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 A B S T R A C T 

Real-time task scheduling is the process which decides the order of execution in which various tasks are to be executed by the 
Operating System (OS). Every OS employs task schedulers for the purpose of scheduling. Every scheduler operates according 
to a certain scheduling algorithm. An optimal scheduling algorithm is the one which has the ability to schedule all the feasible 
task sets. A number of scheduling algorithms have been employed so far. But since the aim of this work is to schedule real-time 
systems, priority is the key factor that should be considered. So, this work is focused on simulating the priority driven algorithms 
and evaluating their performance with respect to each other. These algorithms are simulated by a tool called YARTISS which is a 
real-time multiprocessor scheduling simulator.
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1. Introduction
Real-time systems mostly operate by scheduling algorithms 

that are priority driven. Priority driven scheduling algorithms 
are categorized into static and dynamic priorities. An example 
of static priority is the Rate Monotonic Scheduling (RMS) 
algorithm. The Dynamic priority algorithms are again classified 
into job level fixed priority and job level dynamic priority. An 
example of job level fixed priority is the Earliest Deadline First 
(EDF) algorithm and an example of job level dynamic priority is 
the Least Laxity First (LLF) algorithm.

During the fundamental stage of designing a system, the 
dependency between the components is represented by a Data 
Flow Graph (DFG). The Dataflow Graph is a natural model for 
describing signal processing systems. It consists of actors called 
as nodes or vertices and arcs called as edges. Each node in the 
DFG is considered as a periodic task that has to be scheduled 
and edges specify the computational flow of the tasks. The 
algorithms proposed to schedule the system having periodic 
task dependencies are Rate Monotonic Scheduling (RMS) and 
Earliest Deadline First (EDF). But the cycles present in the DFG 
makes it impossible for the scheduling of overall system. So, the 

system has to be represented in the model of a Directed Acyclic 
Graph (DAG).  The algorithm used to schedule DAG task model 
is Least Laxity First (LLF). A tool called as YARTISS is used to 
test, compare and evaluate real-time scheduling algorithms.

Imane Hafnaoui et al1 presented a methodology for scheduling 
real-time tasks by transferring the system’s dataflow graph into 
a task graph. He also explains that the objective metrics can be 
optimized easily by scheduling a system under preemptive RMS. 
Y.Chandarli et al2 presented the YARTISS tool and explained 
the functionality and practical approach to schedule different 
algorithms. C.L.Liu et al3 explains the static and dynamic 
scheduling algorithms and proved that the processor utilization 
can be obtained by assigning the priorities dynamically. 
E.Bini et al4 explains how the different methods proposed for 
evaluating the performance of priority scheduling algorithms 
affects the results. A.Saifullah et al5 explains the scheduling of 
parallel real-time tasks. Different scheduling algorithms are then 
applied with some parameters like deadline, release times etc. 
to the real-time tasks. F.Fauberteau et al6 explained the Global 
scheduling of sporadic task sets with constrained deadlines for 
homogeneous processors. This approach assigns an offset value 
and deadline for all the subtasks. R.I.Davis et al7 outlines real 
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time scheduling results independently without considering 
any scheduling algorithms. It also provides the classification 
of scheduling methods and various evaluation metrics for 
comparison. M.G.Harbour et al8 presented analysis for hard 
real-time tasks using fixed-priority methods. A schedulability 
determination method for all the tasks is also presented. This 
method is applicable to uniprocessor systems which have 
complex priority structures. Sangchul Han et al9 concluded that 
the finish time can be predicted if the actual execution times are 
time can be predicted if the actual execution times are Known. 
S.K.Baruah10 presented the scheduling tests for sporadic task 
systems on multiprocessor platforms. Shortcomings of the 
present tests leading to performance degradation are identified 
and new tests are proposed to overcome the limitations.

2. Real-Time Scheduling Algorithms 
Some of the scheduling algorithms that are applicable in 

real-time are RMS, EDF and LLF. Each of the three algorithms 
is explained in detail in this section.

