
Skill Gaps and Underserved Areas in .NET Development

Bhanuprakash Madupati*

Citation: Madupati B. Skill Gaps and Underserved Areas in .NET Development. J Artif Intell Mach Learn & Data Sci 2023, 1(1),
1168-1173. DOI: doi.org/10.51219/JAIMLD/bhanuprakash-madupati/271

Received: 02 January, 2023; Accepted: 28 January, 2023; Published: 30 January, 2023

*Corresponding author: Bhanuprakash Madupati, MNIT,MN, USA

Copyright: © 2023 Madupati B., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/bhanuprakash-madupati/271

 A B S T R A C T
The worlds of .NET grows with many technologies .NET Framework, .NET Core, and .NET is considered as the whole, mighty

powerful platform to build anything from desktop software to cloud-based solutions. Yet, as these technologies grow increasingly
sophisticated, developers face tremendous skill gaps and hurdles to adapt to evolving practices. In this paper, we examine the
primary skill gaps and unserved markets.NET, including obsolete legacy codes, incorrect design patterns, incompetent cloud
integration, security information, and microservices architecture. Blazor is also mentioned within the paper. Even native mobile
apps with.NET MAUI could be used cross-platform, but they are only used that way at a fraction of their potential. We recommend
systematically identifying these gaps by implementing focus training programs, certifications, and community learning to close
and improve this loop.NET development outcomes. Filling in these gaps: When filling in such gaps, the developer productivity,
software quality and leveraging of modern.NET technologies effectively.

Keywords: NET Development, Skill Gaps, Cloud Integration, Microservices Blazor, .NET MAUI, Security, Software Engineering

1. Introduction
1.1 Background on.NET Development

The.NET ecosystem, which Microsoft began introducing in
the early 2000s, has changed a lot since then.NET has come a
long way since its walled-garden inception: A Windows-only,
proprietary framework by Microsoft.NET is growing not only
on Windows but also for cross-platform development.NET Core
and, most recently,.NET 5/6/7. These modern iterations of.NET
include building cloud-native applications and microservices
and deploying a poison of mobile apps on iOS, Android, and
Windows.

Despite its growth, the.NET world has discouraged
developers. Traditional.NET to the transition from Its modular,
cross-platform.NET Core and Xamarin succeeded the.NET
Core and unified.NET 5/6/7 and resulting numerous skill gaps
Legacy.NET Developers Several developers were well-versed
in the Legacy. Developers may have become comfortable with

using one technology. However, anybody who is a master at
the NET framework is experiencing issues when learning new
technologies from scratch like Microservices, cloud integration
and Blazor[1].

1.2 Purpose of the Study

Just like that, as technology advances, so does it evolve the
framework for developers, going as far as demanding a greater
need for contemporary development styles and pioneering
technologies. Unfortunately, skill gaps and areas of unmet
demand have cropped up around the.NET productivity is
achieved by introducing friction within the. This study aims to
unearth and explore these gaps, specifically concerning those
areas where developers find it challenging to keep up with the
latest tools and frameworks1.

This paper explores and seeks to address the most pressing
skills upscaling needs in: Legacy code: Outdated practices that
still exist and managing old systems. Cloud integration: lack of

https://doi.org/10.51219/JAIMLD/bhanuprakash-madupati/271
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/bhanuprakash-madupati/271

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Madupati B.,

2

cloud (Azure) awareness on how to build scalable, cloud-native
applications2. Security best practices: Insufficient knowledge
of implementing the security countermeasures required for
modern, distributed systems1. Cross-platform development:
Advocate and challenges around new frameworks, i.e., creating
cross-platform applications with .NET MAUI and Blazor3. By
identifying these gaps, the study intends to offer insights into
how to fill these knowledge voids through training, certifications,
and community engagement.

1.3 Research Objectives

The main goals of this paper are:

The key skills gaps that inhibit the effective development of the
.NET ecosystem.

This will uncover areas that have never received any attention
from NET developers, such as microservices and cross-platform
development.

Propose possible strategies and solutions to address these
gaps and improve developer productivity with modern.NET
tools and frameworks to get the job done more easily.

