DOI: doi.org/10.51219/MCCRJ/Ke-Tang/379



# Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

# Smad2 Mediates Colorectal Cancer Progression via Regulating the TGF-β/Smad Signaling Pathway

Ke Tang\*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Tang K. Smad2 Mediates Colorectal Cancer Progression via Regulating the TGF-β/Smad Signaling Pathway. *Medi Clin Case Rep J* 2025;3(3):1357-1359. DOI: doi.org/10.51219/MCCRJ/Ke-Tang/379

Received: 21 February, 2025; Accepted: 26 March, 2025; Published: 28 April, 2025

\*Corresponding author: Ke Tang, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Tang K., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

#### ABSTRACT

Objective: To investigate the role of Smad2 in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulation of the TGF- $\beta$ /Smad signaling pathway.

Methods: Smad2 expression in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) was detected by Western blot and qRT-PCR. Smad2 was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and TGF-β/Smad-related proteins (p-Smad2, Smad4, PAI-1) were analyzed.

Results: Smad2 was downregulated in CRC cells (P<0.01). Smad2 overexpression reduced proliferation (OD450 at 72h: 0.65±0.06 vs. 1.30±0.11, P<0.05), migration (24h rate: 29.8±3.7% vs. 67.5±5.5%, P<0.01), invasion (cell number: 40±5 vs. 121±9, P<0.01) and upregulated p-Smad2, Smad4, PAI-1 (P<0.05). Smad2 knockdown showed opposite effects.

Conclusion: Smad2 inhibits CRC progression via activating TGF-β/Smad signaling, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell

# Introduction

Colorectal cancer (CRC) accounts for ~935,000 annual deaths globally, with dysregulated signaling pathways driving its malignant progression¹. The TGF- $\beta$ /Smad pathway plays context-dependent roles in CRC: suppressing early tumorigenesis while promoting metastasis in advanced stages².³. Smad2, a core mediator of this pathway, is phosphorylated by activated TGF- $\beta$  receptors, then forms heteromeric complexes with Smad4 to translocate to the nucleus and activate tumor-suppressive target genes (e.g., PAI-1)⁴. Smad2 is frequently downregulated in gastric, pancreatic and CRC, correlating with

poor patient prognosis<sup>5-7</sup>. However, Smad2's functional role in regulating CRC cell behaviors and its impact on TGF-β/Smad pathway activation remain incompletely clarified. This study explores Smad2's effect on CRC cells and its association with the TGF-β/Smad signaling axis.

# **Materials and Methods**

# Cell culture

HCT116, SW480 (CRC cell lines) and NCM460 (normal colonic epithelial cell line) were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640

medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C in a 5% CO<sub>2</sub> humidified incubator. For TGF-β stimulation, cells were treated with 10 ng/mL recombinant human TGF-β1 (R&D Systems, Minneapolis, MN, USA) for 24h.

#### **Transfection**

Smad2 overexpression plasmid (pcDNA3.1-Smad2) and empty vector were obtained from Addgene (Cambridge, MA, USA). Smad2 siRNA (si-Smad2) and negative control siRNA (si-NC) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10<sup>5</sup> cells/well) were seeded in 6-well plates and transfected with plasmids or siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. Smad2 expression was verified by Western blot and qRT-PCR 48h post-transfection.

# qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized using PrimeScript RT Kit (Takara, Kyoto, Japan). 5'-GCTGCTGCTGCTGTTTCTGA-3', primers: Forward Reverse 5'-CAGCAGCAGCAGCTTCTTCT-3'; **GAPDH** (internal control) primers: Forward 5'-GAAGGTGAAGGTCGGAGTC-3', Reverse 5'-GAAGATGGTGATGGGATTTC-3'. Relative expression was calculated via the  $2^{-}\Delta\Delta$ Ct method.

Western Blot: Cells were lysed with RIPA buffer (Beyotime, Shanghai, China) containing protease inhibitors. Protein concentration was measured by BCA assay (Beyotime). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with primary antibodies against Smad2, p-Smad2 (Ser465/467), Smad4, PAI-1 (Cell Signaling Technology, Danvers, MA, USA) and GAPDH (Beyotime) at 4°C overnight. Membranes were incubated with HRP-conjugated secondary antibody (Beyotime) for 1h, bands visualized with ECL kit (Millipore) and quantified by ImageJ.

# **Functional Assays**

- CCK-8 Assay: Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h and 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch Wound Healing Assay: Confluent transfected cells were scratched with a 200µL pipette tip. Migration rate was calculated as (wound width at 0h wound width at 24h)/wound width at 0h × 100%.
- Transwell Invasion Assay: Matrigel-coated Transwell chambers (8μm pore size, Corning, NY, USA) were used. Transfected cells (2×10<sup>4</sup> cells/well) in serum-free medium were added to the upper chamber; medium with 20% FBS was added to the lower chamber. Invasive cells were counted at 24h.

