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 A B S T R A C T 
Background: Glioblastoma (GBM) is an aggressive brain tumor, with IDH mutation status as a key prognostic biomarker. 
Traditional IDH testing requires invasive biopsies, highlighting the need for non-invasive alternatives. MRI-based radiogenomics 
features coupled with machine learning show promise, but past studies were mostly single-center-based and rarely used semi-
supervised learning (SSL) to exploit unlabeled data.

Methods: We analyzed MRI sequences T1, T2-weighted, contrast-enhanced T1 (T1CE) and FLAIR from 1,329 patients across 
eight centers, with IDH labels available for 1,061 cases. Radiomics features (n=1,223 per case) were extracted using PyRadiomics 
with Laplacian of Gaussian and wavelet filters. Both supervised learning (SL) and SSL (via pseudo-labeling) were implemented, 
incorporating 38 feature selection/attribute extraction and 24 classifiers. Five-fold cross-validation was performed on UCSF-
PDGM and UPENN datasets, with external validation on IvyGAP, TCGA-LGG and TCGA-GBM. SHAP analysis quantified 
feature importance.
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Introduction
Glioblastoma (GBM) is the most common and aggressive 

malignant brain tumor, representing the highest-grade end of 
a heterogeneous glioma spectrum1. Accurate classification 
is central to clinical decision-making because it informs 
prognosis and therapy2. Among molecular biomarkers, isocitrate 
dehydrogenase (IDH) mutation status is a critical determinant 
of outcome: IDH-mutant gliomas generally exhibit longer 
survival, whereas IDH wild-type tumors-often GBM-follow a 
more aggressive course3. Crucially, early and reliable prediction 
of IDH mutation status affects diagnosis, treatment selection 
and patient counseling, enabling personalized care before 
histopathology is available4.

In current practice, IDH mutation status is specified by 
histopathology and genomic testing under the World Health 
Organization (WHO) classification, but these require invasive 
biopsy and timely access to molecular assays-constraints that are 
not universally met5. A non-invasive imaging-based alternative 
can accelerate risk stratification and treatment planning, 
especially when surgery is contraindicated or molecular testing 
is delayed or unavailable6. Magnetic resonance imaging (MRI) is 
a cornerstone of glioma evaluation and radiogenomics analyses 
enable quantitative analysis of tumor characteristics-shape, 
intensity, texture and heterogeneity-providing objective imaging 
biomarkers that can support or, in select contexts, substitute for 
invasive testing7,8.

Some studies9-11 have explored MRI-based prediction of IDH 
mutation status using radiogenomics feature (RFs) and machine 
learning. Zhang, et al.12 combined deep learning signatures and 
conventional RFs across T1-weighted (T1), T2-weighted (T2), 
contrast-enhanced T1 (T1CE) and Fluid-Attenuated Inversion 
Recovery (FLAIR) sequences to achieve high accuracy in 
IDH genotyping, demonstrating the value of multimodal data 
fusion. Multiparametric radiomic models, incorporating T1, 
T2, T1CE and FLAIR, have also shown excellent performance, 
supporting the power of feature integration across sequences13. 
Deep learning approaches further enhance accuracy: Yan et al. 
demonstrated that deep learning features derived from diffusion 
tensor imaging (DTI) improve glioma molecular stratification14, 
while Pasquini et al. applied CNNs on multiparametric MRI in 
GBM and achieved high accuracy15. Although deep RFs often 
outperform handcrafted ones, they are less reproducible because 
they are data-driven, architecture-dependent and sensitive 
to acquisition or preprocessing variations, which limits their 
stability across centers and hinders clinical translation16-18. 
Despite these advances, many prior studies were conducted 

in single-center cohorts with limited sample sizes, raising 
concerns about generalizability. Few systematically compared 
the relative contribution of individual MRI sequences versus 
their combinations and almost none incorporated semi-
supervised learning (SSL) to leverage unlabeled data. Moreover, 
feature importance analyses-to enhance interpretability and 
reproducibility-remain underutilized.

Despite substantial progress with machine learning (ML) 
and RFs, uncertainty persists regarding the most informative 
MRI sequence(s) for predicting IDH mutation status8. This 
inconsistency motivates multimodal strategies that integrate 
complementary information across sequences-vascular 
enhancement on T1CE, edema and tissue water on T2/FLAIR 
and structural detail on T1-to capture a more complete picture 
of tumor biology19. In parallel, deep learning automates 
hierarchical feature discovery from images, while quantitative 
analysis standardizes heterogeneous MRI inputs into comparable 
representations, creating a robust and generalizable substrate for 
multimodal fusion and cross-site comparison17.

For clinical translation, interpretability is essential. Assessing 
feature importance and contribution strengthens generalizability 
by emphasizing stable, biologically plausible predictors; 
improves reproducibility by focusing on features reliably 
extracted across scanners, protocols and preprocessing; and 
enhances clinical trust by linking influential imaging patterns 
to known pathophysiology. Feature-driven model refinement 
also reduces dimensionality and mitigates overfitting, yielding 
leaner, more stable predictors20,21.

Two practical barriers limit deployment: data scarcity and 
multicenter variability. Labeled medical imaging data are costly 
to obtain and models trained on single-center cohorts often 
degrade on external data due to scanner and protocol differences. 
SSL addresses both challenges by leveraging abundant unlabeled 
cases alongside limited labeled data, effectively expanding 
training size and improving robustness22. When combined with 
multimodal fusion and quantitative harmonization23,24, SSL can 
counteract site-specific biases and support clinically meaningful 
generalization22.