2. Background and Context
2.1 Overview of the.NET Ecosystem

In the nearly two decades since its inception, the .NET
ecosystem has changed tremendously: it has gradually developed
from a commercially tied framework to an open-source and cross-
platform development environment for all kinds of applications.
Historically, the .NET Framework worked within the Microsoft
ecosystem and only on Windows to build enterprise desktop
applications and web solutions like ASP .NET4.

With the introduction of .NET Core in 2016, Microsoft focused
on cross-platform compatibility, performance improvements,
and modularity. Developers and platform providers found this
attractive because it allowed applications to be built on Linux,
macOS, and Windows. This made .NET Core particularly
useful in cloud-native environments, with its modular design
allowing developers to include only the necessary features for
their projects, resulting in better performance. The release of
.NET 5 further consolidated the ecosystem by unifying .NET
Core, ASP.NET, .NET Framework, and Xamarin into a single
platform, streamlining development across mobile, cloud, and
IoT applications5.

Table 1: Key Features of.NET Version.
Version Release Year Key Features Platforms

Supported

.NET Framework 2002 Windows-only,
ASP.NET,
Windows Forms

Windows

.NET Core 2016 Cross-platform,
Modular, Improved
Performance

Windows,
Linux, macOS

.NET 5/6/7 2020 -
Ongoing

Unified Platform,
Cloud-native,
Cross-platform

Windows,
Linux, macOS,
Mobile

2.2 Emerging Challenges in the.NET Ecosystem

As. As.NET is growing; developers need help following
new influencing and best practices. Their legacy is based.
Transforms to the rest.NET Framework to.NET Core and.
For many organizations, NET 5/6/7 has not been completely
seamless. Now, a new generation of developers who spent years

honing their skills using the traditional. Work with modern.NET
tools and frameworks — because developers familiar with the
traditional, monolithic framework are often overwhelmed by the
“other” part in the new, modular and (partially) cross-platform.
NET development6

They also saw certain skill gaps and underserved areas beginning
to emerge:

Cloud-Native Development: While Azure was designed
with cloud-native development in mind for later versions,
many developers need the skills to fully realize its potential.
Scalable cloud-based applications have a considerably different
architecture from traditional monolithic systems.

Security Practices: Modern. To develop a secure ASP, NET
developers must have good security awareness and best practices
skills such as secure coding, encryption, and API Security.
Somehow, most developers are still following old ways, which
makes their applications more susceptible to attacks.

This code format lends itself well to .NET developers,
especially when ramping up learning around microservices-
based architecture, which many organizations are adopting for
scalability and decoupling. Knowledge of using .NET Core
with Docker has become a hot topic. However, many .NET
developers remain unsure of how to implement and administer
microservices components due to a lack of experience and
training

3. Skill Gaps in.NET Development
The.NET, initiated by the Microsoft platform development

team, created a set of powerful tools for application developers
and has been expanded after it began to be adopted by other
companies outside of Microsoft; however, with this evolution,
there are several skill gaps. These gaps are due to introducing new
frameworks, such as NET Core.NET 5/6/7, new technologies
like microservices, and best practices in cloud integration and
security. This presentation will be followed by a deep dive into
the most crucial areas where these skill gaps emerge7.

3.1 Legacy Code Management and Outdated Practices

Despite the evolution of modern frameworks, many
organizations have developed large systems.NET Framework.
These so-called legacy systems also tend to be far removed from
modern development practices: SOLID principles, modular
architecture, or some cloud-native design and API-based
interactions cannot typically be expected. Developers working
on these legacy systems face challenges like:

Re-architecting legacy codebase to be more up-to-date with
how things are done today.

Existing library dependencies and technologies held them
back when moving to cloud-native architectures.

Using modern design patterns like CQRS (Command Query
Responsibility Segregation) and event-driven architectures -
critical for scaling, maintainable systems.

While these outdated practices do not die easily, there is
a demand for training and tools that empower developers to
maintain and modernize legacy codebases effectively.

3.2 Emerging Technologies: Cloud Integration

In the age of cloud-native software development,
professional-level design experience in cloud-native principles

3

Madupati B., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

has become imperative—however, many.NET professionals
face challenges getting the most out of cloud services like Azure.
This is especially true of cloud integration skill gaps, where
developers frequently need knowledge of:

Building Applications that Can Survive the Cloud timescales.

