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ABSTRACT

Background: Glioblastoma (GBM) is an aggressive brain tumor, with IDH mutation status as a key prognostic biomarker.
Traditional IDH testing requires invasive biopsies, highlighting the need for non-invasive alternatives. MRI-based radiogenomics
features coupled with machine learning show promise, but past studies were mostly single-center-based and rarely used semi-
supervised learning (SSL) to exploit unlabeled data.

Methods: We analyzed MRI sequences T1, T2-weighted, contrast-enhanced T1 (T1CE) and FLAIR from 1,329 patients across
eight centers, with IDH labels available for 1,061 cases. Radiomics features (n=1,223 per case) were extracted using PyRadiomics
with Laplacian of Gaussian and wavelet filters. Both supervised learning (SL) and SSL (via pseudo-labeling) were implemented,
incorporating 38 feature selection/attribute extraction and 24 classifiers. Five-fold cross-validation was performed on UCSF-
PDGM and UPENN datasets, with external validation on IvyGAP, TCGA-LGG and TCGA-GBM. SHAP analysis quantified
feature importance.
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Results: Multimodal MRI (T1+T2+T1CE+FLAIR) provided the strongest performance, outperforming single-sequence models.
The best SSL model (involving Recursive Feature Elimination (RFE) + SVM) achieved 0.93+0.01 cross-validation and 0.75+0.02
external accuracy, while the best SL model (RFE+Complement Naive Bayes (CNB)) reached 0.9o+0.02 and 0.80+0.006,
respectively. SSL also demonstrated greater stability with lower sensitivity to dataset size compared to SL, maintaining robust
performance in data-limited conditions. SHAP analysis showed SSL amplified the discriminative value of first-order statistics of
Root Mean Square (FO_RMS) (T1CE) and wavelet-based metrics, strengthening biomarker interpretability.

Conclusion: SSL improves accuracy, efficiency and interpretability in MRI-based IDH prediction, remaining less sensitive to
data size while reinforcing multimodal fusion as the most reliable, scalable strategy.
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Introduction

Glioblastoma (GBM) is the most common and aggressive
malignant brain tumor, representing the highest-grade end of
a heterogeneous glioma spectrum'. Accurate classification
is central to clinical decision-making because it informs
prognosis and therapy?. Among molecular biomarkers, isocitrate
dehydrogenase (IDH) mutation status is a critical determinant
of outcome: IDH-mutant gliomas generally exhibit longer
survival, whereas IDH wild-type tumors-often GBM-follow a
more aggressive course’. Crucially, early and reliable prediction
of IDH mutation status affects diagnosis, treatment selection
and patient counseling, enabling personalized care before
histopathology is available®.

In current practice, IDH mutation status is specified by
histopathology and genomic testing under the World Health
Organization (WHO) classification, but these require invasive
biopsy and timely access to molecular assays-constraints that are
not universally met’. A non-invasive imaging-based alternative
can accelerate risk stratification and treatment planning,
especially when surgery is contraindicated or molecular testing
is delayed or unavailable®. Magnetic resonance imaging (MRI) is
a cornerstone of glioma evaluation and radiogenomics analyses
enable quantitative analysis of tumor characteristics-shape,
intensity, texture and heterogeneity-providing objective imaging
biomarkers that can support or, in select contexts, substitute for
invasive testing’®.

Some studies”'" have explored MRI-based prediction of IDH
mutation status using radiogenomics feature (RFs) and machine
learning. Zhang, et al.'> combined deep learning signatures and
conventional RFs across T1-weighted (T1), T2-weighted (T2),
contrast-enhanced T1 (T1CE) and Fluid-Attenuated Inversion
Recovery (FLAIR) sequences to achieve high accuracy in
IDH genotyping, demonstrating the value of multimodal data
fusion. Multiparametric radiomic models, incorporating T1,
T2, T1CE and FLAIR, have also shown excellent performance,
supporting the power of feature integration across sequences'.
Deep learning approaches further enhance accuracy: Yan et al.
demonstrated that deep learning features derived from diffusion
tensor imaging (DTI) improve glioma molecular stratification',
while Pasquini et al. applied CNNs on multiparametric MRI in
GBM and achieved high accuracy'”. Although deep RFs often
outperform handcrafted ones, they are less reproducible because
they are data-driven, architecture-dependent and sensitive
to acquisition or preprocessing variations, which limits their
stability across centers and hinders clinical translation'¢'®,
Despite these advances, many prior studies were conducted

in single-center cohorts with limited sample sizes, raising
concerns about generalizability. Few systematically compared
the relative contribution of individual MRI sequences versus
their combinations and almost none incorporated semi-
supervised learning (SSL) to leverage unlabeled data. Moreover,
feature importance analyses-to enhance interpretability and
reproducibility-remain underutilized.

