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 A B S T R A C T 
Serverless computing, notably Function-as-a-Service (FaaS), serves as an appropriate execution model for Internet of 

Things (IoT) applications because of its scalability and pay-as-you-go model. Paradigm shifts like this come with their own 
sets of challenges. This paper examines serverless computing's IoT application development impact on "cold start" and state 
management as primary challenges and considers their impacts. The analysis documents performance degradation suffered 
by ergonomically IoT-sensitive systems and correlates that suffering with the scale-to-zero principle of serverless economics. 
In addition, the inherent statelessness of FaaS complicates the design of stateful IoT applications. The focus of this research is 
on mitigation techniques and architectural patterns used to address the challenges and real-world case studies are analyzed to 
demonstrate that the model is effective with careful implementation.
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1. Introduction
A. The serverless paradigm: A shift in cloud execution models

Serverless computing marks a significant advancement in the 
development of cloud execution models. Centered around the 
FaaS model, applications are broken into smaller, independent 
units called functions, which the cloud provider activates in 
response to designated triggers. Each paradigm that contributed 
to the rise of serverless computing possesses certain key 
features, with IaaS and PaaS offerings being the most similar to 
traditional models.

First, execution is fundamentally event-driven. Wrapping 
functions are triggered by various types of events across the entire 
system. These include an HTTP request via an API gateway, a 
database update, a queue message or a data point received from 
an Internet of Things (IoT) sensor. Second, these functions 

emphasize stateless and ephemeral processing. They run in 
short-lived, isolated containers or micro virtual machines and 
are expected to be stateless and short-lived between functions. 
Third, the platform guarantees automatic and seamless scaling 
within the system. Multiple events arriving simultaneously 
lead to automatic adjustments with no external control-from 
zero to thousands of concurrent function instances and vice 
versa. Finally, this model is supported by a very fine grained, 
pay-per-use billing system. Users are charged during function 
execution based on the approximate milliseconds of memory 
and computing time, with no costs for inactive resources. This 
“deliver on demand, never pay for idle” policy is the primary 
economic reason for its widespread adoption.

B. Architectural requirements of the internet of things (IoT)

The Internet of Things continues to be characterized by the 
widespread and increasingly complex network of connected 
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devices, currently estimated at around 75 billion and expected to 
grow significantly. The devices forming the ecosystem produce 
vast amounts of raw data, which must be managed through 
advanced, flexible and scalable computational architectures. The 
distinctive workload patterns of data and computation shape the 
architectural standards of IoT applications.

The connectivity and use of IoT devices are often examined 
in terms of traffic. Devices can transmit data at irregular intervals, 
for example, when a sensor triggers an alarm or a smart device 
uploads data periodically. This results in sparse and random data 
stream traffic, which doesn’t align with server-focused systems. 
IoT systems that play a significant role typically have low internal 
latency. Critical IoT applications such as industrial automation, 
transportation systems and monitoring devices require real-
time data processing and immediate responses. This is vital for 
their effectiveness and security. The architecture of IoT devices 
must support and manage data inflow from billions of devices 
simultaneously. This is crucial for IoT, as the architecture needs 
to be easily and cost-effectively adaptable to meet constant 
changes in demand.

C. The synergy and conflict of serverless and IoT

Initially, the serverless server paradigm appears well suited 
for IoT needs. The function-as-a-service (FaaS) model’s event-
driven approach matches perfectly with the event-based data 
generation of IoT devices and the auto-scaling capabilities can 
easily manage bursty and unpredictable data flows. The system’s 
economic value is increased by the organization’s payments for 
computation, which handles sporadic IoT events and by avoiding 
the costs associated with dormant servers.

A closer investigation shows that serverless computing and 
some specific IoT applications face a set of underlying conflicts. 
These conflicts stem from two distinct architectural disconnects. 
First, the ‘scale-to-zero’ feature of a serverless cost model is 
a primary reason why serverless computing suffers from the 
so-called ‘cold start’ problem. With this problem, function calls 
triggered after a period of dormancy experience high latencies. 
These high latencies are highly unpredictable and, as a result, 
are not suitable for real-time IoT applications. Furthermore, 
the stateless architecture and design of ‘Function-as-a-Service’ 
(FaaS) functions conflict with the needs of IoT applications, which 
often require tracking devices, user sessions and historical data. 
Consequently, application developers are forced to use inefficient 
systems for state control and management. This contradicts the 
simplicity promised by serverless computing. The stark realities 
of these issues are the focus of this paper, especially regarding 
their impact on IoT application development. The paper then 
explores and analyzes existing architectural frameworks and 
patterns aimed at easing the practical challenges faced by IoT 
and serverless computing.