Leveraging Azure PaaS (Platform as a Service) services-
Azure App Services, Functions and Kubernetes service.

This means optimizing cloud services for cost, performance,
and security with a special focus on multi-tenancy..

These gaps keep many organizations from fully realizing the
benefits of the cloud and end up spending more money, time, and
resources on poor implementations that could be more secure.

3.3 Integration of Machine Learning and AI

Also, many developers need help incorporating machine
learning (ML) and artificial intelligence.NET applications.
Although ML.NET, a machine learning framework for.NET, in
which developers can design and deploy models. As with others,
many.NET applications fall into a skill gap in which developers
are not familiar with the required skills8:

Poor background in Maths and Statistics, which lays the very
foundation for machine learning algorithms, thus constraining
the capacity of developers to build optimal and accurate models.

The lack of machine learning expertise is a notable skill gap
that is vital as industries incorporate artificial intelligence-driven
solutions.

3.4 Subject-Specific Knowledge -Security Best Practice

Applications get more complex, and moving to the cloud
or microservices only makes security more of a challenge. But
security is one area we are still just scratching the edge of.NET
development. Mono-repo security practices are failing modern,
distributed applications Key gaps include:

Lack of secure coding practices, such as input validation,
authentication and authorization, and encryption.

Lack of security controls for cloud environments-failure to
adequately address differences between on-premises and cloud
security models, such as securing APIs and protecting data in
transit or at rest.

Lack of knowledge of security mechanisms like OAuth,
OpenID Connect, and JWT (JSON Web Tokens).

They must address these security gaps to ensure their
protection.NET applications are secure amidst the rising security
risks in cloud and microservice environments.

3.5 Performance Optimization

How can we improve the performance of Memory
management, Profiler, and Algorithm optimization are the special
skills required for performance tuning of .NET applications.
However, a significant number of developers are not experienced
in using tools like JetBrains dotTrace or Visual Studio Profiler
to find and fix performance bottlenecks. Performance challenges
may be more specific to graph processing.

Memory and resources are used ineffectively, which results
in slow applications and many crashes.

Knowing How to Profile and Optimize Code Performance
(especially in large, distributed systems).

Database access patterns performed inefficiently over time.
This led to poor performance of the application.

If developers knew every performance optimization
technique, their applications would easily be up to the mark of
speed and reliability.

Table 2: Common Skill Gaps in .NET Development.

Skill Area Description Challenges

Legacy Code
Management

Maintaining and
upgrading legacy .NET
Framework applications

Incompatibility with
modern tools and
standards

Cloud Integration Building and deploying
cloud-native apps in
Azure

Lack of understanding
of Azure PaaS,
optimization, and scaling

Machine Learning
& AI

Integrating ML and AI
into .NET applications

Limited familiarity with
ML.NET and AI model
deployment

Security Implementing robust
security practices

Outdated practices and
lack of cloud-focused
security measures

Performance
Optimization

Profiling and
improving application
performance

Inefficient memory
management and
resource utilization

4. Underserved Areas in.NET Development
As the While the While the NET ecosystem has grown, some

technologies and practices receive little to no attention, even
though they can help us a lot in our development process. This is
a growth opportunity, but it also means that this technology isn’t
popular, and few developers know how to work with it. Here are
the major places that. This should help make this approach more
mainstream and stable in the .NET developments.

4.1 The advanced framework features Blazor developments.

NET Blazor is one of the greatest and most modern
technologies.NET world, making it possible for.NET developers
to create completely interactive web UIs using C# instead of
JavaScript. But in reality, many devs still haven’t scratched the
surface. There are two different hosting models with Blazor:

This means that instead of running Blazor Web Assembly
entirely in the browser, which is full-stack.NET Development
for Web Application.

Blazor Server - lives on the server and sends UI updates to
the browser over Signal.

Below are the key reasons for less usage of Blazor.

Less awareness than other JS frameworks like React or
Angular.

The potential challenges with Blazor the skills gaps in
integrating the latest advancements in developing tools and
practices into Blazor applications, especially around web
security, scale and performance optimisation.

Removing these holes would allow developers to use Blazor
for a more streamlined full-stack development experience in
.NET environments, meaning that developers would not need to
learn other front-end frameworks.