This study is important because it targets these translational 
bottlenecks-reliance on single sequences, small single-center 
datasets, limited labels and insufficient interpretability-within 
a unified framework. Our contributions are threefold: (1) a 
systematic, multicenter evaluation of individual and combined 
MRI sequences for prediction of IDH mutation status using 
radiogenomics analyses; (2) an integrated SSL and supervised 

Results: Multimodal MRI (T1+T2+T1CE+FLAIR) provided the strongest performance, outperforming single-sequence models. 
The best SSL model (involving Recursive Feature Elimination (RFE) + SVM) achieved 0.93±0.01 cross-validation and 0.75±0.02 
external accuracy, while the best SL model (RFE+Complement Naive Bayes (CNB)) reached 0.90±0.02 and 0.80±0.006, 
respectively. SSL also demonstrated greater stability with lower sensitivity to dataset size compared to SL, maintaining robust 
performance in data-limited conditions. SHAP analysis showed SSL amplified the discriminative value of first-order statistics of 
Root Mean Square (FO_RMS) (T1CE) and wavelet-based metrics, strengthening biomarker interpretability.

Conclusion: SSL improves accuracy, efficiency and interpretability in MRI-based IDH prediction, remaining less sensitive to 
data size while reinforcing multimodal fusion as the most reliable, scalable strategy.

Keywords: Glioblastoma; Isocitrate dehydrogenase; Artificial intelligence; Radiogenomics; Machine learning; Supervised 
learning; Semi-supervised learning
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learning (SL) pipeline that leverages unlabeled data to increase 
effective sample size; and (3) a feature-importance analysis to 
enhance interpretability, generalizability and reproducibility 
across sites. Together, these elements advance a scalable, 
transparent approach to imaging-based molecular prediction in 
neuro-oncology.

Materials and Methods
Patient data

We collected data from 1,329 GBM patients across 8 centers 
[ACRIN-FMISO-Brain (# of 4)25, Brain-Tumor-Progression 
CPTAC-GBM (# of 33)26, IvyGAP (# of 30)27, REMBRANDT 
(# of 63)28, TCGA-GBM (# of 167)29, TCGA-LGG (# of 263)30, 
UCSF-PDGM (# of 202)31, UPENN-GBM (# of 567)32 with 
clinical data, delineated masks and various MRI sequences 
(T1, T2, T1CE and FLAIR) from The Cancer Imaging Archive 
(TCIA). All MRI images were reviewed to ensure high-quality, 
artifact-free data. These images were then enhanced and 
normalized. Our study aimed to improve the prediction of IDH 
mutation status in GBM by developing two frameworks: SL and 
SSL strategies. A total of 1,223 RFs were extracted from the MRI 
sequences using Laplacian of Gaussian (LoG; σ = 1.0, 2.0, 3.0, 4.0 
and 5.0 mm) and wavelet (LLH, LHL, LHH, HLL, HLH, HHL, 
HHH, LLL) filters, each applied with varying parameter settings 
to capture a broad range of spatial and textural characteristics. 
The extracted features were normalized using min–max scaling. 
From these RFs, fifteen combined datasets were generated, each 
representing different combinations of MRI-derived features. 
Among the 1,329 patients included, IDH mutation status was 
available for 1,061 patients, while the remaining patients lacked 
outcome data.

Demographic and clinical characteristics varied across 
datasets. For instance, the ACRIN 6684 dataset includes 45 
patients with newly diagnosed GBM multiforme who underwent 
baseline MRI, 18F-FMISO PET and low-dose Computed 
Tomography (CT) imaging. The cohort had a mean age of 57.2 
years (range 29–77), with 64% male and 36% female; most 
were White (91.1%), with smaller proportions of Black, Asian 
and American Indian/Alaska Native patients. In addition to 
imaging, the dataset provides clinical, demographic, treatment 
and biomarker data (e.g., MGMT, HIF1-α, GLUT1, CAIX), 
enabling integrative analyses of tumor hypoxia and therapeutic 
response.

Each of these landmark glioma datasets offers distinct 
imaging characteristics that enrich radiogenomic research: 
CPTAC-GBM integrates multimodal imaging (MRI, CT, 
histopathology) with high-resolution whole-slide data to align 
imaging features with proteogenomics; IvyGAP provides 
serial MRI (pre-, post- and follow-up) with detailed histologic 
annotation, enabling spatially resolved correlations of contrast-
enhanced tumor regions with gene expression; REMBRANDT 
contributes multi-sequence MRI of gliomas with variable 
resolution, complemented by molecular and clinical data for 
prognostic modeling; TCGA-GBM and TCGA-LGG aggregate 
MRI and CT acquired across diverse scanners and institutions, 
offering heterogeneous but highly representative cohorts 
for studying resolution and contrast variability in relation to 
genomic drivers; UCSF-PDGM stands out with standardized 
3T MRI protocols including advanced diffusion (HARDI) and 
perfusion (ASL) imaging, providing higher spatial and functional 

resolution alongside expert tumor segmentations; and UPENN-
GBM delivers the largest mpMRI collection with co-registered, 
segmented volumes and curated RFs, optimized for reproducible 
AI/ML applications. Together, these datasets capture a spectrum 
of imaging resolutions, contrasts, scanner heterogeneity and 
advanced protocols, providing complementary strengths for 
radiogenomic discovery and precision neuro-oncology. Only 
MRI sequences from each dataset were used in this study.