2. Core Research Challenges in Serverless IoT 
Architectures
A. Cold start delays in latency-sensitive IoT workflows

A cold start and any other form of latency are two distinct 
concepts. Cold start refers to the latency in cloud computing 
that occurs the first time a serverless function is triggered or 
when a function has not been used for a period. This is a normal 
occurrence. Essentially, it relates to the ability to “scale to zero,” 
a crucial feature for the serverless business model. When a 

task arrives and no warm execution environment is available, 
the platform must perform several time-consuming steps to 
prepare the serverless function for execution: reserving a new 
container, fetching the function and its buffers, configuring 
the language runtime and finally executing the function. This 
process can be time-consuming. Research shows that cold 
start latency, depending on the specific functions running in a 
microservices environment, can range from a few milliseconds 
to several seconds. This can be much greater than the actual 
function’s execution time. In complex designs with multiple 
function executions, this cold start issue can cause extended total 
response times, which in extreme cases may account for more 
than 90% of the total response time.

This creates a paradox for serverless IoT. The most 
valuable aspect of IoT serverless computing-paying for active 
computation on sporadic data—comes with the cost of Scaling 
to Zero. However, sporadic IoT traffic guarantees a sufficient 
load to always be active, idle or transitioning between the 
two. Therefore, for IoT offerings, this feature of serverless 
architectures is the most cost-effective, but cold starts are a 
significant disadvantage, often called a “massive pay-for-what-
you-get” syndrome. For some IoT applications, the additional 
latency, which can be unpredictable and sometimes substantial, 
renders the system ineffective. Smart health monitoring, 
connected vehicles and Industrial Process Control Systems 
suffer greatly from this latency. This paradox presents challenges 
in efficient resource allocation, as the conflicting economic and 
performance characteristics of the serverless model complicate 
real-world IoT deployments.

B. The state management dilemma for stateful IoT systems

Storage and computing function platforms rely on the 
assumption of statelessness, where each function call is 
treated as an independent, isolated transaction and executed 
as if previous calls did not occur. This design choice makes it 
easier for providers to manage resources and scale in the cloud. 
However, the most important IoT applications are inherently 
stateful. These applications need to monitor the state of a device 
(for example, the temperature setting on a thermostat or the lock 
status on a door), retain user session context (such as smart home 
configurations) or analyze data streams based on historical data.

This architectural disparity requires developers to export the 
entire application state to an external persistence layer, which 
could be a NoSQL database, an object store or a distributed 
cache. While this approach is pragmatic, it introduces significant 
architectural complexity and performance issues. Every function 
call that involves reading or writing state results in an external 
service network round-trip, increasing latency and negatively 
affecting the critical path. Additionally, developers must handle 
the scaling, cost and security of the external state store, which 
partly contradicts the ‘zero-ops’ promise of serverless computing.

State application centralization remains integrated within 
an external data monolith and is divided within the compute 
architecture into separate microservices. Although the 
microservices framework improves network latency and reduces 
single points of failure, the pivot functionalities reorganize 
the performance bloat. Adding serverless functionalities at 
the network edge further increases the complexity of the 
challenge. Among unresolved issues are maintaining invariant 
state across multiple self-governing, loosely connected edge 
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nodes containing mobile IoT devices, ensuring consistent data 
duplication and managing relocated state.

C. Trade-off between performance and cost

On commercial serverless platforms, resource allocation is 
managed through a single dial - memory settings. The amount of 
allocated memory determines the CPU and network bandwidth 
assigned to the function. This creates a complex optimization 
challenge for developers, often called right-sizing the function. 
Under-provisioned memory can lead to longer execution times 
due to CPU starvation, which paradoxically increases costs if 
the extended duration exceeds the cheaper per-millisecond rate. 
Conversely, over-provisioned memory is a sunk cost, since 
the function will consume unnecessary additional CPU power. 
This forces developers to choose between balancing cost and 
performance for each function within an application or setting 
constraints.

This extends to strategic decisions at a higher level of the 
architecture, especially regarding function size. Developers 
can either create an application as many small, single-purpose 
functions or combine related tasks into fewer, larger functions.

•	 Single-purpose functions: This approach follows 
microservices principles, offering greater modularity, easier 
maintenance and independent scaling. However, it can 
increase end-to-end latency due to network delays between 
function calls and the risk of cascading cold starts. It may 
also result in direct costs for orchestration service state 
transitions, such as AWS Step Functions.

•	 Function fusion: Lowering inter-function latency and 
orchestration costs can be achieved by combining multiple 
steps into a single function. This approach sacrifices 
modularity and can lead to inefficient resource allocation 
because the fused function needs to reserve the most 
memory and CPU for the most computationally intensive 
task, even when handling less demanding ones.

