
Terraform-Driven Kubernetes Cluster Management in AWS

Abhiram Reddy Peddireddy*

Citation: Peddireddy AR. Terraform-Driven Kubernetes Cluster Management in AWS. J Artif Intell Mach Learn & Data Sci 2024,
2(1), 742-746. DOI: doi.org/10.51219/JAIMLD/abhiram-reddy-peddireddy/185

Received: 03 January, 2024; Accepted: 28 January, 2024; Published: 30 January, 2024

*Corresponding author: Abhiram Reddy Peddireddy, Flexera, USA, E-mail: abhiramreddy2848@gmail.com

Copyright: © 2024 Peddireddy AR., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/abhiram-reddy-peddireddy/185

 A B S T R A C T

The paper thoroughly explores how Terraform, an Infrastructure, as Code (IaC) tool can be effectively used to automate, scale
and oversee Kubernetes clusters within the AWS environment. It carefully analyzes the benefits of utilizing Terraform emphasizing
its effects, on improving efficiency, automation, scalability and security in overseeing Kubernetes clusters. The study compares
Terraform with approaches and other common IaC tools to showcase Terraforms capabilities in managing infrastructure.
Additionally it delves into how Terraform integrates with AWS services to simplify processes and reduce complexities. The paper
also discusses trends and potential advancements in integrating Kubernetes and Terraform to enhance the management of cloud
native applications.

Keywords: Infrastructure as Code (IaC), Kubernetes, AWS, Terraform, Automation, Scalability, Security, Cloud Infrastruc- ture,
DevOps, Cloud-native Applications

1. Introduction
Kubernetes, also known as K8s is an open source platform

used for automating the deployment, scaling and operation of
application containers. It plays a role, in application deployment
by effectively managing containerized applications across
multiple machines within a cluster. This results in enhanced
scalability, reliability and efficiency. Kubernetes orchestrates the
running of containerized applications on a cluster by handling
tasks like load balancing, resource allocation and ensuring
operation of application instances1.

Amazon Elastic Kubernetes Service (EKS) is a managed
service provided by Amazon that simplifies the process of
running Kubernetes on AWS. With EKS users do not have to
worry about setting up and maintaining their Kubernetes control
plane as it is automatically managed. EKS takes care of tasks
like upgrades and patching to ensure availability and security.
By allowing AWS to manage the Kubernetes control plane
developers can concentrate on developing their applications and
making use of integrations with AWS services11.

Terraform is an open source tool for Infrastructure as
Code (IaC) created by HashiCorp. It enables users to de-
fine and provision data center infrastructure using HashiCorp
Configuration Language (HCL) or JSON- two high level
configuration languages. Terraform facilitates automation
in infrastructure management, by promoting reproducibility
and minimizing errors through its configuration approach.
Using terraform to manage kubernetes clusters on AWS offers
advantage. It allows organizations to define their infrastructure
and application deployment processes, in code promoting
collaboration, consistency and automation in line with DevOps
principles. Terraform simplifies the setup and maintenance of
EKS clusters by providing modules and plugins that seamlessly
integrate with AWS services like IAM, VPC and auto scaling
groups10.

The synergy, between Kubernetes orchestration capabilities
and Terraforms infrastructure automation boosts the efficiency,
scalability and maintainability of applications.

https://doi.org/10.51219/JAIMLD/abhiram-reddy-peddireddy/185
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/abhiram-reddy-peddireddy/185

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Peddireddy AR.,

2

1.1. Objective

The main goal of the paper is to demonstrate how Terraform,
an Infrastructure, as Code (IaC) tool can effectively automate,
scale and oversee Kubernetes clusters within the AWS envi-
ronment. The paper carefully examines the benefits of using
Terraform highlighting its impact on improving efficiency,
automation, scalability and security in managing Kubernetes
clusters.

Through a comparison with methods and other common IaC
tools the paper aims to provide a thorough analysis showcasing
Terraforms superior capabilities in managing infrastructure. By
focusing on the nature of Terraform and its integration with
AWS services the paper intends to illustrate the processes
and reduced operational complexities achieved through this
approach.