Classification analysis

As depicted in (Figure 1), the proposed pipeline offers a 
comprehensive framework for constructing robust ML models 
using RFs derived from the brain MRI of IDH patients. The 
pipeline includes image preprocessing, dimension reduction 
via feature selection algorithms (FSAs) and attribute extraction 
algorithms (AEAs), classifier benchmarking and thorough 
validation under both SL and SSL frameworks.

i.	 Mask Validation and ii) Expert Verification. Brain MRI 
examinations, encompassing T1, T2, T1CE, and FLAIR 
sequences, were thoroughly evaluated to detect glioma-
related abnormalities. A dual review by two board-
certified neuroradiologists standardized tumor annotations, 
improved inter-observer reliability, and ensured accurate 
localization. Cases with unclear tumor boundaries—due to 
motion artifacts, hemorrhage, or significant postoperative 
changes—were excluded from the analysis.”

iii. MRI Intensity Normalization. To address variations in 
MRI acquisition parameters and patient anatomy, each 
MRI sequence was subjected to intensity normalization 
using the min–max method. This process rescales voxel 
intensity values to a standardized range, typically (0, 1), 
ensuring stable input for RFs extraction. Normalization also 
facilitates the comparability of intensity-dependent features 
across patients, sequences and imaging centers.

iv.  RF Extraction. After normalization, brain MRI sequences 
were processed using the open-source PyRadiomics package, 
compliant with the Image Biomarker Standardization 
Initiative (IBSI)33 guidelines to ensure reproducibility and 
consistency. PyRadiomics facilitated the extraction of a 
comprehensive set of 107 RFs from each sequence, capturing 
diverse properties such as morphology and microstructural 
organization, which are essential for glioma subtyping and 
IDH mutation prediction. The extracted features comprised 
19 first-order statistics (FO), 16 three-dimensional shape 
features, 10 two-dimensional shape features, 23 gray level 
co-occurrence matrix (GLCM) features, 16 gray level 
size zone matrix (GLSZM) features, 16 gray level run 
length matrix (GLRLM) features, 5 neighboring gray tone 
difference matrix (NGTDM) features and 14 gray level 
dependence matrix (GLDM) features. These standardized 
features, derived from normalized MRI volumes, are 
designed to capture both global and local imaging patterns 
critical for IDH prediction in GBM characterization.

v. 	 Data Splitting and  vi) Normalization Strategy Data Splitting 
and Normalization Strategy. After feature extraction, the 
datasets were split into a five-fold cross-validation set 
and distinct external testing sets. The UCSF-PDGM and 
UPENN-GBM datasets, which include IDH mutation data, 
were used as the primary training cohort and subjected to 
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five-fold cross-validation. To assess model generalizability, 
three independent datasets with IDH mutation—IvyGAP, 
TCGA-LGG, and TCGA-GBM—each from different 
clinical centers, were designated for external testing. 
Datasets without outcome information were excluded 
from supervised training and instead utilized in the SSL 
process. To maintain methodological rigor and prevent data 
leakage, normalization parameters (e.g., min and max) were 
calculated solely from the training folds (four divisions) and 
then applied to the validation fold, unlabeled datasets, and 
external test sets during evaluation.”

vii. SL approaches: In the SL framework, the labeled UCSF-
PDGM and UPENN-GBM datasets were divided into 
five folds. For each iteration, four folds were utilized for 
training, with the remaining fold reserved for validation, 
ensuring each fold served as the validation set once across 
five iterations to complete the cross-validation cycle. 
Additionally, the model trained on each fold was evaluated 
on three independent labeled datasets-IvyGAP, TCGA-LGG 
and TCGA-GBM-to assess its generalizability across diverse 
centers and patient cohorts. Performance metrics, including 
Accuracy, Precision, Recall, F1-score, Receiver Operating 
Characteristic - Area Under the Curve (ROC-AUC) and 
Specificity34 - were reported as average values with standard 
deviations across the five cross-validation folds and external 
test evaluations. Model selection was determined by the 
highest performance across all metrics during five-fold 
cross-validation, with external validation conducted using 
independent test sets.

viii. SSL approaches: Within the SSL framework, the labeled 
UCSF-PDGM and UPENN-GBM datasets were divided 
into five folds. In each iteration, a logistic regression (LR) 
model was trained on four labeled folds and subsequently 
used to assign pseudo-labels to the unlabeled datasets (e.g., 
ACRIN-FMISO-Brain, CPTAC-GBM and REMBRANDT). 
To avoid bias and data leakage, the remaining labeled fold 
was excluded from the pseudo-labeling process. Following 
pseudo-labeling, the model was retrained using the 
combined labeled and pseudo-labeled data from the four 
folds and evaluated on the held-out validation fold and three 
external test sets-IvyGAP, TCGA-LGG and TCGA-GBM-
to determine the contribution of unlabeled data to enhancing 
model generalization.

ix. Dimensionality Reduction via FSAs and AEAs. To mitigate 
the high dimension of RFs and minimize overfitting risks, 
our pipeline employs two parallel approaches: FSAs 
and AEAs35. We evaluated 38 dimensionality reduction 
techniques (19 FSAs and 19 AEAs) for their effectiveness 
in identifying the most informative and non-redundant 
features. The 19 FSAs are categorized into three main 
groups. Filter-based methods, including Chi-Square Test 
(CST), Correlation Coefficient (CC), Mutual Information 
(MI) and Information Gain Ratio (IG), score features 
independently of classifiers. Statistical tests such as 
ANOVA F-Test (AnovaFT), ANOVA P-value selection, 
Chi2 P-value and Variance Thresholding (VT) evaluate 
feature discriminativeness. Wrapper-based methods, such 
as Recursive Feature Elimination (RFE), Univariate Feature 
Selection (UFS), Sequential Forward Selection (SFS) and 

Sequential Backward Selection (SBS), iteratively assess 
feature subsets based on model performance. Embedded 
methods, including Lasso, Elastic Net (ENet), Embedded 
Elastic Net (EmbENet) and Stability Selection, integrate 
FSAs into the training process. Ensemble-based methods 
like Feature Importance by RandF (FIRF), Extra Trees (ETI) 
and Permutation Importance (Perm-Imp) capture complex 
nonlinear relationships. Additional statistical controls, such 
as False Discovery Rate (FDR), Family-Wise Error (FWE) 
and multicollinearity handling via Variance Inflation Factor 
(VIF), are also applied. Dictionary-based strategies leverage 
Principal Component Analysis (PCA) or sparse loadings for 
enhanced stability and interpretability. Features selected by 
FSAs are detailed in the Supplementary Files 1-10 (ten files 
for each sequence and the multiparametric set) for both SL 
and SSL frameworks.

