
Simulation of Priority Driven Algorithms to Schedule Real-Time Systems

T.S.M. Priyankaa*, S.M.K. Chaitanya

Department of Electronics and Communication Engineering, G.V.P. College of Engineering (Autonomous), Visakhapatnam,
Andhra Pradesh, India

Citation: Priyankaa TSM, Chaitanya SMK. Simulation of Priority Driven Algorithms to Schedule Real-Time Systems. Int J Cur
Res Sci Eng Tech 2023; 6(4), 7-9. DOI: doi.org/10.51219/IJCRSET/T.S.M-Priyankaa/3

Received: 03 October, 2023; Accepted: 07 October, 2023; Published: 09 October, 2023

*Corresponding author: T.S.M. Priyankaa, Department of Electronics and Communication Engineering, G.V.P. College of
Engineering (Autonomous), Visakhapatnam, Andhra Pradesh, India, Email: priyatutika@gmail.com

Copyright: © 2023 Priyankaa TSM.,et al., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

 A B S T R A C T

Real-time task scheduling is the process which decides the order of execution in which various tasks are to be executed by the
Operating System (OS). Every OS employs task schedulers for the purpose of scheduling. Every scheduler operates according
to a certain scheduling algorithm. An optimal scheduling algorithm is the one which has the ability to schedule all the feasible
task sets. A number of scheduling algorithms have been employed so far. But since the aim of this work is to schedule real-time
systems, priority is the key factor that should be considered. So, this work is focused on simulating the priority driven algorithms
and evaluating their performance with respect to each other. These algorithms are simulated by a tool called YARTISS which is a
real-time multiprocessor scheduling simulator.

Keywords: Data flow graph (DFG); Directed acyclic graph (DAG); Real-time systems; Scheduling algorithms; Task scheduling

Research ArticleVol: 6 & Iss: 4

https://urfpublishers.com/journal/ijcrset

International Journal of Current Research in Science, Engineering & Technology

1. Introduction
Real-time systems mostly operate by scheduling algorithms

that are priority driven. Priority driven scheduling algorithms
are categorized into static and dynamic priorities. An example
of static priority is the Rate Monotonic Scheduling (RMS)
algorithm. The Dynamic priority algorithms are again classified
into job level fixed priority and job level dynamic priority. An
example of job level fixed priority is the Earliest Deadline First
(EDF) algorithm and an example of job level dynamic priority is
the Least Laxity First (LLF) algorithm.

During the fundamental stage of designing a system, the
dependency between the components is represented by a Data
Flow Graph (DFG). The Dataflow Graph is a natural model for
describing signal processing systems. It consists of actors called
as nodes or vertices and arcs called as edges. Each node in the
DFG is considered as a periodic task that has to be scheduled
and edges specify the computational flow of the tasks. The
algorithms proposed to schedule the system having periodic
task dependencies are Rate Monotonic Scheduling (RMS) and
Earliest Deadline First (EDF). But the cycles present in the DFG
makes it impossible for the scheduling of overall system. So, the

system has to be represented in the model of a Directed Acyclic
Graph (DAG). The algorithm used to schedule DAG task model
is Least Laxity First (LLF). A tool called as YARTISS is used to
test, compare and evaluate real-time scheduling algorithms.

Imane Hafnaoui et al1 presented a methodology for scheduling
real-time tasks by transferring the system’s dataflow graph into
a task graph. He also explains that the objective metrics can be
optimized easily by scheduling a system under preemptive RMS.
Y.Chandarli et al2 presented the YARTISS tool and explained
the functionality and practical approach to schedule different
algorithms. C.L.Liu et al3 explains the static and dynamic
scheduling algorithms and proved that the processor utilization
can be obtained by assigning the priorities dynamically.
E.Bini et al4 explains how the different methods proposed for
evaluating the performance of priority scheduling algorithms
affects the results. A.Saifullah et al5 explains the scheduling of
parallel real-time tasks. Different scheduling algorithms are then
applied with some parameters like deadline, release times etc.
to the real-time tasks. F.Fauberteau et al6 explained the Global
scheduling of sporadic task sets with constrained deadlines for
homogeneous processors. This approach assigns an offset value
and deadline for all the subtasks. R.I.Davis et al7 outlines real

