-scaling key-value store, while co-locating
mutable caches with function executors for low-latency access
to frequently used data.

Similarly, Crucial is based on the insight that FaaS involves
concurrent programming at a data center scale and uses a
distributed shared memory for detailed state management and
synchronization. This allows for easy migration of traditional
multi-threaded systems to serverless architectures with minimal
code changes. Other frameworks, such as Enoki and Faasm,
focus directly on stateful serverless challenges at the network
edge, addressing issues related to client mobility and resource
scarcity in distributed IoT systems.

The aforementioned frameworks represent a significant
milestone in bridging the stateless gap in FaaS to meet the needs
of advanced and stateful applications (Table 2).

Pattern Description IoT Use Case Fault Tolerance Performance

External
Database

Functions read/write state to a
managed NoSQL/SQL database.

Storing device shadow, user profiles,
sensor readings.

High (relies on database
durability and availability)

Moderate (adds network
latency for every state access).

Distributed
Cache

State is stored in an in-memory
cache for fast access.

Caching frequently accessed device
configurations or session data.

Moderate (cache is ephemeral;
requires a backing store).

Low (sub-millisecond latency
for cache hits).

State Machine
Orchestration

AWS Step Functions manages
workflow state and coordinate’s
function calls.

Multi-step device onboarding,
complex command-and-control
sequences.

Very High (built-in retries, error
handling and state persistence).

Higher (overhead from the
orchestration engine).

Stateful
Frameworks

The platform provides a native
state management layer (e.g.,
shared memory).

Real-time collaborative applications,
fine-grained synchronization.

Varies by implementation (often
relies on checkpointing).

Potentially Low (avoids
network calls to external
services).

5

Kalimuthu N., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

B. Achieving cost-performance optimization

Optimization strategies try to balance the two extremes of
performance and cost in serverless architectures and are applied
at the level of resource distribution and system architecture.

a) Systematic function right-sizing:

Understanding each function’s guesswork is an inefficient
use of resources. Developers need to adopt a strategy for each
function. Automated systems such as the AWS Lambda Power
Tuner can execute a function with different memory settings,
analyze its performance and calculate its cost to find the optimal
configuration. This strategy can be counterproductive as the ratio
of memory to CPU, execution time and cost vary significantly
across different workloads.

b) Architectural guidance on function granularity:

Choosing a combination of a large and a smaller function is
a design decision that should be based on the application’s use
case.

•	 Favor functions with independent purposes (microservices)
for systems that require easy segmentation into parts,
independent vertical scalability and a decoupled architecture.
This structure works well for loosely coupled systems that
can tolerate higher costs of inter-function calls and longer
delays caused by cold starts.

•	 When there’s a sequence of tasks that are sequentially
connected and network latency from calls between
functions significantly impacts performance or the cost
of state changes in an orchestrator becomes economically
unsustainable, the appropriate approach is function fusion.
This method balances a loss of modularity with gains in
performance and cost efficiency, but it must be carefully
designed to avoid creating monolithic functions with
inefficient and unbalanced resource profiles.

4. Case Studies in Serverless IoT
A) iRobot: Expanding the intelligent home

Using a serverless architecture built on AWS Lambda and
AWS IoT, iRobot successfully developed a global IoT platform
for its Roomba robotic vacuums. The company began with a
connected device and employed a turnkey IoT cloud provider.
Still, it became clear that the service lacked the necessary
scalability and extensibility for their long-term vision. This
need for unlimited scalability while keeping operational costs
low prompted the company to migrate to a custom serverless
architecture on AWS.

This architecture serves as a perfect example of an event-
driven system.

Each of the millions of robots connects to the cloud via AWS
IoT Core, which functions as the primary connectivity layer.
Messages from each device, such as “start cleaning,” “dock,”
or telemetry, are received by AWS IoT Core and are in the form
of device commands or telemetry data, which trigger AWS
Lambda functions for further processing. This setup utilizes
approximately 25 AWS services, including Amazon Kinesis for
capturing streaming data in real-time and Amazon API Gateway
to manage the streaming data for backend services. This model
has proven to be resilient, handling unprecedented traffic
volumes even 20 times higher than usual during peak times like
Christmas Day, when robots are heavily utilized.