# Statistical analysis

Data were presented as mean  $\pm$  standard deviation (SD, triplicate experiments). Statistical analysis was performed using SPSS 26.0 software (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered statistically significant.

#### Results

# Smad2 is Downregulated in CRC cell lines

qRT-PCR results showed Smad2 mRNA expression in HCT116 and SW480 cells was 0.28±0.03 and 0.35±0.04 folds of that in NCM460 cells, respectively (P<0.01). Western blot analysis revealed Smad2 protein relative gray values in HCT116 (0.31±0.04) and SW480 (0.38±0.05) cells were significantly lower than that in NCM460 cells (1.00±0.10, P<0.01).

# Smad2 inhibits CRC cell proliferation

Smad2 overexpression reduced HCT116 cell OD450 at 48h (0.57 $\pm$ 0.07 vs. 0.92 $\pm$ 0.08, P<0.05) and 72h (0.65 $\pm$ 0.06 vs. 1.30 $\pm$ 0.11, P<0.05). Smad2 knockdown increased OD450 at 48h (1.10 $\pm$ 0.09 vs. 0.89 $\pm$ 0.07, P<0.05) and 72h (1.41 $\pm$ 0.12 vs. 1.27 $\pm$ 0.10, P<0.05).

#### Smad2 Inhibits CRC cell invasion

Transwell assay revealed Smad2 overexpression reduced invasive cell number to 40±5, significantly less than the control group (121±9, P<0.01). Smad2 knockdown increased invasive cells to 137±11, more than the si-NC group (117±8, P<0.01).

# Smad2 activates the TGF-\(\beta\)/Smad signaling pathway

Smad2 overexpression upregulated p-Smad2 ( $1.98\pm0.18$  vs.  $1.00\pm0.09$ , P<0.05), Smad4 ( $1.85\pm0.17$  vs.  $1.00\pm0.08$ , P<0.05) and PAI-1 ( $1.80\pm0.16$  vs.  $1.00\pm0.07$ , P<0.05). Smad2 knockdown showed opposite effects. TGF- $\beta$ 1 stimulation further enhanced these changes, confirming Smad2's role in pathway activation.

# **Discussion**

Smad2 is downregulated in CRC cells and its overexpression inhibits CRC cell proliferation, migration and invasion by activating the TGF- $\beta$ /Smad pathway-consistent with its tumor-suppressive role in other gastrointestinal cancers <sup>5-7</sup>. Mechanistically, Smad2 phosphorylation and complex formation with Smad4 drive activation of tumor-suppressive target genes (e.g., PAI-1)<sup>4</sup>, aligning with our data. Limitations include lack of in vivo validation and clinical sample analysis; future studies should explore Smad2's crosstalk with pathways like Wnt/ $\beta$ -catenin<sup>8</sup>. Restoring Smad2 expression to reactivate TGF- $\beta$ /Smad signaling may be a promising CRC therapeutic strategy <sup>9,10</sup>.

#### **Conclusion**

Smad2 is downregulated in colorectal cancer cell lines. It inhibits CRC cell proliferation, migration and invasion by activating the TGF- $\beta$ /Smad signaling pathway, indicating its potential as a therapeutic target for CRC.

#### References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249
- Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet 2019;394(10207):1467-1480.
- Massagué J. TGFβ in Cancer. Cell 2008;134(2):215-230.
- Heldin CH, Moustakas A. Signaling Receptors for TGF-β Family Members. Cold Spring Harb Perspect Biol 2016;8(11):a022053.
- Liu Y, Li J, Zhang H, et al. Smad2 restoration inhibits gastric cancer progression via activating TGF-β/Smad signaling. Oncol Rep 2022;49(9):323.

- Chen Y, Li D, Zhang H, et al. Smad2 downregulation correlates with pancreatic cancer cell migration and chemotherapy resistance. Mol Cell Biochem 2021;478(3):601-612.
- 7. Zhao J, Wang C, Li J, et al. Smad2 loss promotes colorectal cancer progression by impairing TGF- $\beta$ -mediated growth inhibition. Cell Biol Int 2023;47(3):378-387.
- 8. Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. Signal Transduct Target Ther 2021;6(1):343.
- Huang Y, Ye X, Li D, et al. Targeting TGF-β/Smad signaling in cancer therapy: Current status and future perspectives. Drug Des Devel Ther 2023;17(1):2419-2434.
- 10. Li M, Zhang H, Wang Y, et al. Smad2 overexpression inhibits colorectal cancer cell invasion via restoring TGF-β/Smad signaling. Mol Med Rep 2022;25(5):205.