Figure 2: Blazor vs Angular vs React vs Vue - Comparison
of framework usage trends over time, showcasing the relative
underutilization of Blazor compared to more popular JavaScript
frameworks.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Madupati B.,

4

4.2 Microservices Oriented Architecture

Microservices have emerged as the de facto standard for
building distributed applications that can scale. Within the .NET
ecosystem, the rise of .NET Core and .NET 5/6/7 have made
microservices more easily achievable with tools like Docker
and Kubernetes, which have revolutionized developing and
deploying applications. The problem is that .NET Microservices
adoption has yet to go micro; it needs to be full microservices.
NET is much more restrictive as a platform, and many developers
are still struggling to get off the monolithic bandwagon.

Key challenges include:

• Service discovery is the mechanism by which metadata
about a service is found, and it is required for microservices
to function properly .

• Handling consistency across services (#5): In a microservices
environment, consistency across services remains the holy
grail. However, doing so in an eventually consistent or Saga
pattern can be challenging.

• Containerization & Orchestration: Limited experience
with tools such as Docker and Kubernetes impacts a
developer’s ability to deploy and manage microservices-
based applications.

You can be a master in these practices.NET Developers:
Improve the scaling and maintenance of .NET applications,
particularly when running in a cloud-native environment.

Figure: Docker containers and microservices architecture for
an e-commerce application built with.NET technologies. This
demonstrates how microservices can be implemented in a
dispersed setting.

4.3 Web Cross-Platform Development: NET MAUI

The .NET Multi-platform App UI (MAUI) framework allows
developers to create cross-platform mobile applications using a
single codebase. It is the next link from Xamarin, and its name
is MAUI (Multi-platform App User Interface). Forms provide
developers with significant performance and productivity

enhancements But it has been slow to adopt MAUI, mainly
because. There is no expertise in developing cross-platform
mobile apps that should have worked fine for Android, iOS,
macOS and Windows.

Limited tooling and resources compared to more established
mobile development frameworks like React Native or Flutter9.
Increasing developer awareness of. It could be the NET MAUI
support for integrating cross-platform more easily .NET
developers can enter the mobile world more easily.

Table 3: Challenges in Adopting Microservices Architecture in
.NET.

Challenge Description Potential Solution

Service Discovery Difficulty in locating
services in a distributed
environment

Implement service
registries like Consul or
Etcd

Load Balancing Managing traffic
across microservices

Use tools like Envoy or
HAProxy for dynamic
load balancing

Distributed
Transactions

Maintaining
consistency across
microservices

Adopt Saga and
Eventual Consistency
patterns

Containerization and
Orchestration

Managing
microservices in a
cloud environment

Leverage Docker
for containerization
and Kubernetes for
orchestration

4.4 Developer Tools and Practices: CI/CD (Continuous
Integration and Deployment)

In modern software development, CI/CD pipelines are the
norm. These tools have transformed how teams create, test
and deploy applications by enabling large parts of this work
to be done automatically. However, many. While this practice
has been around for a while, most development teams are only
starting to adopt it.

Common barriers include:

Not well-versed in CI/CD tools (e.g. Azure DevOps, Jenkins,
GitLab CI) Challenges to automate deployments of intricate.
Many NET applications could be counted as microservices or
even multi-tier architectures.

CI/CD pipelines help a lot to reduce human errors, gain
productivity, and deliver new features faster. They also increase
CI/CD practice awareness and training. Streamline your
workflows and deliver better software with NET developers.

4.5 Containerization and Orchestration

Developers also have to learn all these challenges of
Microservices - and, at the same time, containerization and
orchestration technologies (e.g., Docker and Kubernetes). While
many know the importance of these, they still seem to be an
underserved area for many of us.NET developers. Key issues
include:

Steep learning curve: Configuring and managing containers/
clusters require a completely new set of skills

Important tools & resources: Skimosaur says most developers
need more practical experience with k8s, so successfully
implementing scalable containerized solutions will still be
challenging.

Promoting the wider use of these instruments in .NET
projects maximizes developers’ ability to build, deploy, and
manage a large-scale distributed application platform.