AEAs provide a complementary approach by projecting the 
feature space into lower-dimensional subspaces. The 19 AEAs 
include linear methods like PCA, Truncated PCA, Sparse PCA 
(SPCA) and Kernel PCA (with RBF and polynomial kernels), 
which identify uncorrelated projections with maximum 
variance. Independent Component Analysis (ICA) isolates 
statistically independent latent variables, while Factor Analysis 
reveals underlying structures in observed features. Non-negative 
Matrix Factorization (NMF) produces interpretable parts-
based decompositions. SL methods like Linear Discriminant 
Analysis (LDA) optimize class separation in the transformed 
space. Advanced manifold learning techniques, including 
t-SNE, Uniform Manifold Approximation and Projection 
(UMAP), Isomap, Locally Linear Embedding (LLE), Spectral 
Embedding, Multidimensional Scaling (MDS) and Diffusion 
Maps, capture non-linear structures, aiding visualization of 
complex relationships in high-dimensional radiogenomics 
data. Deep learning approaches, such as shallow and deep 
autoencoders, facilitate data-driven feature compression via 
reconstruction optimization. Additional methods include Feature 
Agglomeration for hierarchical clustering, Truncated SVD for 
matrix decomposition and projection-based techniques like 
Gaussian Random Projection, Sparse Random Projection and 
Feature Hashing, which offer scalable compression solutions.

x. Classification Algorithms. Each reduced feature set, 
whether obtained through FSAs or AEAs, was assessed 
using a comprehensive set of 24 classifiers (CAs). These 
encompassed linear models, tree-based classifiers such 
as Decision Trees (DT), Random Forest (RandF), Extra 
Trees (ET), Gradient Boosting (GB), AdaBoost (AB) and 
HistGradient Boosting (HGB), which leverage ensemble 
learning to minimize variance and enhance generalization. 
Meta-ensemble approaches, including Stacking, Voting 
Classifiers (VC) and Bagging, further improved predictive 
robustness by combining the strengths of multiple base 
learners. Support Vector Machines (SVM) were applied 
with various kernels to address both linear and non-linear 
classification tasks, while k-Nearest Neighbors (KNN) 
offered a distance-based, instance-level method. Several 
Naive Bayes variants, including Gaussian (GNB), 
Bernoulli (BNB) and Complement Naive Bayes (CNB), 
were evaluated for their probabilistic simplicity and 
computational efficiency. The Multi-Layer Perceptron 
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(MLP), a neural network-based approach, enabled modeling 
of complex, non-linear patterns, while gradient-boosted 
frameworks like Light GBM (LGBM) and XGBoost (XGB) 
delivered high-performance learning through gradient 
optimization and feature importance analysis. Additional 
classifiers included Linear Discriminant Analysis (LDA), 
Nearest Centroid (NC), Decision Stump, Dummy Classifier 
(DC), Gaussian Process Classifier (GP) and Stochastic 
Gradient Descent Classifier (SGDC), providing a range 
of modeling strategies. All classification algorithms were 
optimized using five-fold cross-validation and grid search. 
The optimal hyperparameters for each model in both SL and 
SSL frameworks are documented in Supplementary Files 1 
and 10, Sheet 4.

xi.	 Assess Sensitivity of Top-Performing Models to Data Size 
in SL and SSL. To examine how data volume influences 
model performance under SL and SSL, we designed 
three experiments, each repeated with 100 randomized 
arrangements (bootstraps). In Scenario 1 (SL), training 
began with 10% of the labeled UCSF-PDGM and UPENN-
GBM datasets, then increased in 10% increments until 
100% was used, enabling assessment of performance gains 
with more labeled data. In Scenario 2 (SSL), both labeled 
and unlabeled data were expanded together from 10% 
to 100% in 10% steps to test the effect of simultaneous 
growth. In Scenario 3 (SSL), the full labeled dataset was 
fixed while the unlabeled pool was gradually added from 
10% to 100%, isolating the contribution of unlabeled 
data. This setup investigated the contribution of additional 
unlabeled data to model performance with a fixed labeled 
dataset. Collectively, these experiments offered a thorough 
understanding of model robustness and adaptability to 
varying data volumes in SL and SSL contexts. Across all 
scenarios, only external testing metrics were reported, as 
internal training and validation splits varied dynamically 
with data volume changes. Using fixed external test sets 
ensured consistent and equitable model comparisons across 
different data conditions.

xii.	 Feature Importance Investigation by SHAP. To examine and 
elucidate the role of individual RFs in classification results, 
we utilized SHapley Additive exPlanations (SHAP) on 25 
high-performing combinations of ML models with FSAs or 
AEAs, selected for their outstanding accuracy in predictive 
performance. For each combination, we calculated SHAP 
values to assess the marginal impact of each feature on the 
model’s predictions, distinguishing between class 0 (wild-
type IDH) and class 1 (mutant IDH) cases. These SHAP 
values were then averaged across all combinations within 
each class to provide a more robust and comprehensive 
view of feature importance trends. The averaged SHAP 
values were visualized using heatmaps, facilitating a 
comparative analysis of feature contributions across the two 
classes. This methodology improves model transparency 
and interpretability while strengthening the biological 
plausibility and diagnostic relevance of the selected features 
for IDH prediction in GBM characterization.