2.1 Rate Monotonic Scheduling Algorithm (RMS)

This is a static priority algorithm with pre-emption. The 
priorities are assigned as a monotonic function of periodic 
process i.e., the shortest period has the highest priority. Since 
the periods are constant, it is called as fixed priority algorithm. 
The schedulability condition for RMS algorithm is given by

The LHS of the inequality is the total CPU utilization for 
n tasks, where

Ci = Execution time (CPU burst) Pi = Period of task Ti

The tasks are schedulable for the above condition assuming 
that

1. All the tasks should start at t=0.
2. There are no data dependencies between the processes.
3. The execution time is constant for a process.
4. All the tasks have to be periodic.

2.2 Earliest Deadline First Algorithm (EDF)

This is a dynamic priority scheduling algorithm. Here, the 
priority of tasks changes during the run time. This algorithm 
assigns priority in the order of deadline. At any instant, the 
highest priority task is the one that has the closest deadline. This 
algorithm is optimal for uniprocessor systems. The necessary 
condition for schedulability is that the CPU utilization must be 
less than 1 i.e.

Where Ci = Execution time (CPU burst) Pi = Period of task 
Ti

2.3 Least Laxity First Algorithm (LLF)

This algorithm is also called as Least Slack Time first (LST) 
or Earliest Deadline As Late As Possible (EDL) algorithm. This 
is a dynamic preemptive scheduling algorithm.  The priorities 
are dynamic functions of laxities

i.e. the task with the least laxity is assigned the highest 
dynamic priority.

The laxity or slack of a real-time task Ti at time t is given by

Li(t) = Di(t) –  Ei(t) - t

Where    Di(t) = deadline of the task and Ei(t) = remaining 
execution time

3. Results and Discussion
The simulated results for the above algorithms are shown 

below. Here, the Least Laxity First algorithm is the optimal 
algorithm with respect to the other two algorithms as it has 
100% schedulability bound.

3.1 RMS Algorithm

3.1.1 Results for a Uniprocessor

The RMS algorithm is simulated using YARTISS software 
and the results are presented below for a uniprocessor and a 
multiprocessor system (Figures 1& 2):

Figure 1: RMS results for a uniprocessor.

Figure 2: RMS results for a multiprocessor.

3.2 EDF Algorithm

3.2.1 Results for a Uniprocessor

The EDF algorithm is simulated using YARTISS software 
and the results are presented below for a uniprocessor and a 
multiprocessor system (Figures 3&4).
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Figure 3: EDF results for a uniprocessor.

Figure 4: EDF results for a multiprocessor.

3.3 LLF Algorithm

The LLF algorithm is simulated using YARTISS software 
and the results are presented below (Figure 5):

Figure 5: LLF results.

4. Comparison
The comparison of the above three scheduling algorithms 

with respect to different performance metrics is shown in the 
table below (Table 1).

It is evident from the table that the LLF algorithm is the 
optimum algorithm compared to RMS and EDF algorithms. 
This is because LLF algorithm has higher busy period, less idle 
period, less number of preemptions, more CPU utilization and 
less number of overheads which are required for an optimal 
scheduling algorithm.

Table 1: algorithms with respect to different performance metrics.
ALGORITHM SCHEDULING CRITERIA CPU UTILIZATION BUSY PERIOD IDLE PERIOD OVERHEADS PREEMPTIONS
RMS Period Less 0.33333 0.81819 66668 10

EDF Deadline Full 0.33333 0.81819 91342 5

LLF Laxity Full 5 0.66667 63745 0

5. Conclusion
In this paper, three algorithms were presented to schedule 

real-time systems. Among those, RMS and EDF are applicable 
when the system is represented as a Data Flow Graph (DFG) i.e. 
during the fundamental stage of its design and LLF algorithm is 
applicable after remodeling the system’s DFG into a Directed 
Acyclic Graph (DAG).
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