In the case of large-scale IoT deployments, such resource 
management choices become even more critical. Within the 
context of a memory function, a slight efficiency loss or subpar 
architectural decision can lead to significant and unexpected 
cost overruns when scaled for a billion monthly invocations for 
a fleet of IoT devices.

3. Mitigation Strategies and Architectural 
Recommendations
A. Taming cold start latency 

Addressing the cold start problem requires using both 
platform-level features and disciplined application-level 
optimizations. Strategies can be categorized into those that aim 
to eliminate cold starts and those that aim to reduce the duration 
of unavoidable cold starts.

a) Platform level and proactive techniques (Reducing the 
Frequency) 

•	 Provisioned Concurrency: This is a feature offered by 
cloud providers where a specified number of function 
execution environments are kept in a warm state and are 
therefore pre-initialized. Even at very low warm reachability 
levels, these warm instances can handle a small subset 
of requests. This eliminates cold starts for a predictable 

volume of traffic. While most cloud providers offer this at a 
cost and it is the most reliable method for reducing cold start 
latency, the resources are paid for even when not in use, 
which goes against the goal of minimizing operating costs 
through a pay-per-use model.

•	 Function warming (pinging): This is a developer-
implemented strategy that uses a scheduled task to call a 
function at fixed intervals (every 5 minutes or more) to keep 
the function warm. This approach is effective for thermal 
pinging and is therefore limited by other deployed pods in 
the environment. Due to the dynamics of platform behavior, 
acting this way can still result in losing funds; thus, it is 
not guaranteed, even though it is a more cost-effective 
alternative to provisioned concurrency.

•	 Predictive pre-warming: These more advanced systems 
use machine learning to analyze historically captured 
invocation patterns to forecast traffic. By predicting function 
demand, systems can efficiently warm the necessary number 
of function instances just in time for usage. This approach 
aims to reduce the frequency of cold starts and the costs 
associated with unneeded warm function instances.

b) Application-level optimizations (Reducing Duration)

•	 Code and dependency management: A function package 
is a key reason for initiating a cold start, as it requires 
uploading, downloading and unzipping a deployment 
package to initialize the function. This time can be reduced 
by minimizing dependencies (frameworks and libraries) 
and using tree-shaking techniques to remove unnecessary 
code. Techniques like FaaSLight show that, in some cases, 
only the code needed for a specific invocation path can be 
loaded, which can decrease code loading latency by up to 
79%. 

•	 Runtime selection: Initialization duration is affected by the 
time needed to process the chosen programming language. 
Within interpreted languages, faster options include 
Python and Node, while heavier compilers like Java and 
.NET, dominated by the Java Virtual Machine (JVM) and 
Common Language Runtime (CLR), tend to have longer 
cold start times.

•	 Container reuse and snapshotting: Startup latency 
improves through FaaS platforms that reuse invoked 
containers. An example of a more sophisticated method 
of environment snapshotting is used by AWS Lambda 
SnapStart for Java. This method captures an environment 
snapshot, considering the fully initialized execution 
environment, the loaded JVM and the application code. 
The snapshot can be resumed within milliseconds on new 
instances, reducing initiation time compared to a cold start 
(Table 1).

B. Engineering stateful applications on a stateless substrate

Achieving state within an inherently stateless FaaS 
environment requires specific methodological frameworks for 
externalizing state with minimal performance impact.

a) External persistence patterns: In most cases, the preferred 
approach is to offload some of the state to an external service 
that is both readily available and highly scalable.

•	 Databases: Managed NoSQL databases like Amazon 
DynamoDB are very popular for storing and retrieving 
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device or session state. Their low-latency key-value access 
patterns match well with the request-response nature of 
FaaS functions, offering both durable and scalable state 
storage.

•	 Object storage: The primary storage layer for large 
unstructured data such as logs, firmware updates or media 
files from IoT devices is object storage services like Amazon 
S3. For serverless functions, there’s the ability to trigger 

them directly with S3 events (for example, when a new file 
is added) and then the data is processed.

•	 Distributed caches: For a frequently accessed and time-
sensitive state, placing an in-memory distributed cache 
(such as Redis or Memcached) in front of a primary 
database can reduce latency. This setup decreases the load 
on the database and enables access to sensitive data in 
approximately sub-millisecond time.