ISSN: 2581-4311
DOI: doi.org/10.51219/IJCRSET/T.S.M-Priyankaa/3

Int J Cur Res Sci Eng Tech | Vol: 6 & Iss: 4Priyankaa TSM.,et al.,

2

time scheduling results independently without considering
any scheduling algorithms. It also provides the classification
of scheduling methods and various evaluation metrics for
comparison. M.G.Harbour et al8 presented analysis for hard
real-time tasks using fixed-priority methods. A schedulability
determination method for all the tasks is also presented. This
method is applicable to uniprocessor systems which have
complex priority structures. Sangchul Han et al9 concluded that
the finish time can be predicted if the actual execution times are
time can be predicted if the actual execution times are Known.
S.K.Baruah10 presented the scheduling tests for sporadic task
systems on multiprocessor platforms. Shortcomings of the
present tests leading to performance degradation are identified
and new tests are proposed to overcome the limitations.

2. Real-Time Scheduling Algorithms
Some of the scheduling algorithms that are applicable in

real-time are RMS, EDF and LLF. Each of the three algorithms
is explained in detail in this section.

2.1 Rate Monotonic Scheduling Algorithm (RMS)

This is a static priority algorithm with pre-emption. The
priorities are assigned as a monotonic function of periodic
process i.e., the shortest period has the highest priority. Since
the periods are constant, it is called as fixed priority algorithm.
The schedulability condition for RMS algorithm is given by

The LHS of the inequality is the total CPU utilization for
n tasks, where

Ci = Execution time (CPU burst) Pi = Period of task Ti

The tasks are schedulable for the above condition assuming
that

1. All the tasks should start at t=0.
2. There are no data dependencies between the processes.
3. The execution time is constant for a process.
4. All the tasks have to be periodic.

2.2 Earliest Deadline First Algorithm (EDF)

This is a dynamic priority scheduling algorithm. Here, the
priority of tasks changes during the run time. This algorithm
assigns priority in the order of deadline. At any instant, the
highest priority task is the one that has the closest deadline. This
algorithm is optimal for uniprocessor systems. The necessary
condition for schedulability is that the CPU utilization must be
less than 1 i.e.

Where Ci = Execution time (CPU burst) Pi = Period of task
Ti

2.3 Least Laxity First Algorithm (LLF)

This algorithm is also called as Least Slack Time first (LST)
or Earliest Deadline As Late As Possible (EDL) algorithm. This
is a dynamic preemptive scheduling algorithm. The priorities
are dynamic functions of laxities

i.e. the task with the least laxity is assigned the highest
dynamic priority.

The laxity or slack of a real-time task Ti at time t is given by

Li(t) = Di(t) – Ei(t) - t

Where Di(t) = deadline of the task and Ei(t) = remaining
execution time

3. Results and Discussion
The simulated results for the above algorithms are shown

below. Here, the Least Laxity First algorithm is the optimal
algorithm with respect to the other two algorithms as it has
100% schedulability bound.

3.1 RMS Algorithm

3.1.1 Results for a Uniprocessor

The RMS algorithm is simulated using YARTISS software
and the results are presented below for a uniprocessor and a
multiprocessor system (Figures 1& 2):

Figure 1: RMS results for a uniprocessor.

Figure 2: RMS results for a multiprocessor.

3.2 EDF Algorithm

3.2.1 Results for a Uniprocessor

The EDF algorithm is simulated using YARTISS software
and the results are presented below for a uniprocessor and a
multiprocessor system (Figures 3&4).

3

Priyankaa TSM.,et al., Int J Cur Res Sci Eng Tech | Vol: 6 & Iss: 4

Figure 3: EDF results for a uniprocessor.

Figure 4: EDF results for a multiprocessor.

3.3 LLF Algorithm

The LLF algorithm is simulated using YARTISS software
and the results are presented below (Figure 5):

Figure 5: LLF results.

4. Comparison
The comparison of the above three scheduling algorithms

with respect to different performance metrics is shown in the
table below (Table 1).

It is evident from the table that the LLF algorithm is the
optimum algorithm compared to RMS and EDF algorithms.
This is because LLF algorithm has higher busy period, less idle
period, less number of preemptions, more CPU utilization and
less number of overheads which are required for an optimal
scheduling algorithm.