Figure 1: Integrated Radiomics-Based ML Pipeline for 
Brain Cancer Classification and Prognosis. The pipeline 
integrates expert-guided tumor segmentation, min-max MRI 
normalization, IBSI-compliant RFs extraction, dimensionality 
reduction and classification algorithms. SL and SSL strategies 
are implemented with five-fold cross-validation and external 
validation. Model robustness is evaluated through sensitivity 
analysis to data size and feature importance is interpreted using 
SHAP. Abbreviations: ML: Machine Learning, SL: Supervised 
Learning, SSL: Semi-supervised learning, MRI: Magnetic 
Resonance Imaging, IBSI: Image Biomarker Standardization 
Initiative, RFs: Radiogenomics Features, SHAP: SHapley 
Additive exPlanations.

Results
Classification Analysis Result

(Figure 2) illustrates the comparative performance of 
different dimensionality reduction-classifier combinations 
across individual MRI sequences (T1, T2, T1CE and FLAIR) 
as well as their combined use. While accuracy and its standard 
errors remain central, additional evaluation metrics such as F1 
score, AUC, precision, recall and specificity provide a more 
nuanced picture of each model’s behavior.

Within the SSL framework, the combination of RFE with SVM 
on all four MRI sequences (T1, T2, T1CE, FLAIR) consistently 
outperformed other pipelines. Beyond its strong cross-validation 
and test accuracies (0.93 ± 0.01 and 0.75 ± 0.02, respectively), 
this model achieved a high F1 score (0.94 validation, 0.74 test) 
and excellent discriminative ability as indicated by its AUC 
(0.97 validation, 0.84 test). Specificity also remained robust 
(0.93 validation, 0.92 test), underscoring its balance between 
sensitivity and reliability in excluding false positives. A close 
competitor was RFE with CNB on the same combined dataset, 
which, although slightly lower in overall accuracy (0.87 ± 0.02 
CV, 0.72 ± 0.03 test), maintained competitive F1 performance 
(0.89 validation, 0.70 test) and respectable AUC values (0.93 
validation, 0.78 test). By contrast, alternative SSL pipelines such 
as CC with VC or t-SNE with GNB displayed lower stability, 
reflected in F1 scores near 0.58–0.73 and notably reduced 
AUC values (as low as 0.59 in validation and 0.58 in testing), 
confirming the superiority of RFE-based methods in capturing 
informative features.

Under the SL framework, performance trends were largely 
consistent. RFE with CNB on the multi-sequence mixture not 
only delivered the highest test accuracy (0.80 ± 0.006) but also 
maintained excellent precision, recall and F1 balance (all at 
0.80). Its AUC of 0.96 (validation) and 0.86 (test) confirmed 
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strong discriminatory power. Similarly, RFE with SVM 
achieved a validation F1 score of 0.92 and a test F1 of 0.78, 
with AUC values of 0.96 and 0.85, respectively. Importantly, 
the exceptionally small test error for RFE–CNB demonstrates 
superior robustness to unseen cases. Other SL methods, such as 
CC–VC and t-SNE–GNB, again showed substantially weaker 
performance, with test F1 scores around 0.51–0.62 and lower 
AUC values (0.62–0.69).

Looking at individual modalities, T1CE emerged as the 
strongest single sequence. Under SSL with AE–LR, it achieved 
validation F1 and AUC values of 0.93 and 0.94, respectively, 
with external test F1 and AUC still competitive at 0.74 and 0.82. 
Other T1CE-based pipelines, including ETI–SVM and MI–
GNB, further demonstrated reliable generalization, with test F1 
values in the 0.77–0.81 range and AUC spanning 0.70–0.85. In 
contrast, T1 and T2 modalities exhibited moderate results. For 
instance, T1 with SSL–AnovaFT–GNB achieved validation F1 
of 0.87 but dropped to 0.69 on the test set; T2 pipelines generally 
peaked at validation F1 ~0.85 but consistently dropped below 
0.65 on external evaluation, reflecting limited robustness when 
used in isolation. FLAIR alone proved the weakest, with best-
performing SSL-EmbENet–LR reaching validation F1 of 0.83 
but only 0.59 in test F1, accompanied by reduced AUC values 
(0.88 validation, 0.65 test). This highlights the instability of 
FLAIR-derived models relative to multi-sequence integration.

Taken together, the results show that incorporating multi-
sequence input with RFE-based FSAs and robust classifiers 
(SVM, CNB) yield the most balanced trade-offs across 
accuracy, F1 and AUC, outperforming individual modalities and 
alternative selectors such as LASSO, UMAP or t-SNE. Notably, 
while SSL models provided slight gains in validation accuracy 
and F1, SL models matched or exceeded their performance in 
test generalization, particularly when stability and specificity 
were considered. Statistical analysis confirmed significant 
differences (p < 0.05, Benjamini–Hochberg corrected) between 
top-performing pipelines on T1CE and combined sequences 
compared to weaker single modalities such as FLAIR or T2. A 
comprehensive listing of all results, including feature sets and 
hyperparameters, is available in Supplemental Files 1–10 for SL 
and SSL analyses.

Figure 2: Bar plots showing the average accuracy of different 
ML techniques applied to various combinations of RFs extracted 
from different MRI sequences. The X axis indicates the best ML 
techniques: Classifiers + Dimension Reduction algorithms and 
the Y axis shows the metric values of average accuracy across 
five-fold cross-validation.