5

Madupati B., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

A diagram showing the container lifecycle in a microservices
architecture, integrating tools like Docker and Kubernetes.

5. Solutions to Address the Skills Gaps
Since the results of site visits to assess skill gaps and need for

services in areas in, as you continue your journey in improving
development, ensure you have planned targets where the
focus is more on upskilling developers’ awareness of modern
frameworks and making developers interact with each other. The
following are the grades of recommendation for overcoming the
challenges described in earlier sections and divisions.

5.1 Specific training and education programs

Creating target training programmes and courses for the
modern world. Hiring .NET developers is important to closing
the knowledge gaps, as most of these will be new learning areas
such as cloud integration, microservices, and security practices.
Schooling approaches should emphasize industry interaction,
exploration of fresh technologies, and the move to modern
frameworks and advanced certifications.

Cloud Integration & Azure Training Provide white-focused
training on Azure PaaS services, such as Azure Functions, App
Services, and Azure Kubernetes Service (AKS). From there,
other MOOCs to consider should focus on cloud-native design
patterns and optimizing for performance and cost efficiency.

Workshops on Microservices Architecture: Conduct
workshops on Microservices architecture with the help of
the.NET ecosystem to bootstrap developers with practical
knowledge of Docker, Kubernetes, and service discovery using
tools like Consul or Etcd.

Security Best Practices: Offer next-level secure coding
practices for cloud-native applications, such as API security,
data encryption, and how to use OAuth and OpenID Connect to
secure your user.

Cross-platform Development: Motivate the developers to
participate in training programs that get top-to-bottom. Around
NET, MAUI and Blazor give them some of the power and control
to build mobile and web applications from a single codebase.

With these tailored programs, companies can begin to fill
the skill gaps that prevent developers from reaching their full
productivity levels when adopting modern tech stacks.

5.2 Certification and online courses

Certification programs are a pragmatic approach to help
standardize developer skills and validate emerging technologies.
NET technologies. Businesses such as Microsoft deliver to.

There are many certifications in NET, including cloud computing
and DevOps. Whether developers can reach a certification,
organizations can use certifications to validate how their
employees are state-of-the-art in terms of modern tech trends.

Microsoft Azure Certifications: Microsoft Certifications
help you take your Azure Developer Associate and Azure
Solutions Architect Expert exams covering the cloud skills
essential to digital transformation.NET applications.

Figure 4: Certification paths for Azure-related roles, from
Fundamentals to Expert level, helping .NET developers upskill
in cloud computing and DevOps.

6. Challenges and Limitations
With the fast growth in complexity and reach of the.NET

ecosystem across different platforms, many challenges and
limitations exist regarding productivity and adopting new
technologies and practices. This part reviews the main obstacles
individual developers, organizations, and ecosystems face to
narrow the skill gap and introduce underserved technologies.

6.1 Steep Learning Curve for Modern Technologies

Along with the emergence of newer frameworks .NET Core
and its successor .NET 5,6,7 as well as newer tools such as Blazor
or .NET MAUI,.NET developers, especially those with extensive
experience working in the classic .NET Framework, face a steep
learning curve. The migration from monolithic and Windows-
based on modular, cross-platform, and cloud-first approaches
has several hurdles: Legacy versus innovation: developers who
have worked in the .NET Framework-based codebases for many
years often have difficulties adopting modern technologies
such as cloud integration, microservices architecture, and
containerization. This paradigm shift requires re-learning best
practices, which can also be time-consuming. Additionally,
because many .NET software projects still run on older versions,
modernizing and integrating them into development processes
can take much work. Technology overload: the speed at which
new frameworks, tools and code efforts emerge has led to
developer fatigue. The effect is fragmented knowledge and
implementations of best practices.

6.2 Fragmentation and Documentation Absence

The edge cases will always exist as the .NET ecosystem
gets broader and tools, libraries, and frameworks diverge. This
fragmentation may lead to confusion among developers in what
tools are available and how they integrate them with existing
systems or well-defined practices.

Blazor vs. Traditional Web Development: If you
come from a background of working with JavaScript-based
frameworks like Angular or React, you may find it hard to work

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Madupati B.,

6

with Blazor as there are not enough resources and community
support for it. Additionally, many. Many.NET developers also
have the unknown of how to squeeze in some time a day/week
to learn Blazor while they already know JavaScript.