Despite substantial progress with machine learning (ML)
and RFs, uncertainty persists regarding the most informative
MRI sequence(s) for predicting IDH mutation status®. This
inconsistency motivates multimodal strategies that integrate
complementary  information across  sequences-vascular
enhancement on T1CE, edema and tissue water on T2/FLAIR
and structural detail on T1-to capture a more complete picture
of tumor biology"”. In parallel, deep learning automates
hierarchical feature discovery from images, while quantitative
analysis standardizes heterogeneous MRI inputs into comparable
representations, creating a robust and generalizable substrate for
multimodal fusion and cross-site comparison'’.

For clinical translation, interpretability is essential. Assessing
feature importance and contribution strengthens generalizability
by emphasizing stable, biologically plausible predictors;
improves reproducibility by focusing on features reliably
extracted across scanners, protocols and preprocessing; and
enhances clinical trust by linking influential imaging patterns
to known pathophysiology. Feature-driven model refinement
also reduces dimensionality and mitigates overfitting, yielding
leaner, more stable predictors®**!.

Two practical barriers limit deployment: data scarcity and
multicenter variability. Labeled medical imaging data are costly
to obtain and models trained on single-center cohorts often
degrade on external data due to scanner and protocol differences.
SSL addresses both challenges by leveraging abundant unlabeled
cases alongside limited labeled data, effectively expanding
training size and improving robustness*>. When combined with
multimodal fusion and quantitative harmonization***, SSL can
counteract site-specific biases and support clinically meaningful
generalization®.

This study is important because it targets these translational
bottlenecks-reliance on single sequences, small single-center
datasets, limited labels and insufficient interpretability-within
a unified framework. Our contributions are threefold: (1) a
systematic, multicenter evaluation of individual and combined
MRI sequences for prediction of IDH mutation status using
radiogenomics analyses; (2) an integrated SSL and supervised
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learning (SL) pipeline that leverages unlabeled data to increase
effective sample size; and (3) a feature-importance analysis to
enhance interpretability, generalizability and reproducibility
across sites. Together, these elements advance a scalable,
transparent approach to imaging-based molecular prediction in
neuro-oncology.

Materials and Methods
Patient data

We collected data from 1,329 GBM patients across 8 centers
[ACRIN-FMISO-Brain (# of 4)*, Brain-Tumor-Progression
CPTAC-GBM (# of 33)*, IvyGAP (# of 30)’’, REMBRANDT
(# of 63)*), TCGA-GBM (# of 167)*, TCGA-LGG (# of 263)*,
UCSF-PDGM (# of 202)*', UPENN-GBM (# of 567)* with
clinical data, delineated masks and various MRI sequences
(T1, T2, T1CE and FLAIR) from The Cancer Imaging Archive
(TCIA). All MRI images were reviewed to ensure high-quality,
artifact-free data. These images were then enhanced and
normalized. Our study aimed to improve the prediction of IDH
mutation status in GBM by developing two frameworks: SL and
SSL strategies. A total of 1,223 RFs were extracted from the MRI
sequences using Laplacian of Gaussian (LoG; 6=1.0,2.0,3.0,4.0
and 5.0 mm) and wavelet (LLH, LHL, LHH, HLL, HLH, HHL,
HHH, LLL) filters, each applied with varying parameter settings
to capture a broad range of spatial and textural characteristics.
The extracted features were normalized using min—max scaling.
From these RFs, fifteen combined datasets were generated, each
representing different combinations of MRI-derived features.
Among the 1,329 patients included, IDH mutation status was
available for 1,061 patients, while the remaining patients lacked
outcome data.

Demographic and clinical characteristics varied across
datasets. For instance, the ACRIN 6684 dataset includes 45
patients with newly diagnosed GBM multiforme who underwent
baseline MRI, 18F-FMISO PET and low-dose Computed
Tomography (CT) imaging. The cohort had a mean age of 57.2
years (range 29-77), with 64% male and 36% female; most
were White (91.1%), with smaller proportions of Black, Asian
and American Indian/Alaska Native patients. In addition to
imaging, the dataset provides clinical, demographic, treatment
and biomarker data (e.g., MGMT, HIF1-0, GLUT1, CAIX),
enabling integrative analyses of tumor hypoxia and therapeutic
response.

