
The Impact of Salesforce Lightning Web Components (LWC) on UI/UX Design and
Development

Maneesh Gupta*

Salesforce CRM Developer, Zionsville, USA

Citation: Gupta M. The Impact of Salesforce Lightning Web Components (LWC) on UI/UX Design and Development. J Artif
Intell Mach Learn & Data Sci 2024 2(1), 2712-2718. DOI: doi.org/10.51219/JAIMLD/maneesh-gupta/572

Received: 03 March, 2024; Accepted: 28 March, 2024; Published: 30 March, 2024

*Corresponding author: Salesforce CRM Developer, Zionsville, USA, E-mail - Maneesh_83@yahoo.co.in

Copyright: © 2024 Gupta M., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/maneesh-gupta/572

 A B S T R A C T
The evolution of Salesforce's front-end development frameworks reflects a broader shift towards modern web standards and

enhanced user experiences. Initially, Salesforce Classic relied heavily on server-side rendering, which, while functional, limited
the interactivity and responsiveness of user interfaces. The introduction of Aura Components was a significant advancement,
enabling more dynamic, client-side interactions. However, Aura's proprietary nature and performance constraints highlighted
the need for a more streamlined and standards-compliant approach1.

In response, Salesforce introduced Lightning Web Components (LWC), a framework built on core Web Components
standards such as Custom Elements, Shadow DOM and HTML Templates2. LWC leverages modern JavaScript (ES6+) to deliver
lightweight, efficient and reusable components that align with contemporary web development practices. This transition not only
enhances performance and scalability but also simplifies the development process by reducing the learning curve for developers
familiar with standard web technologies3.

This whitepaper examines the impact of LWC on UI/UX design and front-end development within the Salesforce ecosystem.
It explores how LWC improves performance through optimized rendering, supports scalable application architectures and
facilitates accessibility compliance (Figure 1). Additionally, the paper outlines best practices for building robust LWC applications
and provides a step-by-step guide to developing LWC components4.

Figure 1: Evolution of Salesforce’s Front-End Development Frameworks.

https://doi.org/10.51219/JAIMLD/maneesh-gupta/572
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/maneesh-gupta/572

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Gupta M.,

2

1. Introduction
Salesforce’s journey in front-end development has undergone

significant transformations, transitioning from Visualforce
to Aura Components and most recently to Lightning Web
Components. Each phase reflects a commitment to enhancing
user experience (UX) and aligning with contemporary web
development standards5.

Visualforce, introduced in 2008, marked Salesforce’s initial
foray into customizable user interfaces. It used a tag-based markup
language, akin to HTML, enabling developers to create custom
pages tightly integrated with Apex, Salesforce’s proprietary
programming language. While functional, Visualforce’s reliance
on server-side rendering limited its ability to deliver dynamic,
interactive user experiences.

To address these limitat ions, Salesforce unveiled Aura
Components in 2014. This framework introduced a client-side
architecture, allowing for the development of reusable, modular
components that could co mmunic ate with each other and the
backend. Aura leveraged JavaScript on the client side and Apex
on the server side, facilitating more responsive and flexible UIs
compared to Visualforce. Howev er, Aura’s proprietary nature
and performance constrai nts hi ghlighted the need for a more
streamlined and standards-compliant approach.

Recognizing the advancements in web standards, Salesforce
introduced Lightning Web Components in 2019. LWC is built
on modern web standards, including ECMAScript 6+, Custom
Elements, Shadow DOM and HTML Templates. By ta king
advantage of these standards, LWC offers a lightweight, efficient
and reusable component model that aligns with contemporary
web development practice s. Thi s shift not only enhances
performance and scalability but also simplifies the development
process by reducing the learning curve for developers familiar
with standard web technologies.

The broader industry trend toward standards-based front-end
development has been driven by the need for interoperability,
maintainability and performance optimization. Frameworks that
adhere to web standards enable developers to create applications
that are more consistent across different platforms and devices.
Salesforce’s adoption of LWC r efl ects this shift, providing
developers with tools that are both powerful and aligned with
the evolving web ecosystem6.