This implementation still effectively addresses the state
management problem using the External Persistence Pattern.
The states of each Roomba are stored in backend databases and
in the AWS IoT Device Shadow service, which provides each
device with a persistent virtual copy. The Lambda functions
remain stateless, operating on the persistent state stored in the
Shadow service.

a) Coca-cola: The connected vending machine: Coca-Cola
has always been known for creatively adopting new technology
and its AI vending machine was no different. Using serverless
architecture, it was possible to build an integrated AI IoT
serverless platform to support the freestyle beverage vending
machines.

Coca-Cola differentiates itself with the Freestyle vending
machine by allowing users to use their mobile phones to place
orders for their preferred beverages. Pour by Phone was a
touchless experience developed by Coca-Cola in a short period.
This feature was an enhancement to the Freestyle’s innovative
self-serve kiosks. The mobile phones act as the control interface
for the machines and real-time communication is enabled
through the mobile Web 3.0 architecture deployed serverlessly.
As a result, users can now place beverage orders via their mobile
devices and the vending machine instantly begins pouring.

Real-time order processing is enabled by sub-360ms
communication relayed through AWS. The system can achieve
a 360ms turnaround time with an average SLA of 0.15 seconds.
Function as a service, which supports third-party AI systems,
handles complex business transactions and other actions within
the agreed timeframe.

This is another great example within the global sphere for
cutting costs.

Coca-Cola reduced its estimated annual operational expenses
per machine from nearly $13,000 to $4,500-an impressive 66%
reduction-when it shifted from a traditional to a serverless
infrastructure model. The boost in operational agility proved to
be even more remarkable. The company went from having just
an initial idea for a touchless mobile application to deploying
it on 10,000 machines in a record 100 days. This highlights the
potential to accelerate the timeline for bringing complex IoT
solutions to market.

5. Conclusion
This research demonstrates that while serverless computing

is an effective approach for developing and innovating scalable,
low-cost IoT applications, some technical issues still need to be
addressed. These issues stem from the core features of serverless
computing: ephemeral and stateless functions based on the scale-
to-zero concept. Such functions can lead to performance problems
like cold start latency and complex state management. The paper
shows how cold starts and latency-sensitive IoT systems become
vulnerable and explains how modern FaaS architectures must
make compromises to overcome the limitations of statelessness,
making these problems more complex. However, these
challenges are manageable. Developers can effectively handle
them using platform-level features like Provisioned Concurrency,
application-level optimizations such as disciplined code right-
sizing and proven architectural solutions including external state
persistence and state machine orchestration. Success stories from
industry leaders like iRobot and Coca-Cola confirm this. These

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Kalimuthu N.,

6

examples strongly indicate that, if these challenges are properly
managed, the serverless model can deliver on its promise as an
effective, revolutionary and powerful foundation for the next
generation of IoT applications.

6. References

1.	 https://docs.aws.amazon.com/prescriptive-guidance/latest/
modernization-data-persistence/saga-pattern.html

2.	 https://dl.acm.org/doi/10.1145/3352460.3358296

3.	 https://arxiv.org/abs/1902.03383

4.	 https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1

5.	 https://arxiv.org/abs/2208.04213

6.	 https://arxiv.org/abs/2310.08437

7.	 https://dl.acm.org/doi/10.1145/3406011

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/saga-pattern.html
https://dl.acm.org/doi/10.1145/3352460.3358296
https://arxiv.org/abs/1902.03383
https://link.springer.com/chapter/10.1007/978-981-10-5026-8_1
https://arxiv.org/abs/2208.04213
https://arxiv.org/abs/2310.08437
https://dl.acm.org/doi/10.1145/3406011