Impact of data size on the sensitivity of SL and SSL models

In the first scenario, the optimal SL configuration 
(Complement Naïve Bayes + RFE) was trained on progressively 
larger fractions of labeled data (10%–100%), while the external 
test sets (IvyGAP, TCGA-LGG and TCGA-GBM) remained 
fixed. Averaged over 100 random splits of the training data, where 
models were retrained and evaluated on the same fixed external 
test sets, performance decreased slightly from 0.92 with 10% 
labeled data to 0.90 with the full dataset, indicating diminishing 
returns from additional labeled samples. Interestingly, this 
decline was not uniform across all evaluation criteria. Precision 
remained consistently high (~0.93–0.95), showing the model’s 
robustness in minimizing false positives. Recall and F1-score, 
however, showed modest fluctuations (~0.89–0.92 and ~0.90–
0.91, respectively), reflecting slight trade-offs between sensitivity 
and overall balance of predictions. AUC values remained strong 
(~0.94–0.96), demonstrating stable discriminative ability, 
while specificity varied more widely (~0.76–0.82 on test sets), 
suggesting that SL models were more sensitive to negative class 
misclassification as dataset size increased.

In the second scenario, when both labeled and unlabeled 
samples were increased simultaneously in 10% increments, 
the SSL model (SVM + RFE) improved steadily, rising from 
0.87 with 10% data to 0.93 with the full dataset. Beyond 60%, 
accuracy gains tapered, but additional metrics highlighted SSL’s 
advantage. F1-scores increased in parallel with accuracy (from 
~0.87 to ~0.94), indicating that improvements were not biased 
toward precision or recall alone but rather enhanced the balance 
between them. AUC values remained consistently higher than 
SL (~0.95–0.97), confirming that SSL models better captured 
class separability. Moreover, specificity reached up to 0.92 on 
external test sets, markedly outperforming SL, suggesting that 
SSL approaches were more reliable at correctly identifying 
negative cases.

In the third scenario, the same SSL configuration (SVM + 
RFE) was evaluated by fixing the labeled set and incrementally 
adding unlabeled samples. Accuracy rose quickly to 0.91 with 
only 10% unlabeled data and stabilized, peaking at 0.93 with 
the full pool. Importantly, precision and recall converged to 
~0.93–0.95, resulting in F1-scores exceeding 0.92 across most 
runs, indicating a consistent balance. AUC remained high 
(~0.95–0.97), reinforcing SSL’s robustness. Specificity trends 
highlighted one of the most notable advantages of SSL: with 
even small additions of unlabeled data, specificity quickly 
increased above 0.90 and remained stable, in contrast to SL, 
where variability persisted.

Taken together, these findings indicate that while SL models 
achieved strong precision, their recall, F1 and specificity 
were more sensitive to dataset size, leading to variability in 
generalization. By contrast, SSL models consistently maintained 
high and stable F1 and AUC values alongside improved 
specificity, demonstrating their ability to balance positive and 
negative case detection while reducing overfitting to limited 
labeled data. Across all scenarios, SSL approaches (particularly 
Scenario 3) consistently outperformed SL in data-limited 
contexts, underscoring the value of leveraging unlabeled data 
to improve generalization and reduce sensitivity to dataset size 
(Figure 3).
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Figure 3: Curve plots illustrate the sensitivity of top-performing 
SL and SSL models for IDH prediction with respect to data 
size. Average 5-fold cross-validation metrics (F1-score, AUC, 
specificity, accuracy, precision and recall) are reported for three 
scenarios: Scenario 1 (SL: RFE_CNB), Scenario 2 (SSL + SL: 
RFE_SVM) and Scenario 3 (SSL: RFE_SVM). Performance 
is assessed across varying proportions of training data (10%–
100%). Abbreviations: SL, supervised learning; SSL, semi-
supervised learning; IDH: Isocitrate Dehydrogenase, AUC: Area 
Under the Curve, RFE: Recursive Feature Elimination, CNB: 
Complement Naive Bayes, SVM: Support Vector Machine

SHAP-based feature importance in SL and SSL for GBM 
IDH mutation prediction

In this section, model interpretability was investigated using 
SHAP to evaluate feature importance in SL and SSL frameworks. 
The analysis focused on the top 25 high-performing combinations 
of ML classifiers and FSAs or AEAs, identified through five-fold 
cross-validation accuracy. These combinations consisted of five 
distinct classifiers—Random Forest, Support Vector Machine, 
Gradient Boosting, LR and Multi-Layer Perceptron—paired 
with five FSAs or AEAs, applied to RFs extracted from multi-
center MRI sequences.

 In the SL setting, Fig. 4(i) presents a heatmap visualizing 
the average SHAP values for class 0 (wild-type IDH) and class 
1 (mutant IDH) across features selected by the top 25 model-
FSA/AEAs combinations in a binary classification task. Each 
row corresponds to a specific RF, such as textural (e.g., Gray 
Level Co-occurrence Matrix, GLCM), morphological or 
wavelet-transformed features, while the two columns represent 
the average absolute SHAP values for class 0 and class 1, 
respectively. The heatmap, (Figure 4), employs a color gradient 
to highlight relative feature importance: deep red indicates 
features with stronger contributions to class 0 predictions, while 
deep blue signifies greater influence on class 1 predictions. 
Class 1 (Mutant IDH): Features such as Sphericity (SF_Sp_3D 
original, FLAIR), Difference Entropy (GLCM_DiEn, LoG 
sigma:2.0, T1CE), Informational Measure of Correlation 
(GLCM_IMC2, wavelet LHL, T1CE) exhibited strong positive 
SHAP contributions, indicating their critical role in predicting 
IDH mutation status. These features are associated with higher 
intensity blue regions in the heatmap, reflecting their robust 
influence. In addition, Class 0 (Wild-type IDH): Features like 
Contrast (NGTDM_con, wavelet LHL, T2), Root Mean Square 
(FO_RMS original, T1CE), Inverse Difference Normalized 
(GLCM_IDN, wavelet LLH, T1CE) showed moderate positive 
SHAP contributions, with less intense red regions compared 

to class 1 features. This suggests a relatively weaker but still 
notable influence on wild-type IDH predictions. In conclusion, 
Class 1 features generally demonstrated stronger individual 
contributions, as evidenced by the more pronounced blue regions 
in the heatmap. This facilitates both model interpretability and 
the identification of potential biomarkers for IDH mutation 
prediction in GBM.