Furthermore the paper delves into trends and potential
advancements in integrating Kubernetes and Terraform. It
explores developments that could enhance the smoothness and
effectiveness of managing native applications contributing to
the continuous evolution of infrastructure as code and cloud
management practices.

In summary the paper seeks to offer an in depth assessment
of how Terraform’s reshaping Kubernetes cluster management
on AWS offering insights, for professionals and researchers
involved in cloud infrastructure management7.

2. Literature Review
2.1. Terraform and Infrastructure as Code

Terraform, created by HashiCorp has become a tool, in the
field of Infrastructure as Code (IaC). It allows for defining,
provisioning and managing cloud infrastructure using a language
that’s easy to understand. The key role of Terraform in managing
infrastructure lies in its capability to establish an repeatable
process for setting up and handling infrastructure across cloud
platforms and service providers. By translating infrastructure
into code Terraform enables the automation of environment
setup reducing the chances of errors enhancing efficiency and
enabling version control over infrastructure configurations11.

An essential aspect of Terraform is its state management
system, which monitors the status of the infrastructure8. This
feature helps Terraform identify changes to achieve the
desired configuration outlined in the files. This method simplifies
handling environments and supports adopting practices in
DevOps, like continuous integration and continuous deployment
(CI/CD).

2.1.1. Comparison with Other IaC Tools: When we look at
Infrastructure, as Code (IaC) tools like AWS Cloud Formation
and Ansible Terraform stands out with its advantages. Unlike
Cloud Formation, which is limited to AWS Terraform supports
a variety of cloud providers such as AWS, Google Cloud
Platform and microsoft azure making it a versatile option for
cloud strategies4. Moreover Terraforms modularity enables
the creation of configurations simplifying the management
of infrastructure setups5. While Ansible focuses more
on configuration management. Can handle tasks beyond
provisioning infrastructure Terraform excels, in defining and
managing immutable infrastructure. This makes it especially
well-suited for creating and overseeing cloud resources from the

ground up8.

2.2. Kubernetes cluster management

2.2.1. Review of traditional methods for managing
kubernetes clusters: In the sense handling Kubernetes clusters
typically involves utilizing command line tools like kubectl, for
orchestrating clusters alongside scripts and configuration files
to oversee deployments, services and networking. While these
methods offer a level of control and adaptability they can be
intricate and prone to errors in expansive environments. Manual
cluster management often demands expertise. Can result in
inconsistencies and challenges in maintaining infrastructure as
it expands13.

Additionally conventional approaches may lack integration
with CI/CD pipelines making it more challenging to automate
deployments and efficiently manage application lifecycles.
Although tools such as Helm have emerged to simplify pack-
age management in Kubernetes they do not fully tackle the
complexities of overseeing the underlying infrastructure.

2.3. Advantages of using terraform for kubernetes cluster
management on AWS

Harnessing Terraform for managing Kubernetes clusters13
on AWS presents advantages. To begin with Terraforms
declarative methodology enables users to define the infrastructure.
Including EKS clusters in code. This facilitates version control,
auditing and collaboration processes while ensuring that
changes, to infrastructure are monitored and reproducible.
Additionally Terraforms wide range of modules, like the
AWS EKS module makes setting up Kubernetes clusters easier
by offering to use templates that follow industry practices.
Another key benefit is how seamlessly Terraform can be
integrated with AWS services. For example it can handle
IAM roles, VPC configurations and auto scaling groups
to ensure that the Kubernetes cluster is not just deployed
correctly but smoothly connected to the AWS environment for
improved security and scalability. This comprehensive method
of managing infrastructure reduces complexities. Enhances the
dependability and performance of Kubernetes clusters2,3. To
sum up Terraform offers a automated solution for overseeing
Kubernetes clusters, on AWS overcoming the constraints of
traditional approaches and providing a more efficient way to
manage infrastructure through code6.

3. Methodology
3.1. Setting up terraform for AWS

1.	 Installation and configuration of terraform: The
initial step in leveraging Terraform for Kubernetes cluster
management on AWS involves installing Terraform. This
process starts with downloading the Terraform binary from
the official HashiCorp website, verifying its integrity, and
adding it to the system’s PATH. Once installed, a working
directory for Terraform scripts is created and initialized using
the terraform init command, which prepares the directory by
downloading necessary provider plugins and setting up the
backend for storing state files.