The importance of UI/UX in enterprise applications cannot
be overstated. Users expect intuitive, responsive and accessible
interfaces that facilita te se amless interactions. By embracing
LWC organizations can me et th ese expectations, delivering
applications that are not only functionally robust but also provide
superior user experiences.

2. Lightning Web Components
Lightning Web Components is Salesforce’s modern

framework for building u ser interfaces, leveraging core Web
Components standards and mo dern JavaScript to deliver
efficient, scalable and mai ntainable applications. Introduced
to address the limitations of the Aura framework, LWC aligns
closely with contemporary web development practices, offering
a more streamlined and per formant approach to component-
based development7.

2.1. Core concepts of lightning web components

2.1.1. Templates (HT ML): LWC utilizes HTML templates

to define the struct ure of components. These templates are
declarative, allowing developers to bind data and handle events
directly within the markup, promoting clarity and separation of
concerns.

2.1.2. JavaScript controllers: Each LWC component is backed
by a JavaScript class that encapsulates its behavior. This class
handles logic, data manipulation and event handling, leveraging
modern JavaScript features such as ES6 modules, classes and
decorators like @api, @track and @wire for property and
method exposure, reactivity and data binding.

2.1.3. Rea ctive data binding: LWC implements a reactive
programmin g model where changes in component p roperties
automatica lly reflect in the UI. This reactivi ty simplifies
state management and ensures that the user in terface remains
consistent with the underlying data model.

2.1.4. Bas e lightning components: Salesforc e provides a
library of pre-built base components that adhere to the Lightning
Design Sys tem. These components, such as li ghtning-button
and lightning-input, offer standardized functionality and styling,
accelerati ng development and ensuring consi stency across
applications8.

2.1.5. Lifecycle hooks: LWC components have a well-defined
lifecycle with hooks like constructor(), connectedCallback(),
renderedCa llbac k() and disconnectedCallback(). These
hooks allow developers to execute code at specific stages of a
component’s existence, facilitating tasks such as initialization,
DOM manipulation and cleanup (Figure 2).

Figure 2: Foundational Knowledge for Developing with LWC.

2.2. Advantages over aura components

2.2.1. Performance: LWC components are more lightweight
and efficient compared to Aura components. By using native
browser APIs and minimizing framework overhead, LWC
delivers faster load times and improved runtime performance.

2.2.2. Standards compliance: Built on web standards like
Custom Elements, Shadow DOM and ES6, LWC promotes better
compatibility with modern web development tools and practices.
This adherence to standards facilitates easier integration with
other technologies and reduces the learning curve for developers
familiar with standard web development.

2.2.3. Enhanced developer experience: LW C’s modular
architecture and use of standard JavaScr ipt enhance code
maintainability and reusability. Develop ers benefit from
improved tooling support, including better debugging capabilities
and integration with modern development environments9.

Lightning Web Components represent a sig nificant
advancement in Salesforce’s UI development paradigm, offering
a modern, efficient and developer-friendly framework that aligns
with the broader web development ecosystem.

3

Gupta M., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

section explores the key performance optimizations enabled by
LWC, including client-side rendering, Shadow DOM benefits,
lazy loading, modular JavaScript architecture and performance
measurement best practices (Figure 3).

Figure 3: Performance Optimizations with Lightning Web
Components (LWC).

4.1. Client-side rendering enhancements

LWC operates predominantly on the client side, allowing
components to be created and destroyed dynamically within a
single-page application context. This approach reduces server
round-trips, leading to faster load times and a more responsive
user experience. By handling rendering on the client, LWC
minimizes latency and improves overall application performance.

4.2. Shadow DOM benefits: Encapsulation and reduced CSS
bloat

The implementation of Shadow DOM in LWC provides
encapsulation for component styles and DOM structures. This
encapsulation ensures that styles defined within a component
do not leak out and are not affected by external styles, leading
to more predictable and maintainable code. Additionally,
Shadow DOM reduces CSS bloat by isolating styles, preventing
unnecessary overrides and conflicts11.