NET MAUI Adoption: The same challenges exist (how
much information changes).NET MAUI, where the cross-
platform mobile toolset is still evolving. The availability of
documentation and tutorials is less compared to other frameworks
that are already established, such as React Native or Flutter; it
seems developers will have a hard time getting up to speed and
adopting/ integrating MAUI4.

7. Conclusion
The main points are arranged pointwise to wrap up the section

on Skill Gaps and Underserved Areas in NET Development.

Evolution of.NET

The transition from the .NET Framework to .NET Core and
.NET 5/6/7 has brought with it new opportunities and challenges.

It would help if you supported cross-platform, modular, and
cloud-native development.

Key Skill Gaps

Challenges with Legacy Code Management: Developers are
entangled with refactoring and upgrading older.NET to modern
standards of work.

Insecure Practices: Most developers continue to use outdated
and insecure practices, leading to exposed applications looking
for clouds and distributed environments.

Change from Monolithic to Microservices: The movement
from monolithic architectures to microservices has been stalled
by the new challenges presented in managing service discovery,
transactions, and orchestration.

Underserved Areas

Blazor: Full-stack. Although it is still one of the strongest
tools for NET development, Blazor has not reached its full
potential due to inadequate information and training.

.NET MAUI: The adoption of cross-platform mobile app
development with NET MAUI is sluggish, and developers still
lack enough tooling and resources.

CI/CD Pipelines: While this should be a focus for many teams
today, many organizations are still in the early days of being able
to implement an effective CI/CD workflow.NET projects.

Challenges and Limitations

Developers need to navigate a steep learning curve for new.
NET (especially in the fields of containerization and cloud
integration).

The ecosystem’s lack of cohesion and good documentation
makes adopting modern best practices even more challenging.

Security and compliance are still major concerns in enterprise
applications today, particularly as people run more complex
applications across clouds, which require strong security models.

Recommendations

Cloud Microservices Management and Security: Implement
targeted training programs that are operational in nature,
providing cloud integration, microservices, and security
practices with live hands-on exercises.

Certifications: As an organization, we need to push for
certifications, especially for developers in Azure, DevOps, and
new.NET technolo

8. References

1. https://doi.org/10.4236/jsea.2014.79072

2. https://doi.org/10.1109/eucnc.2016.7561070

3. https://doi.org/10.1145/2846661.2846666

4. https://stackify.com/net-ecosystem-demystified

5. https://www.clariontech.com/blog/net-core-vs-.net-framework

6. https://dev.to/ingvarx/our-migration-from-net-framework-to-net-
core-pitfalls-and-tips-bbh

7. https://devblogs.microsoft.com/dotnet/update-microservices-
and-docker-containers-architecture-patterns-and-development-
guidance-updated-for-net-core-2-0/

8. https://www.codemag.com/Article/1911042/ML.NET-Machine-
Learning-for-.NET-Developers

https://doi.org/10.4236/jsea.2014.79072
https://doi.org/10.1109/eucnc.2016.7561070
https://doi.org/10.1145/2846661.2846666
https://stackify.com/net-ecosystem-demystified
https://www.clariontech.com/blog/net-core-vs-.net-framework
https://dev.to/ingvarx/our-migration-from-net-framework-to-net-core-pitfalls-and-tips-bbh
https://dev.to/ingvarx/our-migration-from-net-framework-to-net-core-pitfalls-and-tips-bbh
https://devblogs.microsoft.com/dotnet/update-microservices-and-docker-containers-architecture-patterns-and-development-guidance-updated-for-net-core-2-0/
https://devblogs.microsoft.com/dotnet/update-microservices-and-docker-containers-architecture-patterns-and-development-guidance-updated-for-net-core-2-0/
https://devblogs.microsoft.com/dotnet/update-microservices-and-docker-containers-architecture-patterns-and-development-guidance-updated-for-net-core-2-0/
https://www.codemag.com/Article/1911042/ML.NET-Machine-Learning-for-.NET-Developers
https://www.codemag.com/Article/1911042/ML.NET-Machine-Learning-for-.NET-Developers

	_GoBack
	_GoBack
	_GoBack