2.	 Setting up AWS credentials and configuring the AWS
provider in terraform: To enable Terraform to interact
with AWS, it is necessary to configure AWS credentials.
This involves creating an IAM user with the required
permissions and configuring the AWS CLI with these

3

Peddireddy AR., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

credentials. The credentials are stored in a configuration
file that Terraform uses for authentication. In the Terraform
configuration file, the AWS provider is specified with the
appropriate region and credentials profile, ensuring secure
and efficient management of AWS resources.

3.2. Provisioning Kubernetes Clusters

1.	 Using the AWS EKS Module to Define the Desired State
of the Cluster: The AWS EKS module simplifies the
process of provisioning Kubernetes clusters. This module
encapsulates best practices and provides a reusable template
for creating EKS clusters. The desired state of the cluster,
including the Kubernetes version, VPC CIDR block, and
availability zones, is defined in the Terraform configuration
file. This setup ensures that the cluster is created according
to specified requirements.

2.	 Defining Subnets, Node Groups, and IAM Roles:
Defining subnets, node groups, and IAM roles is crucial
for setting up the Kubernetes cluster. Subnets provide the
necessary networking infrastructure, node groups define the
instances that will run Kubernetes workloads, and IAM roles
ensure secure access to AWS resources. The configuration
includes specifying the number and type of instances for
node groups, as well as mapping IAM roles for user access
and permissions.

3.	 Execution of Terraform Commands to Provision
Resources: Once the configuration is defined, the
provisioning process is initiated with Terraform commands.
The terraform init command initializes the configuration
directory, downloading the necessary provider plugins.
The terraform apply command is then used to apply the
configuration and create the resources. This command
displays a plan of the changes to be made and prompts
for confirmation before proceeding. Upon confirmation,
Terraform provisions the EKS cluster and associated
resources, providing real-time updates and the final state
upon completion.

3.3. Managing Kubernetes resources with terraform

1.	 Configuring the Kubernetes provider in terraform:
After the EKS cluster is operational, Terraform can be
used to manage Kubernetes resources. This involves
configuring the Kubernetes provider in Terraform
to interact with the Kubernetes API. The provider
configuration includes details such as the cluster endpoint,
CA certificate, and authentication token, enabling Terraform
to manage resources within the cluster.

2.	 Managing Kubernetes resources like pods, services,
and deployments: Terraform scripts are used to define and
manage Kubernetes resources such as pods, services, and
deployments. For instance, a deployment for an application
can be defined with specific metadata, replica count,
selectors, and container specifications. Terraform manages
the lifecycle of these resources, ensuring they are deployed
and maintained according to the specified configuration.

In conclusion, using Terraform for managing Kubernetes
clusters on AWS involves detailed steps for setting up Terraform,
configuring AWS, provisioning an EKS cluster, and managing
Kubernetes resources with Terraform scripts. This methodology
enhances automation, consistency, and scalability in managing
cloud-native applications.

Figure 1: An example terraform workflow for provisioning and
managing Kubernetes clusters on AWS.

4. Results and Discussion
4.1. Provisioning Efficiency

1.	 Evaluation of the efficiency and speed of provisioning
Kubernetes clusters using terraform: The evaluation
of provisioning efficiency involves measuring the time
and resources required to set up Kubernetes clusters using
Terraform. Terraform’s declarative approach allows for
defining the desired state of infrastructure, which Terraform
then reconciles with the actual state. This process is highly
efficient, as Terraform automates the creation, modification,
and deletion of infrastructure components based on the
configuration files. The speed of provisioning is significantly
enhanced due to Terraform’s ability to parallelize resource
creation where dependencies allow, reducing the overall
time required for deployment.

2.	 Comparison with Traditional Methods of Cluster
Management: Traditional methods of managing
Kubernetes clusters often involve manual configuration and
scripting. This approach can be time-consuming and prone
to human error. In contrast, Terraform provides a more
streamlined and automated process. By using Infrastructure

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Peddireddy AR.,

4

as Code (IaC), Terraform ensures that infrastructure setups
are consistent and repeatable. The traditional methods
lack the scalability and repeatability offered by Terraform,
making Terraform a superior choice for efficient and rapid
provisioning of Kubernetes clusters7.