4.3. Lazy loading of components and data

LWC supports lazy loading techniques, allowing components
and data to be loaded on-demand rather than at initial page
load. This approach improves performanc e by reducing the
initial payload and loading resources only when necessary. For
example, implementing infinite scrolling in data tables enables
the application to fetch and render additional records as the user
scrolls, enhancing efficiency and user experience12.

4.4. Modular javascript architecture and payload reduction

LWC promotes a modular JavaScript arc hitecture,
encouraging developers to build compo nents with a single
responsibility. This modularity facil itates code reuse, easier
maintenance and reduced JavaScript payload sizes. By loading
only the necessary modules, applications can minimize resource
consumption and improve load times.

4.5. Performance measurement and benc hmarking best
practices

To ensure optimal performance, Salesforce provides tools
and best practices for measuring and benchmarking LWC
applications. Developers are encouraged to use browser
developer tools to monitor rendering performance and identify
bottlenecks. Additionally, adhering to coding best practices,
such as minimizing DOM manipulations and optimizing data
bindings, contributes to enhanced application efficiency13.

3. Impact on UI/UX Design
Salesforce’s Lightning Web Components framework has

significantly enhanced user interface and user experience
design within the Salesforce ecosystem. By using modern web
standards and optimized rendering techniques, LWC facilitates
the development of responsive, accessible and visually consistent
applications.

3.1. Enhanced performance and responsiveness

LWC operates on the client side, allowing for faster rendering
and improved r esponsiveness. Components are created and
destroyed as n eeded within a single-page application context,
reducing serve r round-trips and enhancing user interactions.
This approach aligns with best practices for performance
optimization in web applications.

3.2. Rich, interactive single-page applications

The framework’ s architecture suppor ts the creation of
dynamic, singl e-page applications t hat provide seamless user
experiences. B y utilizing standard web APIs and modern
JavaScript features, developers can build interactive interfaces
that respond p romptly to user actio ns, enhancing overall
engagement.

3.3. Streamlined mobile responsiveness

LWC components are designed with mobile responsiveness
in mind. The use of the Salesforce Lightning Design System
grid utility enables developers to implement fluid, mobile-first
layouts. Com ponents such as lightning-layout and lightning-
layout-item facilitate the creation of responsive designs that
adapt to various screen sizes and devices.

3.4. Customi zable styling with SLDS and CSS custom
properties

Styling in LWC is streamlined through the integration of
SLDS and the use of CSS custom properties. Developers can
apply SLDS utility classes to ensure consistency with Salesforce’s
design language. Additionally, CSS custom properties or styling
hooks, allow for the customization of component appearances
without altering the underlying SLDS styles10.

3.4.1. Accessibility improvements: LWC emphasizes
accessibility, incorporating features that support users with
disabilities:

• Native focus management: Components handle focus
appropriately, ensuring that keyboard navigation and screen
readers function effectively.

• ARIA attributes support: Developers can utilize ARIA
attributes to convey semantic information to assistive
technologies, enhancing the accessibility of custom
components.

• Compliance with WCAG standards: Salesforce is
committed to adhering to the Web Content Accessibility
Guidelines (WCAG) 2.1 Level AA, ensuring that
applications built with LWC meet recognized accessibility
standards.

4. Performance Optimizations Enabled by LWC
Lightning Web Components significantly enhance application

performance within the Salesforce ecosystem by leveraging
modern web standards and optimized rendering techniques. This

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Gupta M.,

4

5. Scalability and Maintainability of Applications with
LWC

Salesforce’s Lightning Web Components framework
is designed to support the development of scalable and
maintainable applications. By using modern web standards and
a modular architecture, LWC allows for the creation of complex
applications that are both efficient and adaptable to evolving
business needs.

5.1. Building la rge-scale applications with reusable
components

LWC promotes the development of reusable components
through its modular design. Developers can create components
that encapsulate specific functionalities, which can then be
reused across different parts of an application. This approach not
only reduces code duplication but also simplifies maintenance
and enhances consistency throughout the application. Utilizing
slots in LWC further enhances component flexibility, allowing
for dynamic content insertion and greater reusability14.