Each of these landmark glioma datasets offers distinct
imaging characteristics that enrich radiogenomic research:
CPTAC-GBM integrates multimodal imaging (MRI, CT,
histopathology) with high-resolution whole-slide data to align
imaging features with proteogenomics; IvyGAP provides
serial MRI (pre-, post- and follow-up) with detailed histologic
annotation, enabling spatially resolved correlations of contrast-
enhanced tumor regions with gene expression; REMBRANDT
contributes multi-sequence MRI of gliomas with variable
resolution, complemented by molecular and clinical data for
prognostic modeling; TCGA-GBM and TCGA-LGG aggregate
MRI and CT acquired across diverse scanners and institutions,
offering heterogeneous but highly representative cohorts
for studying resolution and contrast variability in relation to
genomic drivers; UCSF-PDGM stands out with standardized
3T MRI protocols including advanced diffusion (HARDI) and
perfusion (ASL) imaging, providing higher spatial and functional
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resolution alongside expert tumor segmentations; and UPENN-
GBM delivers the largest mpMRI collection with co-registered,
segmented volumes and curated RFs, optimized for reproducible
AI/ML applications. Together, these datasets capture a spectrum
of imaging resolutions, contrasts, scanner heterogeneity and
advanced protocols, providing complementary strengths for
radiogenomic discovery and precision neuro-oncology. Only
MRI sequences from each dataset were used in this study.

Classification analysis

As depicted in (Figure 1), the proposed pipeline offers a
comprehensive framework for constructing robust ML models
using RFs derived from the brain MRI of IDH patients. The
pipeline includes image preprocessing, dimension reduction
via feature selection algorithms (FSAs) and attribute extraction
algorithms (AEAs), classifier benchmarking and thorough
validation under both SL and SSL frameworks.

i. Mask Validation and ii) Expert Verification. Brain MRI
examinations, encompassing T1, T2, TICE, and FLAIR
sequences, were thoroughly evaluated to detect glioma-
related abnormalities. A dual review by two board-
certified neuroradiologists standardized tumor annotations,
improved inter-observer reliability, and ensured accurate
localization. Cases with unclear tumor boundaries—due to
motion artifacts, hemorrhage, or significant postoperative
changes—were excluded from the analysis.”

iii. MRI Intensity Normalization. To address variations in
MRI acquisition parameters and patient anatomy, each
MRI sequence was subjected to intensity normalization
using the min—max method. This process rescales voxel
intensity values to a standardized range, typically (0, 1),
ensuring stable input for RFs extraction. Normalization also
facilitates the comparability of intensity-dependent features
across patients, sequences and imaging centers.

iv. RF Extraction. After normalization, brain MRI sequences
were processed using the open-source PyRadiomics package,
compliant with the Image Biomarker Standardization
Initiative (IBSI)** guidelines to ensure reproducibility and
consistency. PyRadiomics facilitated the extraction of a
comprehensive set of 107 RFs from each sequence, capturing
diverse properties such as morphology and microstructural
organization, which are essential for glioma subtyping and
IDH mutation prediction. The extracted features comprised
19 first-order statistics (FO), 16 three-dimensional shape
features, 10 two-dimensional shape features, 23 gray level
co-occurrence matrix (GLCM) features, 16 gray level
size zone matrix (GLSZM) features, 16 gray level run
length matrix (GLRLM) features, 5 neighboring gray tone
difference matrix (NGTDM) features and 14 gray level
dependence matrix (GLDM) features. These standardized
features, derived from normalized MRI volumes, are
designed to capture both global and local imaging patterns
critical for IDH prediction in GBM characterization.

v. Data Splitting and vi) Normalization Strategy Data Splitting
and Normalization Strategy. After feature extraction, the
datasets were split into a five-fold cross-validation set
and distinct external testing sets. The UCSF-PDGM and
UPENN-GBM datasets, which include IDH mutation data,
were used as the primary training cohort and subjected to
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five-fold cross-validation. To assess model generalizability,
three independent datasets with IDH mutation—IvyGAP,
TCGA-LGG, and TCGA-GBM-—each from different
clinical centers, were designated for external testing.
Datasets without outcome information were excluded
from supervised training and instead utilized in the SSL
process. To maintain methodological rigor and prevent data
leakage, normalization parameters (e.g., min and max) were
calculated solely from the training folds (four divisions) and
then applied to the validation fold, unlabeled datasets, and
external test sets during evaluation.”