4.2. Automation and Scalability

1.	 Benefits of automation in cluster management using
terraform: Automation in cluster management using
Terraform offers numerous benefits, including reduced
manual intervention, minimized errors, and consistent
environments. Terraform scripts can be reused and version-
controlled, enabling teams to manage infrastructure changes
collaboratively and efficiently. The automation capabilities
of Terraform extend to scaling operations, allowing for
the dynamic adjustment of resources based on demand.
This automated scaling ensures that the cluster7 can handle
varying workloads without manual reconfiguration.

2.	 Analysis of scalability and performance improvements
in managing Kubernetes clusters: Scalability is a critical
aspect of managing Kubernetes clusters, and Terraform
excels in this area. Terraform’s modularity and use of IaC
principles facilitate the scalable management of large,
complex environments. Performance improvements are
realized through the efficient allocation and management of
resources, as Terraform optimizes the infrastructure based
on the defined configurations12. The ability to automate
scaling operations ensures that resources are used optimally,
enhancing both performance and cost efficiency.

4.3. Security and Compliance

1.	 Assessment of Security Best Practices Implemented via
Terraform: Terraform allows for the implementation of
security best practices through its configuration files. These
practices include defining secure access controls, encrypting
data in transit and at rest, and ensuring compliance with
organizational policies. By codifying security configurations,
Terraform ensures that all infrastructure components adhere
to the specified security standards, reducing the risk of
miscon figurations and vulnerabilities.

2.	 Evaluation of Compliance Management for Kubernetes
Clusters on AWS: Compliance management is critical for
organizations operating in regulated industries. Terraform
aids in compliance by providing a clear and auditable trail
of infrastructure changes. The configuration files serve as
documentation of the infrastructure setup, which can be
reviewed and audited to ensure compliance with industry
standards and regulations. Additionally, Terraform’s
integration with AWS services enables the use of AWS
compliance tools and features, further enhancing the ability
to manage compliance effectively.

In summary, the use of Terraform for provisioning and man-
aging Kubernetes clusters on AWS demonstrates significant
improvements in efficiency, automation, scalability, security,
and compliance. These enhancements make Terraform an in-
valuable tool for modern infrastructure management, offering
a robust solution for deploying and maintaining Kubernetes
clusters in a consistent, repeatable, and secure manner.

5. Conclusion and Future Scope
5.1. Summary of findings

1.	 Advantages of using terraform for Kubernetes cluster

management in AWS: Managing Kubernetes clusters
on AWS using Terraform comes with a range of benefits.
Terraforms method of Infrastructure, as Code (IaC) makes
it easier to handle infrastructures by letting users specify the
desired state of resources, which Terraform then aligns with
the state. This method ensures uniformity, consistency and
promotes team- work collaboration. Moreover Terraform
smoothly integrates with AWS services utilizing the cloud
platforms features to improve infrastructure management.

2.	 Summary of improvements in efficiency, automation,
scalability, and security:

1.	 Efficiency: Terraform streamlines the setup of infrastructure
saving a lot of time and effort compared to doing it.
This automation makes sure that resources are created,
changed and removed efficiently based on the specified
configurations.

2.	 Automation: Terraforms automation features go beyond
setting up infrastructure to include tasks, like adjusting scale
and updating resources over time. This decreases the need
for work reduces errors and ensures that the infrastructure
stays as intended.

3.	 Scalability: With its design and Infrastructure as Code (IaC)
principles Terraform makes it easy to manage infrastructure
at scale. Organizations can quickly adapt resources to
meet varying needs guaranteeing perfor- mance and cost
effectiveness.

4.	 Security: By allowing security best practices to be written
into code Terraform ensures that all parts of the infrastructure
comply, with rules and industry standards. This lowers the
chances of misconfigurations and boosts security measures.