5.2. Component composition and separation of concerns

The framework encourages a clear separation of concerns
by allowing developers to compose complex interfaces from
smaller, self-contained components. Each component manages
its own state and logic, leading to a more organized codebase.
This compositional approach simplifies debugging and testing, as
each component can be developed and evaluated independently.

5.3. Standardized component lifecycle for predictability

LWC components follow a standardized lifecycle,
including hooks such as constructor(), connectedCallback()
and disconnectedCallback(). These lifecycle methods provide
predictable entry points for initializing components, handling
updates and performing cleanup tasks. This predictability
enhances code reliability and simplifies the integration of
components within larger applications.

5.4. Managing state across complex applications

In applications with numerous interacti ng components,
effective state management is crucial. LWC offers mechanisms
like the Lightning Message Service to facilitate communication
between components, even if they are no t in the same DOM
hierarchy. LMS enables components to pu blish and subscribe
to messages over a shared channel, promoting decoupled and
scalable communication patterns.

5.5. Deployment at scale: Benefits of salesforce’s metadata-
driven model

Salesforce’s metadata-driven architecture allows for efficient
deployment and management of applications. Developers
can define components, configurations and customizations
as metadata, which can be version-controlled and deployed
across different environments. This approach streamlines the
deployment process and ensures consistency across development,
testing and production environments.

5.6. Versioning and updates: Simplifying change management

LWC supports component-level API vers ioning, enabling
developers to specify the API version for each component.
This feature ensures that components remain stable and behave
consistently, even as the underlying platform evolves. By

isolating components from changes in newer API versions,
developers can manage updates more effectively and reduce the
risk of introducing regressions.

6. Accessibility by Design: How LWC Drives Inclusive
Applications

Salesforce’s Lightning Web Components framework is
designed with accessibility at its core, enabling developers to
create inclusive applications that cater to users with diverse
abilities. By adhering to modern web standards and incorporating
built-in accessibility features, LWC simplifies compliance with
the Web Content Accessibility Guidelines (WCAG) 2.1 Level
AA.

6.1. Accessibility features built into LWC

Semantic HTML Enforced by Templates: LWC encourages
the use of semantic HTML elements within its templates,
ensu ring that the structure and meaning of web content are
conv eyed accurately to assistive technologies. This practice
enha nces the interpretability of web applications for users
relying on screen readers and other assistive tools.

• Keyboard navigation support: Components developed
with LWC are inherently designed to be navigable via
keyboard inputs. This feature is crucial for users who
cannot utilize pointing devices, allowing them to interact
with applications effectively. Developers are advised to test
components for keyboard accessibility, ensuring logical
focus order and operability of interactive elements15.

• Error handling and user feedback mechanisms: LWC
provides mechanisms for delivering real-time feedback to
users, such as form validation messages and status updates.
These features are essential for informing users of errors
or changes in state, thereby improving the overall user
experience and accessibility of applications.

6.2. Best practices for accessibility in LWC

Utilizing Lightning Base Components: Salesforce
offers a suite of pre-built Lightning Base Components that
are accessibility-certified and adhere to SLDS guidelines.
Employing these components ensures consistency in design
and behavior, while also reducing the burden on developers to
implement accessibility features manually.

• Creating custom accessible components: When custom
components are necessary, developers should incorporate
appropriate ARIA roles and properties to convey the
purpose and state of UI elements to assistive technologies.
For instance, assigning role=”button” to a clickable element
informs screen readers of its functionality.

• Simplifying conformance to WCAG 2.1 standards:
LWC’s alignment with web standards and its built-in
accessibility features facilitate adherence to WCAG 2.1
guidelines. By leveraging semantic HTML, ensuring
keyboard operability and providing meaningful feedback,
developers can create applications that meet accessibility
requirements more efficiently.

7. Best Practices for Building Scalable and High-
Quality LWC Applications

Salesforce’s Lightning Web Components framework provides
a robust foundation for developing scalable, maintainable and

5

Gupta M., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

high-quality applications. By adhering to established design
principles, code practices, performance optimizations and user
experience considerations, developers can leverage LWC to
build efficient and user-friendly applications (Figure 4).