vii. SL approaches: In the SL framework, the labeled UCSF-
PDGM and UPENN-GBM datasets were divided into
five folds. For each iteration, four folds were utilized for
training, with the remaining fold reserved for validation,
ensuring each fold served as the validation set once across
five iterations to complete the cross-validation cycle.
Additionally, the model trained on each fold was evaluated
on three independent labeled datasets-IvyGAP, TCGA-LGG
and TCGA-GBM-to assess its generalizability across diverse
centers and patient cohorts. Performance metrics, including
Accuracy, Precision, Recall, F1-score, Receiver Operating
Characteristic - Area Under the Curve (ROC-AUC) and
Specificity®* - were reported as average values with standard
deviations across the five cross-validation folds and external
test evaluations. Model selection was determined by the
highest performance across all metrics during five-fold
cross-validation, with external validation conducted using
independent test sets.

viii. SSL approaches: Within the SSL framework, the labeled
UCSF-PDGM and UPENN-GBM datasets were divided
into five folds. In each iteration, a logistic regression (LR)
model was trained on four labeled folds and subsequently
used to assign pseudo-labels to the unlabeled datasets (e.g.,
ACRIN-FMISO-Brain, CPTAC-GBM and REMBRANDT).
To avoid bias and data leakage, the remaining labeled fold
was excluded from the pseudo-labeling process. Following
pseudo-labeling, the model was retrained using the
combined labeled and pseudo-labeled data from the four
folds and evaluated on the held-out validation fold and three
external test sets-IlvyGAP, TCGA-LGG and TCGA-GBM-
to determine the contribution of unlabeled data to enhancing
model generalization.

ix. Dimensionality Reduction via FSAs and AEAs. To mitigate
the high dimension of RFs and minimize overfitting risks,
our pipeline employs two parallel approaches: FSAs
and AEAs*». We evaluated 38 dimensionality reduction
techniques (19 FSAs and 19 AEAs) for their effectiveness
in identifying the most informative and non-redundant
features. The 19 FSAs are categorized into three main
groups. Filter-based methods, including Chi-Square Test
(CST), Correlation Coefficient (CC), Mutual Information
(MI) and Information Gain Ratio (IG), score features
independently of classifiers. Statistical tests such as
ANOVA F-Test (AnovaFT), ANOVA P-value selection,
Chi2 P-value and Variance Thresholding (VT) evaluate
feature discriminativeness. Wrapper-based methods, such
as Recursive Feature Elimination (RFE), Univariate Feature
Selection (UFS), Sequential Forward Selection (SFS) and
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Sequential Backward Selection (SBS), iteratively assess
feature subsets based on model performance. Embedded
methods, including Lasso, Elastic Net (ENet), Embedded
Elastic Net (EmbENet) and Stability Selection, integrate
FSAs into the training process. Ensemble-based methods
like Feature Importance by RandF (FIRF), Extra Trees (ETI)
and Permutation Importance (Perm-Imp) capture complex
nonlinear relationships. Additional statistical controls, such
as False Discovery Rate (FDR), Family-Wise Error (FWE)
and multicollinearity handling via Variance Inflation Factor
(VIF), are also applied. Dictionary-based strategies leverage
Principal Component Analysis (PCA) or sparse loadings for
enhanced stability and interpretability. Features selected by
FSAs are detailed in the Supplementary Files 1-10 (ten files
for each sequence and the multiparametric set) for both SL
and SSL frameworks.

AEAs provide a complementary approach by projecting the
feature space into lower-dimensional subspaces. The 19 AEAs
include linear methods like PCA, Truncated PCA, Sparse PCA
(SPCA) and Kernel PCA (with RBF and polynomial kernels),
which identify uncorrelated projections with maximum
variance. Independent Component Analysis (ICA) isolates
statistically independent latent variables, while Factor Analysis
reveals underlying structures in observed features. Non-negative
Matrix Factorization (NMF) produces interpretable parts-
based decompositions. SL methods like Linear Discriminant
Analysis (LDA) optimize class separation in the transformed
space. Advanced manifold learning techniques, including
t-SNE, Uniform Manifold Approximation and Projection
(UMAP), Isomap, Locally Linear Embedding (LLE), Spectral
Embedding, Multidimensional Scaling (MDS) and Diffusion
Maps, capture non-linear structures, aiding visualization of
complex relationships in high-dimensional radiogenomics
data. Deep learning approaches, such as shallow and deep
autoencoders, facilitate data-driven feature compression via
reconstruction optimization. Additional methods include Feature
Agglomeration for hierarchical clustering, Truncated SVD for
matrix decomposition and projection-based techniques like
Gaussian Random Projection, Sparse Random Projection and
Feature Hashing, which offer scalable compression solutions.