5.2. Future trends

1.	 Potential developments in Kubernetes and terraform
integration: As both Kubernetes and Terraform continue
to evolve, their integration is expected to become even
more seamless and powerful. Future developments may
include enhanced support for multi-cloud environments,
allowing organizations to manage Kubernetes clusters
across different cloud providers with a unified approach.
Additionally, advancements in Terraform’s ecosystem, such
as new modules and providers, will likely provide even
more robust solutions for Kubernetes management.

2.	 Future research directions and scope for improvement
in IaC tools and Kubernetes management:

1.	 Enhanced automation and AI integration: Future research
may explore the integration of artificial intelligence and
machine learning with IaC tools like Terraform. This could
lead to smarter automation, predictive scaling, and more
efficient resource management.

2.	 Security and compliance automation: As security and
compliance requirements become more stringent, there is
a growing need for tools that can automatically enforce
policies and ensure compliance. Research in this area could
lead to the development of advanced features that simplify
compliance management.

3.	 User experience and collaboration: Improving the
user experience of IaC tools and enhancing collaboration
capabilities will be crucial. Future enhancements could
include more intuitive interfaces, better collaboration

5

Peddireddy AR., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

features, and improved version control systems.
4.	 Performance optimization: Ongoing research into the

performance optimization of Kubernetes clusters and the
underlying infrastructure will be important. This could
involve developing new techniques for resource allocation,
load balancing, and minimizing latency9.

6. Conclusion
In conclusion, Terraform has proven to be a valuable tool

for managing Kubernetes clusters on AWS, offering significant
improvements in efficiency, automation, scalability, and security.
As technology continues to advance, the integration between
Terraform and Kubernetes will likely become even more robust,
driving further innovation in infrastructure management. Future
research and development in this field hold the potential to
revolutionize how organizations deploy and manage their cloud-
native applications, ensuring they can meet the demands of an
ever-changing technological landscape.

7. References

1.	 Gupta M, Sanjana K, Akhilesh K, Chowdary M. Deployment
of multi-tier application on cloud and continuous monitoring
using Kubernetes. 2021 5th International Conference on
Electrical, Electronics, Communication, Computer Technologies
and Optimization Techniques (ICEECCOT) 2021; 602-607.

2.	 Reddy Y, Reddy P, Ganesan N, Thangaraju B, Performance
study of kubernetes cluster deployed on openstack, VMs and
baremetal. 2022 IEEE International Conference on Electronics,
Computing and Communication Technologies (CONECCT)
2022; 1-5.

3.	 Orzechowski M, Balis B, Pawlik K, Pawlik M, Malawski M.
Transparent deployment of scientific workflows across clouds-
Kubernetes approach. 2018 IEEE/ACM International conference
on utility and cloud computing Companion (UCC Companion)
2018; 9-10.

4.	 Bahaweres RB, Najib FM. Provisioning of disaster recovery
with terraform and Kubernetes: A case study on software defect
prediction. 2023 10th International Conference on Electrical
Engineering, Computer Science and Informatics (EECSI) 2023;
183-189.

5.	 Ekanayaka E, Thathsarani J, Karunanayaka D, Kuruwitaarachchi
N, Skandakumar N. Enhancing devops infrastructure for
efficient management of microservice applications. 2023 IEEE
International Conference on e-Business Engineering (ICEBE)
2023; 63-68.

6.	 Sheikh S, Suganya G, Premalatha M. Automated resource
management on AWS cloud platform. Proceedings of 6th
International Conference on Big Data and Cloud Computing
Challenges 2019.

7.	 Sindhu G, N. Mtech, and R. Pavithra D. Deploying a Kubernetes
Cluster with Kubernetes Operation (kops) on AWS Cloud:
Experiments and Lessons Learned. Int J Engineering Advanced
Technology 2020.

8.	 Campbell B. Terraform In-Depth. The definitive guide of AWS
infrastructure automation 2019; 123-203.

9.	 Sahana B, Kumaraswamy T, Nachiketh RG, Navadeep S,
Noronha J. Weight based load balancing in Kubernetes
using AWS. 2023 International Conference on Intelligent Data
Communication Technologies and Internet of Things (IDCIoT)
2023; 629-634.