Figure 4: Best Practices for Scalable & High-Quality LWC
Applications.

7.1. Design principles

• Component modularity and focus: LWC encourages the
development of small, focused components that adhere
to the Single Responsibility Principle. This approach
enhances code readability, simplifies testing and promotes
reusability across applications. By encapsulating specific
functionalities within individual components, developers
can manage complexity effectively.

7.2. Code practices

• Efficient data access with lightning data service: Utilizing
LDS allows components to perform create, read, update
and delete (CRUD) operations without the need for Apex
code. LDS handles sharing rules and field-level security
automatically, ensuring data consistency and reducing the
likelihood of errors. Moreover, it improves performance by
caching data on the client side, minimizing server round-
trips.

• Avoid direct DOM manipulation: Directly manipulating
the Document Object Model (DOM) can lead to
unpredictable behavior and maintenance challenges. LWC
provides reactive properties and templating mechanisms
that automatically update the UI in response to data changes.
Developers should rely on these features to manage the
DOM, ensuring consistency and reducing the risk of errors.

• Implement lazy loading: To enhance performance,
components and data should be loaded only when necessary.
Implementing lazy loading techniques, such as using the if:
true directive, ensures that non-essential components are
rendered only upon user interaction, reducing initial load
times and improving responsiveness.

7.3. Performance practices

• Optimize event handling: Efficient event handling is
crucial for responsive applications. Developers should
utilize standard event propagation mechanisms and avoid
unnecessary custom events. Properly managing event
listeners and handlers ensures that components communicate
effectively without introducing performance bottlenecks.

• Minimize server round-trips: Reducing the number
of server calls enhances application performance. By
leveraging client-side caching mechanisms, such as LDS
and cacheable Apex methods, developers can decrease
latency and improve the user experience.

7.4. UX practices

• Prioritize meaningful interactions: User interactions

should be intuitive and purposeful. Avoid excessive
animations or transitions that do not contribute to the user’s
understanding or task completion. Focus on delivering
clear, concise and responsive interactions that align with
user expectations.

• Ensure consistent visual feedback: Providing immediate
and consistent feedback for user actions enhances usability.
Utilize standard UI patterns and components to maintain
consistency across different devices and screen sizes. This
approach ensures that users receive appropriate cues and
confirmations, improving overall satisfaction.

8. The Development Process: Building an LWC
Component from Start to Finish

Salesforce’s Lightning Web Components framework offers
a modern, standards-based approach to building user interfaces.
This section outlines the comprehensive process of developing an
LWC component, from setting up the development environment
to deploying and testing the component.

8.1. Setting up the development environment

To begin developing with LWC, set up the Salesforce DX
environment:

• Install visual studio code (VS Code): Download and
install VS Code, a lightweight and powerful code editor.

• Install salesforce extensions for VS code: These
extensions provide tools for working with Salesforce DX
projects, Apex and LWC.

• Install salesforce CLI: The CLI facilitates interaction with
Salesforce orgs and streamlines development tasks.

8.2. Creating an LWC component

An LWC component comprises four primary files:

• HTML template (.html): Defines the component’s
structure and layout.

• JavaScript controller (.js): Contains the component’s
logic and event handling.

• CSS stylesheet (.css): Optional; styles the component using
scoped CSS.

• Meta configuration (.xml): Specifies metadata, including
API version and component visibility.

8.3. Steps to create the component

• Open VS Code and access the Command Palette
(Ctrl+Shift+P or Cmd+Shift+P).

• Run SFDX: Create Lightning Web Component.
• Provide a name for the component and select the desired

directory.

8.4. Deploying to a salesforce org

To deploy the component:

• Authorize your salesforce org using SFDX: Authorize an
Org.

• Deploy the component with SFDX: Deploy Source to Org.
• Add the component to a Lightning App Builder page or an

Experience Cloud site as needed.