Table 1: Comparison of Cold Start Mitigation Techniques.
Technique Goal Advantages Trade-offs

Provisioned Concurrency Reduce Frequency eliminates cold starts for configured capacity. Higher cost (billed for idle time

Function Warming (Pinging) Reduce Frequency Low cost; simple to implement. Not guaranteed; platform may reclaim 
resources

Predictive Pre-warming Reduce Frequency Balances cost and performance; adapts to traffic patterns. High complexity; requires historical data

Code Optimization Reduce Duration Reduces cost and latency for all cold starts; good 
practice.

Requires developer discipline

Runtime Selection Reduce Duration Simple decision with significant impact on startup time. May conflict with team skills.

Environment Snapshotting Reduce Duration Drastically reduces initialization time for supported 
runtimes (e.g., Java).

Limited to specific runtimes

b) Using state machines for workflow orchestration: For 
complex IoT processes that span multiple functions and require 
several tiers to maintain state, such as in multi-stage device 
provisioning or distributed transactions, a state machine offers an 
effective solution. The expressive CRUD workflow diagramming 
features of services like AWS Step Functions enable users to 
design complex workflows as visual state machines. AWS Step 
Functions not only manage state but also handle the invocation 
of Lambda functions at each state, perform error handling related 
to states and oversee retries associated with states. As a result, 
the Saga pattern is implemented, serving as the primary method 
for maintaining data consistency across services in a distributed 
system without using traditional database locks (Figure 1).

Figure 1: The Illustration Shows How the Saga Pattern 
Implements an Order Processing System by Using Aws Step 
Function.

c) Stateful serverless frameworks:New research concentrates 
on integrating state more naturally into the serverless model rather 
than merely externalizing it. The Serverless State Management 
Systems (SSMS) class of systems aims to reduce the challenges 
of stateful scaling and fault tolerance. These systems frequently 
use an actor-like programming model where developers create 
stateful message handlers and the platform manages the actor 
state using persistent storage checkpoints for recovery.

Numerous frameworks reflect this trend, including 
Cloudburst, which first introduced the principle of logical 
disaggregation with physical colocation. It uses a persistent, 
scalable and auto-scaling key-value store, while co-locating 
mutable caches with function executors for low-latency access 
to frequently used data.

Similarly, Crucial is based on the insight that FaaS involves 
concurrent programming at a data center scale and uses a 
distributed shared memory for detailed state management and 
synchronization. This allows for easy migration of traditional 
multi-threaded systems to serverless architectures with minimal 
code changes. Other frameworks, such as Enoki and Faasm, 
focus directly on stateful serverless challenges at the network 
edge, addressing issues related to client mobility and resource 
scarcity in distributed IoT systems.

The aforementioned frameworks represent a significant 
milestone in bridging the stateless gap in FaaS to meet the needs 
of advanced and stateful applications (Table 2).

Pattern Description IoT Use Case Fault Tolerance Performance

External 
Database

Functions read/write state to a 
managed NoSQL/SQL database.

Storing device shadow, user profiles, 
sensor readings.

High (relies on database 
durability and availability)

Moderate (adds network 
latency for every state access).

Distributed 
Cache

State is stored in an in-memory 
cache for fast access.

Caching frequently accessed device 
configurations or session data.

Moderate (cache is ephemeral; 
requires a backing store).

Low (sub-millisecond latency 
for cache hits).

State Machine 
Orchestration

AWS Step Functions manages 
workflow state and coordinate’s 
function calls.

Multi-step device onboarding, 
complex command-and-control 
sequences.

Very High (built-in retries, error 
handling and state persistence).

Higher (overhead from the 
orchestration engine).

Stateful 
Frameworks

The platform provides a native 
state management layer (e.g., 
shared memory).

Real-time collaborative applications, 
fine-grained synchronization.

Varies by implementation (often 
relies on checkpointing).

Potentially Low (avoids 
network calls to external 
services).



5

Kalimuthu N., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

B. Achieving cost-performance optimization

Optimization strategies try to balance the two extremes of 
performance and cost in serverless architectures and are applied 
at the level of resource distribution and system architecture.

a) Systematic function right-sizing:

Understanding each function’s guesswork is an inefficient 
use of resources. Developers need to adopt a strategy for each 
function. Automated systems such as the AWS Lambda Power 
Tuner can execute a function with different memory settings, 
analyze its performance and calculate its cost to find the optimal 
configuration. This strategy can be counterproductive as the ratio 
of memory to CPU, execution time and cost vary significantly 
across different workloads.

b) Architectural guidance on function granularity:

Choosing a combination of a large and a smaller function is 
a design decision that should be based on the application’s use 
case.

•	 Favor functions with independent purposes (microservices) 
for systems that require easy segmentation into parts, 
independent vertical scalability and a decoupled architecture. 
This structure works well for loosely coupled systems that 
can tolerate higher costs of inter-function calls and longer 
delays caused by cold starts.