10.	 Bailuguttu S, Chavan A, Pal O, Sannakavalappa K, Chakrabarti
D. Comparing performance of bastion host on cloud using
Amazon web services vs terraform. Indonesian J Electrical
Engineering Computer Science 2023.

11.	 Ganeshan M, Malathi S. Building and deploying a static
application using Jenkins and Docker in AWS, Int J Trend in
Scientific Research and Development 2020.

12.	 Haragi LD, Mahith S, Sahana B. Infrastructure Optimization in
Kubernetes Cluster. J University of Shanghai for Science and
Technology 2021.

13.	 Hui A, Lee B. Epsilon: A microservices based distributed
scheduler for Kubernetes cluster. 2021 18th Int Joint Conference
on Computer Science and Software Engineering (JCSSE) 2021;
1-6.

https://ieeexplore.ieee.org/document/9707957
https://ieeexplore.ieee.org/document/9707957
https://ieeexplore.ieee.org/document/9707957
https://ieeexplore.ieee.org/document/9707957
https://ieeexplore.ieee.org/document/9707957
https://ieeexplore.ieee.org/document/9865718
https://ieeexplore.ieee.org/document/9865718
https://ieeexplore.ieee.org/document/9865718
https://ieeexplore.ieee.org/document/9865718
https://ieeexplore.ieee.org/document/9865718
https://ieeexplore.ieee.org/document/8605743
https://ieeexplore.ieee.org/document/8605743
https://ieeexplore.ieee.org/document/8605743
https://ieeexplore.ieee.org/document/8605743
https://ieeexplore.ieee.org/document/8605743
https://ieeexplore.ieee.org/document/10295601
https://ieeexplore.ieee.org/document/10295601
https://ieeexplore.ieee.org/document/10295601
https://ieeexplore.ieee.org/document/10295601
https://ieeexplore.ieee.org/document/10295601
https://www.computer.org/csdl/proceedings-article/icebe/2023/255500a063/1SYIQq8XBkI
https://www.computer.org/csdl/proceedings-article/icebe/2023/255500a063/1SYIQq8XBkI
https://www.computer.org/csdl/proceedings-article/icebe/2023/255500a063/1SYIQq8XBkI
https://www.computer.org/csdl/proceedings-article/icebe/2023/255500a063/1SYIQq8XBkI
https://www.computer.org/csdl/proceedings-article/icebe/2023/255500a063/1SYIQq8XBkI
https://link.springer.com/chapter/10.1007/978-981-32-9889-7_11
https://link.springer.com/chapter/10.1007/978-981-32-9889-7_11
https://link.springer.com/chapter/10.1007/978-981-32-9889-7_11
https://link.springer.com/chapter/10.1007/978-981-32-9889-7_11
https://www.ijeat.org/wp-content/uploads/papers/v9i5/E1023069520.pdf
https://www.ijeat.org/wp-content/uploads/papers/v9i5/E1023069520.pdf
https://www.ijeat.org/wp-content/uploads/papers/v9i5/E1023069520.pdf
https://www.ijeat.org/wp-content/uploads/papers/v9i5/E1023069520.pdf
https://link.springer.com/chapter/10.1007/978-1-4842-5398-4_4
https://link.springer.com/chapter/10.1007/978-1-4842-5398-4_4
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://ieeexplore.ieee.org/document/10053466
https://www.ijtsrd.com/papers/ijtsrd30835.pdf
https://www.ijtsrd.com/papers/ijtsrd30835.pdf
https://www.ijtsrd.com/papers/ijtsrd30835.pdf
https://jusst.org/wp-content/uploads/2021/06/INFRASTRUCTURE-OPTIMIZATION-IN-KUBERNETES-CLUSTER.pdf
https://jusst.org/wp-content/uploads/2021/06/INFRASTRUCTURE-OPTIMIZATION-IN-KUBERNETES-CLUSTER.pdf
https://jusst.org/wp-content/uploads/2021/06/INFRASTRUCTURE-OPTIMIZATION-IN-KUBERNETES-CLUSTER.pdf
https://ieeexplore.ieee.org/document/9493827
https://ieeexplore.ieee.org/document/9493827
https://ieeexplore.ieee.org/document/9493827
https://ieeexplore.ieee.org/document/9493827

	_GoBack