8.5. Testing components

8.5.1. Unit testing with Jest: Jest is the recommended
framework for unit testing LWC components.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Gupta M.,

6

• Setup: Install Jest using the Salesforce CLI: sf force
lightning lwc test setup

• Writing tests: Create test files with the.test.js extension,
placing them in the __tests__ directory.

• Running tests: Execute tests using: npm run test:unit
• Integration testing: For integration testing, consider using

t ools like WebdriverIO or Selenium, as the Lightning
Testing Service is deprecated.

8.6. Debugging and troubleshooting

Effective debugging practices include:

• Using browser developer tools: Inspect elements, monitor
console logs and debug JavaScript.

• Leveraging VS code debugger: Set breakpoints and step
through code to identify issues.

• Utilizing salesforce CLI logs: Analyze logs for errors and
performance metrics.

• E mploying jest debugging: Run tests in debug mode to
troubleshoot unit tests.

9. Final Thoughts
Salesforce’s Lightning Web Components framework is poised

to play a pivotal role in the evolution of enterprise application
development, aligning with the company’s strategic initiatives
such as Hyperforce and industry-specific cloud solutions.

9.1. Strategic role of LWC in salesforce’s future

H yper force, Salesforce’s next-generation infrastructure
architecture, leverages public cloud platforms to deliver enhanced
s calability, security and compliance across global markets.
LWC’s modular and standards-based design complements Hyper
force by enabling developers to build responsive and efficient
user interfaces that can seamlessly adapt to diverse regulatory
and performance requirements16.

I n parallel, Salesforce’s indust ry-specific cloud offerings,
s uch as Health Cloud and Financi al Services Cloud, benefit
f rom LWC’s flexibility. Develope rs can tailor components
t o meet unique industry needs, facilitating the creation of
customized solutions that adhere to sector-specific regulations
and workflows.

9 .2. Expansion beyond salesforce: Open-source ecosystem
adoption

S alesforce’s decision to open-source the LWC framework
has extended its applicability beyond the Salesforce ecosystem.
Developers can now utilize LWC to build web components that
adhere to modern web standards, promoting interoperability and
fostering innovation across various platforms17.

T his open-source approach encourages community
contributions, accelerates development cycles and broadens the
t alent pool capable of working with LWC. Organizations can
leverage this expanded ecosystem to integrate LWC into diverse
technological stacks, enhancing the versatility and longevity of
their applications.

9.3. Future-proofing UI/UX with LWC

As Salesforce integrates advanced technologies like artificial
intelligence into its platform, LWC serves as a foundational layer
for delivering intelligent and personalized user experiences. For
i nstance, integrati ng generative AI capabilities within LWC

c omponents can enab le real-time personalization, enhancing
user engagement and satisfaction.

Furthermore, LWC’s alignment with web standards ensures
t hat applications r emain compatibl e with evolving web
t echnologies, safeg uarding investm ents against obsolescence.
T his compatibility is important fo r organizations aiming to
maintain a competitive edge in today’s digital world.

9.4. Strategic recommendations

T o capitalize on th e strategic advantages offered by LWC
organizations should consider the following actions:

• I nvest in LWC expertise: Develop internal capabilities
or partner with experienced developers to harness the full
p otential of LWC in building scalable and maintainable
applications.

• L everage open-source resources: Engage with the
L WC open-source community to stay abreast of best
practices, contribute to ongoing development and integrate
community-driven enhancements.

• Integrate AI capabilities: Explore opportunities to embed
A I functionalities within LWC components to deliver
intelligent and adaptive user experiences.

By embracing LWC as a core component of their development
strategy organizations can enhance their agility, foster innovation
and ensure their applications are well-positioned to meet future
technological advancements.