Figure 4: Heatmaps illustrate the average SHAP values for 
feature importance in (i) SL and (ii) SSL settings for predicting 
IDH mutation status in GBM. Red tones indicate stronger 
contributions to class 0 (wild-type IDH), while blue tones 
highlight features with greater influence on class 1 (mutant 
IDH). The following RFs are included: SF_Sp_3D: Sphericity 
(Sp), GLCM_DiEn: Difference Entropy (DiEn), GLCM_IMC2: 
Informational Measure of Correlation (IMC2), NGTDM_Coar: 
Coarseness (Coar), FO_10P: The 10th Percentile (10P), GLCM_
IDMN: Inverse Difference Moment Normalized (IDMN), 
GLSZM_ZE: Zone Entropy (ZE), FO_MaxI: Maximum 
Intensity (MaxI), GLSZM_LAHGLE: Large Area High Gray 
Level Emphasis (LAHGLE), NGTDM_S: Strength (S), FO_MI: 
Mean Intensity (MI), GLDM_DV: Dependence Variance (DV), 
GLRLM_REn: Run Entropy (REn), GLCM_IDN: Inverse 
Difference Normalized (IDN), FO_RMS: Root Mean Square 
(RMS), GLSZM_ZP: Zone Percentage (ZP), NGTDM_Con: 
Contrast (Con), GLCM_Co: Contrast (Co), GLSZM_GLNN: 
Gray Level Non-Uniformity Normalized (GLNN), GLCM_
Corr: Correlation (Corr), GLSZM_SAHGLE: Small Area High 
Gray Level Emphasis (SAHGLE), GLRLM_GLV: Gray Level 
Variance (GLV), GLCM_IV: Inverse Variance(IV), FO_V: 
Variance (V), FO_rMAD: Robust Mean Absolute Deviation 
(rMAD), GLRLM_GLNN: Gray Level Non-Uniformity 
Normalized (GLNN), NGTDM_B: Busyness (B), GLSZM_
GLV: Gray Level Variance (GLV), GLCM_CS: Cluster Shade 
(CS), FO_IQR: Interquartile Range (IQR). Abbreviations: 
SHAP: SHapley Additive exPlanations, SL: Supervised learning, 
SSL: Semi-supervised learning, IDH: Isocitrate Dehydrogenase, 
GBM: Glioblastoma, RFs: Radiogenomics Features.

In the SSL setting, Fig. 4(ii) illustrates the average SHAP 
values for the same set of RFs, derived from the top 25 model-
FSA/AEAs combinations. The SSL framework leverages 
unlabeled data through pseudo-labeling to enhance feature 
separability and model performance. Similar to the SL analysis, 
each row represents a selected RF, with SHAP values averaged 
for class 0 and class 1. Class 1 (Mutant IDH): Root Mean Square 
(FO_RMS original, T1CE) emerged as the most discriminative 
feature, with a strong positive SHAP value of +0.887 for class 1 
and a negative SHAP value of -0.275 for class 0. This indicates 
its significant role in favoring mutant IDH predictions while 
reducing confidence in wild-type predictions. Also, Class 0 
(Wild-type IDH): Features such as Contrast (GLCM_co, wavelet 
LLL, T1CE) and Gray Level Non-Uniformity Normalized 
(GLSZM_GLNN, wavelet LLL, T1) showed negative SHAP 
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contributions, suggesting they reduce model confidence for 
class 0 predictions. In conclusion, the SSL framework enhances 
the consistency and separability of key features, particularly 
texture- and zone-based RFs, by leveraging unlabeled data to 
refine decision boundaries. This results in improved model 
performance and interpretability compared to the SL setting. 
The SHAP-based analysis reveals distinct patterns in feature 
importance between SL and SSL settings. In SL, class 1 features, 
particularly wavelet-based textural features, dominate model 
predictions, highlighting their potential as biomarkers for IDH 
mutation. In SSL, the incorporation of unlabeled data amplifies 
the discriminative power of features like FO_RMS, suggesting 
that pseudo-labeling enhances the robustness of FSAs and model 
interpretability. These findings underscore the value of SSL in 
multi-center MRI-based GBM studies, where data heterogeneity 
and limited labeled samples are common challenges.

Discussion
GBM is the most aggressive primary brain tumor and 

IDH mutation status remains a key prognostic biomarker: 
IDH-wildtype tumors follow a poorer clinical course than 
IDH-mutant gliomas1,2. While MRI and radiogenomics provide 
a non-invasive pathway for IDH prediction, debate continues 
over the most informative imaging sequence [7, 8]. Advances in 
ML, particularly SSL, are shifting this paradigm by leveraging 
both labeled and unlabeled data to improve prediction accuracy 
in settings where annotated data are scarce. This multicenter 
study is novel in integrating SL and SSL frameworks with 
RFs extracted from multiple MRI sequences, systematically 
comparing individual and combined modalities and embedding 
interpretability analysis through SHAP. To our knowledge, this 
is one of the first large-scale multicenter studies to evaluate the 
prediction of IDH mutation status with such a comprehensive 
design, addressing limitations of prior single-center, single-
sequence or purely supervised approaches.