Table 1: algorithms with respect to different performance metrics.
ALGORITHM SCHEDULING CRITERIA CPU UTILIZATION BUSY PERIOD IDLE PERIOD OVERHEADS PREEMPTIONS
RMS Period Less 0.33333 0.81819 66668 10

EDF Deadline Full 0.33333 0.81819 91342 5

LLF Laxity Full 5 0.66667 63745 0

5. Conclusion
In this paper, three algorithms were presented to schedule

real-time systems. Among those, RMS and EDF are applicable
when the system is represented as a Data Flow Graph (DFG) i.e.
during the fundamental stage of its design and LLF algorithm is
applicable after remodeling the system’s DFG into a Directed
Acyclic Graph (DAG).

6. References

1. Hafnaoui I, Ayari R, Nicolescu G, Beltrame G. Scheduling real-
time systems with cyclic dependence using data criticality.
Design Automation for Embedded Systems 2017;1(2):117-136.

2. Chandarli Y, Fauberteau F, Masson D, Midonnet S, Qamhieh M.
Yartiss: A tool to visualize, test, compare and evaluate real-time
scheduling algorithms. In WATERS 2012;21-26.

3. Liu CL, Layland JW. Scheduling algorithms for multiprogramming
in a hard-real-time environment. JACM 1973;20(1):46-61.

4. Bini E, Buttazzo GC. Measuring the performance of schedulability
tests. Real-Time Systems 2005;30(2):129-154.

5. Saifullah A, Ferry D, Li J, Agrawal K, Lu C, Gill CD. Parallel real-
time scheduling of DAGs. IEEE Transactions on Parallel and
Distributed Systems 2014;25(12):3242-3252.

6. Qamhieh M, Fauberteau F, George L, Midonnet S. Global
EDF scheduling of directed acyclic graphs on multiprocessor

systems. In Proceedings of the 21st International conference on
Real-Time Networks and Systems 2013;287-296.

7. Davis RI, Burns A. A Survey of Hard Real- Time Scheduling
Algorithms and Schedulability Analysis Techniques for
Multiprocessor Systems. University of York Technical Report.
YCS 2009;443.

8. Harbour MG, Klein MH, Lehoczky JP. Timing analysis for fixed-
priority scheduling of hard real- time systems. IEEE Transactions
on Software Engineering 1994;20(1):13-28.

9. Han S, Park M. Predictability of least laxity first scheduling
algorithm on multiprocessor real- time systems. In International
Conference on Embedded and Ubiquitous Computing. Springer
2006;755-764.

10. Baruah S. Techniques for multiprocessor global schedulability
analysis. In Real-Time Systems Symposium. IEEE International
2007;119-128.

https://link.springer.com/article/10.1007/s10617-017-9185-9
https://link.springer.com/article/10.1007/s10617-017-9185-9
https://link.springer.com/article/10.1007/s10617-017-9185-9
https://dl.acm.org/doi/10.1145/321738.321743
https://dl.acm.org/doi/10.1145/321738.321743
https://www.researchgate.net/publication/220413997_Measuring_the_Performance_of_Schedulability_Tests
https://www.researchgate.net/publication/220413997_Measuring_the_Performance_of_Schedulability_Tests
https://ieeexplore.ieee.org/document/6714435
https://ieeexplore.ieee.org/document/6714435
https://ieeexplore.ieee.org/document/6714435
https://dl.acm.org/doi/10.1145/2516821.2516836
https://dl.acm.org/doi/10.1145/2516821.2516836
https://dl.acm.org/doi/10.1145/2516821.2516836
https://dl.acm.org/doi/10.1145/2516821.2516836
https://dl.acm.org/doi/10.1145/1978802.1978814
https://dl.acm.org/doi/10.1145/1978802.1978814
https://dl.acm.org/doi/10.1145/1978802.1978814
https://dl.acm.org/doi/10.1145/1978802.1978814
https://ieeexplore.ieee.org/document/263752
https://ieeexplore.ieee.org/document/263752
https://ieeexplore.ieee.org/document/263752
https://link.springer.com/chapter/10.1007/11807964_76
https://link.springer.com/chapter/10.1007/11807964_76
https://link.springer.com/chapter/10.1007/11807964_76
https://link.springer.com/chapter/10.1007/11807964_76
https://personal.utdallas.edu/~cxl137330/courses/spring14/AdvRTS/protected/slides/11.pdf
https://personal.utdallas.edu/~cxl137330/courses/spring14/AdvRTS/protected/slides/11.pdf
https://personal.utdallas.edu/~cxl137330/courses/spring14/AdvRTS/protected/slides/11.pdf

	_GoBack
	_GoBack