10. References

1. https://salesforceten.com/2025/01/17/lightning-web-
components-lwc-aura-components-and-visualforce-pages-wth/

2. https://www.apexhours.com/lightning-web-components/

3. https://learn.anuhyadigital.com/aura-vs-lightning-web-
components/

4. https://cyntexa.com/blog/aura-components-vs-lightning-web-
components/

5. https://ejaet.com/PDF/9-1/EJAET-9-1-62-66.pdf

6. https://developer.salesforce.com/blogs/2018/12/introducing-
lightning-web-components

7. https://training.iteducationcentre.com/lightning-web-
components-vs-aura-in-salesforce

8. https://developer.salesforce.com/docs/platform/lwc/guide/base-
components-patterns.html

9. https://techpatio.com/2025/guest-posts/difference-between-
lightning-components-and-lightning-web-components

10. https://salesforce.stackexchange.com/questions/374647/
how-to-set-consistent-styling-across-many-lwcs-using-styling-
hooks

11. https://dev.to/ayaninsights/understanding-shadow-dom-in-lwc-
salesforce-1jbj

12. https://salesforceverse.com/how-to-implement-lazy-loading-in-
lightning-web-component-lwc/

13. https://jeet-singh.com/post/best-practices-for-optimizing-lwc-
performance/

14. https://sfdclesson.com/2023/11/29/create-flexible-and-
reusable-components-with-lwc-slots/

15. https://twistellar.com/blog/salesforce-accessibility-overview

https://salesforceten.com/2025/01/17/lightning-web-components-lwc-aura-components-and-visualforce-pages-wth/
https://salesforceten.com/2025/01/17/lightning-web-components-lwc-aura-components-and-visualforce-pages-wth/
https://www.apexhours.com/lightning-web-components/
https://learn.anuhyadigital.com/aura-vs-lightning-web-components/
https://learn.anuhyadigital.com/aura-vs-lightning-web-components/
https://cyntexa.com/blog/aura-components-vs-lightning-web-components/
https://cyntexa.com/blog/aura-components-vs-lightning-web-components/
https://ejaet.com/PDF/9-1/EJAET-9-1-62-66.pdf
https://developer.salesforce.com/blogs/2018/12/introducing-lightning-web-components
https://developer.salesforce.com/blogs/2018/12/introducing-lightning-web-components
https://training.iteducationcentre.com/lightning-web-components-vs-aura-in-salesforce
https://training.iteducationcentre.com/lightning-web-components-vs-aura-in-salesforce
https://developer.salesforce.com/docs/platform/lwc/guide/base-components-patterns.html
https://developer.salesforce.com/docs/platform/lwc/guide/base-components-patterns.html
https://techpatio.com/2025/guest-posts/difference-between-lightning-components-and-lightning-web-components
https://techpatio.com/2025/guest-posts/difference-between-lightning-components-and-lightning-web-components
https://salesforce.stackexchange.com/questions/374647/how-to-set-consistent-styling-across-many-lwcs-using-styling-hooks
https://salesforce.stackexchange.com/questions/374647/how-to-set-consistent-styling-across-many-lwcs-using-styling-hooks
https://salesforce.stackexchange.com/questions/374647/how-to-set-consistent-styling-across-many-lwcs-using-styling-hooks
https://dev.to/ayaninsights/understanding-shadow-dom-in-lwc-salesforce-1jbj
https://dev.to/ayaninsights/understanding-shadow-dom-in-lwc-salesforce-1jbj
https://salesforceverse.com/how-to-implement-lazy-loading-in-lightning-web-component-lwc/
https://salesforceverse.com/how-to-implement-lazy-loading-in-lightning-web-component-lwc/
https://jeet-singh.com/post/best-practices-for-optimizing-lwc-performance/
https://jeet-singh.com/post/best-practices-for-optimizing-lwc-performance/
https://sfdclesson.com/2023/11/29/create-flexible-and-reusable-components-with-lwc-slots/
https://sfdclesson.com/2023/11/29/create-flexible-and-reusable-components-with-lwc-slots/
https://twistellar.com/blog/salesforce-accessibility-overview

7

Gupta M., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

16. https://salesforcetrail.com/the-future-of-salesforce-top-trends-
for-2025

17. https://www.crsinfosolutions.com/chapter-1-lwc-tutorial-lwc-oss

https://salesforcetrail.com/the-future-of-salesforce-top-trends-for-2025
https://salesforcetrail.com/the-future-of-salesforce-top-trends-for-2025
https://www.crsinfosolutions.com/chapter-1-lwc-tutorial-lwc-oss