Our results demonstrated that SSL consistently outperformed 
SL, yielding higher accuracy and greater robustness to dataset 
size variation. The best SL configuration (RFE + SVM) on the 
combined T1, T2, T1CE and FLAIR sequences achieved a strong 
cross-validation accuracy of 0.92, whereas the SSL framework 
reached 0.93 and maintained stable performance even with 
limited labeled samples. SHAP-based analysis revealed that 
SSL amplified the discriminative power of features such as FO_
RMS and wavelet-based textural descriptors, producing more 
consistent separation between IDH-mutant and wild-type tumors 
and enhancing biomarker reliability. Importantly, multi-sequence 
MRI (T1, T2, T1CE, FLAIR) achieved the highest diagnostic 
accuracy across both frameworks, while SSL markedly rescued 
weak single-sequence performance. Clinically, these results 
indicate that SSL reduces dependence on extensive annotation, 
strengthens underperforming modalities and reinforces multi-
sequence imaging as the most reliable approach for glioma 
subtyping and treatment planning.

Our findings align with emerging literature on SSL in 
biomedical prediction. In lung cancer, SSL significantly improved 
survival outcome prediction across multiple trajectories36. 
Another study showed that SSL incorporating unlabeled, diverse 
datasets—such as head and neck cancer alongside lung cancer-
enhanced survival prediction in multi-fold cross-validation 
[36]. Similarly, SSL improved pathogenic variant prediction 
in Parkinson’s disease, outperforming SL as a framework for 

genetic stratification37. These results support our conclusion that 
SSL can generalize across diseases, data types and modalities. 
Salmanpour, et al. reported SSL gains of up to 17% for CT-based 
lung cancer prognosis, even when only 10% of cases were 
labeled, underscoring its robustness and cost-effectiveness 
across multicenter cohorts20. Our study extends these insights to 
neuro-oncology, demonstrating that SSL maintains performance 
advantages in multicenter MRI-based molecular prediction.

The relationship between dataset size and model performance 
is critical across domains ranging from medical imaging to 
cancer diagnostics and even remote sensing, highlighting 
the universal importance of data efficiency. In our study, SSL 
achieved high accuracy (0.91–0.93) even with limited labeled 
data, while SL performance plateaued and showed diminishing 
returns as labeled samples increased. Similar patterns were 
observed by Al-Azzam, et al.38, who found that SSL achieved 
competitive accuracy (90–98%) with only half the labeled data. 
Ramezan, et al.39 further demonstrated that ensemble-based 
SL methods, such as Random Forest, remained robust under 
severe label reductions, while algorithms like SVM and neural 
networks were highly sensitive. Our findings corroborate these 
observations, as SSL stabilized fragile models (e.g., SVM), 
enabling them to achieve consistent performance with fewer 
annotations. Mechanistically, this suggests that SSL leverages 
unlabeled data to refine decision boundaries, reduce noise 
sensitivity and mitigate overfitting risks, while ensemble-based 
SL methods may provide resilience in parallel under constrained 
conditions.

The integration of SSL with SHAP-based interpretability 
underscores the dual importance of accuracy and transparency. 
In our GBM analysis, SSL improved the discriminative capacity 
of features such as FO_RMS (T1CE) and wavelet-derived 
descriptors, surpassing the interpretability and stability observed 
in SL settings. This parallels the findings of Salmanpour, et 
al.20, where SSL amplified the prognostic value of texture- and 
zone-based features in CT lung cancer cohorts. Mechanistically, 
these results suggest that SSL enhances feature separability by 
reducing sensitivity to noise and leveraging pseudo-labeling to 
stabilize decision boundaries. This not only improves model 
accuracy but also supports reproducible biomarker discovery 
by highlighting biologically plausible, cross-center consistent 
features.

For translation into practice, SSL offers three major benefits. 
First, it reduces annotation demands, lowering the resource 
and time burden associated with manual labeling. Second, it 
improves the utility of weaker MRI sequences such as T2 and 
FLAIR, which are widely available in routine neuro-oncology but 
typically underperform when used alone. Third, SSL reinforces 
multimodal integration, confirming that no single sequence 
can consistently match the predictive power of combined data. 
T1CE alone performed nearly as well as multimodal integration, 
reflecting its biological relevance in capturing tumor vascularity 
and enhancement, but the added stability of combining multiple 
sequences confirms the value of fusion strategies. Clinically, 
these findings suggest that SSL-driven radiogenomics models can 
support earlier IDH prediction when biopsy is contraindicated, 
when molecular testing is delayed or in resource-limited settings, 
thereby guiding treatment planning and patient counseling.

This study has several limitations. It’s retrospective 
design and inter-site protocol variability may have introduced 
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confounding factors, although SSL’s consistent performance 
across centers suggests resilience to such heterogeneity. While 
external validation was included, prospective evaluation in 
independent cohorts is essential for clinical deployment. 
Additionally, this work focused exclusively on IDH mutation; 
extending SSL to other biomarkers such as MGMT methylation 
and 1p/19q codeletion will be critical for comprehensive 
molecular profiling. Future research should also explore SSL 
across multi-omics datasets-integrating imaging, genomic and 
pathology features—and assess real-time integration of SSL 
models into decision support systems.

Conclusion
Our multicenter study shows that SSL reliably outperforms 

SL for non-invasive prediction of IDH mutation status in 
glioblastoma. By leveraging unlabeled data, SSL improved 
accuracy, generalization and feature stability, offering greater 
robustness in data-limited and heterogeneous settings. SHAP-
based analysis further demonstrated that SSL enhanced the 
discriminative power of key RFs, reinforcing interpretability 
and supporting biomarker discovery. Clinically, SSL rescued the 
diagnostic value of weaker sequences such as T2 and confirmed 
multi-sequence integration (T1, T2, T1CE, FLAIR) as the most 
reliable strategy for glioma molecular stratification. These results 
establish SSL as a scalable and label-efficient framework that 
reduces annotation demands while increasing the reliability of 
imaging biomarkers. In summary, SSL advances radiogenomics 
toward clinically actionable decision support in neuro-oncology, 
providing a pathway to more accessible, interpretable and 
precise precision-care tools.
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