•	 When there’s a sequence of tasks that are sequentially 
connected and network latency from calls between 
functions significantly impacts performance or the cost 
of state changes in an orchestrator becomes economically 
unsustainable, the appropriate approach is function fusion. 
This method balances a loss of modularity with gains in 
performance and cost efficiency, but it must be carefully 
designed to avoid creating monolithic functions with 
inefficient and unbalanced resource profiles.

4. Case Studies in Serverless IoT
A) iRobot: Expanding the intelligent home

Using a serverless architecture built on AWS Lambda and 
AWS IoT, iRobot successfully developed a global IoT platform 
for its Roomba robotic vacuums. The company began with a 
connected device and employed a turnkey IoT cloud provider. 
Still, it became clear that the service lacked the necessary 
scalability and extensibility for their long-term vision. This 
need for unlimited scalability while keeping operational costs 
low prompted the company to migrate to a custom serverless 
architecture on AWS.

This architecture serves as a perfect example of an event-
driven system.

Each of the millions of robots connects to the cloud via AWS 
IoT Core, which functions as the primary connectivity layer. 
Messages from each device, such as “start cleaning,” “dock,” 
or telemetry, are received by AWS IoT Core and are in the form 
of device commands or telemetry data, which trigger AWS 
Lambda functions for further processing. This setup utilizes 
approximately 25 AWS services, including Amazon Kinesis for 
capturing streaming data in real-time and Amazon API Gateway 
to manage the streaming data for backend services. This model 
has proven to be resilient, handling unprecedented traffic 
volumes even 20 times higher than usual during peak times like 
Christmas Day, when robots are heavily utilized.

This implementation still effectively addresses the state 
management problem using the External Persistence Pattern. 
The states of each Roomba are stored in backend databases and 
in the AWS IoT Device Shadow service, which provides each 
device with a persistent virtual copy. The Lambda functions 
remain stateless, operating on the persistent state stored in the 
Shadow service.

a) Coca-cola: The connected vending machine: Coca-Cola 
has always been known for creatively adopting new technology 
and its AI vending machine was no different. Using serverless 
architecture, it was possible to build an integrated AI IoT 
serverless platform to support the freestyle beverage vending 
machines.

Coca-Cola differentiates itself with the Freestyle vending 
machine by allowing users to use their mobile phones to place 
orders for their preferred beverages. Pour by Phone was a 
touchless experience developed by Coca-Cola in a short period. 
This feature was an enhancement to the Freestyle’s innovative 
self-serve kiosks. The mobile phones act as the control interface 
for the machines and real-time communication is enabled 
through the mobile Web 3.0 architecture deployed serverlessly. 
As a result, users can now place beverage orders via their mobile 
devices and the vending machine instantly begins pouring.

Real-time order processing is enabled by sub-360ms 
communication relayed through AWS. The system can achieve 
a 360ms turnaround time with an average SLA of 0.15 seconds. 
Function as a service, which supports third-party AI systems, 
handles complex business transactions and other actions within 
the agreed timeframe.

This is another great example within the global sphere for 
cutting costs.

Coca-Cola reduced its estimated annual operational expenses 
per machine from nearly $13,000 to $4,500-an impressive 66% 
reduction-when it shifted from a traditional to a serverless 
infrastructure model. The boost in operational agility proved to 
be even more remarkable. The company went from having just 
an initial idea for a touchless mobile application to deploying 
it on 10,000 machines in a record 100 days. This highlights the 
potential to accelerate the timeline for bringing complex IoT 
solutions to market.

5. Conclusion
This research demonstrates that while serverless computing 

is an effective approach for developing and innovating scalable, 
low-cost IoT applications, some technical issues still need to be 
addressed. These issues stem from the core features of serverless 
computing: ephemeral and stateless functions based on the scale-
to-zero concept. Such functions can lead to performance problems 
like cold start latency and complex state management. The paper 
shows how cold starts and latency-sensitive IoT systems become 
vulnerable and explains how modern FaaS architectures must 
make compromises to overcome the limitations of statelessness, 
making these problems more complex. However, these 
challenges are manageable. Developers can effectively handle 
them using platform-level features like Provisioned Concurrency, 
application-level optimizations such as disciplined code right-
sizing and proven architectural solutions including external state 
persistence and state machine orchestration. Success stories from 
industry leaders like iRobot and Coca-Cola confirm this. These 
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examples strongly indicate that, if these challenges are properly 
managed, the serverless model can deliver on its promise as an 
effective, revolutionary and powerful foundation for the next 
generation of IoT applications.
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