x. Classification Algorithms. Each reduced feature set,
whether obtained through FSAs or AEAs, was assessed
using a comprehensive set of 24 classifiers (CAs). These
encompassed linear models, tree-based classifiers such
as Decision Trees (DT), Random Forest (RandF), Extra
Trees (ET), Gradient Boosting (GB), AdaBoost (AB) and
HistGradient Boosting (HGB), which leverage ensemble
learning to minimize variance and enhance generalization.
Meta-ensemble approaches, including Stacking, Voting
Classifiers (VC) and Bagging, further improved predictive
robustness by combining the strengths of multiple base
learners. Support Vector Machines (SVM) were applied
with various kernels to address both linear and non-linear
classification tasks, while k-Nearest Neighbors (KNN)
offered a distance-based, instance-level method. Several
Naive Bayes variants, including Gaussian (GNB),
Bernoulli (BNB) and Complement Naive Bayes (CNB),
were evaluated for their probabilistic simplicity and
computational efficiency. The Multi-Layer Perceptron
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XI.

XIl.

(MLP), a neural network-based approach, enabled modeling
of complex, non-linear patterns, while gradient-boosted
frameworks like Light GBM (LGBM) and XGBoost (XGB)
delivered high-performance learning through gradient
optimization and feature importance analysis. Additional
classifiers included Linear Discriminant Analysis (LDA),
Nearest Centroid (NC), Decision Stump, Dummy Classifier
(DC), Gaussian Process Classifier (GP) and Stochastic
Gradient Descent Classifier (SGDC), providing a range
of modeling strategies. All classification algorithms were
optimized using five-fold cross-validation and grid search.
The optimal hyperparameters for each model in both SL and
SSL frameworks are documented in Supplementary Files 1
and 10, Sheet 4.

Assess Sensitivity of Top-Performing Models to Data Size
in SL and SSL. To examine how data volume influences
model performance under SL and SSL, we designed
three experiments, each repeated with 100 randomized
arrangements (bootstraps). In Scenario 1 (SL), training
began with 10% of the labeled UCSF-PDGM and UPENN-
GBM datasets, then increased in 10% increments until
100% was used, enabling assessment of performance gains
with more labeled data. In Scenario 2 (SSL), both labeled
and unlabeled data were expanded together from 10%
to 100% in 10% steps to test the effect of simultaneous
growth. In Scenario 3 (SSL), the full labeled dataset was
fixed while the unlabeled pool was gradually added from
10% to 100%, isolating the contribution of unlabeled
data. This setup investigated the contribution of additional
unlabeled data to model performance with a fixed labeled
dataset. Collectively, these experiments offered a thorough
understanding of model robustness and adaptability to
varying data volumes in SL and SSL contexts. Across all
scenarios, only external testing metrics were reported, as
internal training and validation splits varied dynamically
with data volume changes. Using fixed external test sets
ensured consistent and equitable model comparisons across
different data conditions.

Feature Importance Investigation by SHAP. To examine and
elucidate the role of individual RFs in classification results,
we utilized SHapley Additive exPlanations (SHAP) on 25
high-performing combinations of ML models with FSAs or
AEAs, selected for their outstanding accuracy in predictive
performance. For each combination, we calculated SHAP
values to assess the marginal impact of each feature on the
model’s predictions, distinguishing between class 0 (wild-
type IDH) and class 1 (mutant IDH) cases. These SHAP
values were then averaged across all combinations within
each class to provide a more robust and comprehensive
view of feature importance trends. The averaged SHAP
values were visualized using heatmaps, facilitating a
comparative analysis of feature contributions across the two
classes. This methodology improves model transparency
and interpretability while strengthening the biological
plausibility and diagnostic relevance of the selected features
for IDH prediction in GBM characterization.
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Figure 1: Integrated Radiomics-Based ML Pipeline for
Brain Cancer Classification and Prognosis. The pipeline
integrates expert-guided tumor segmentation, min-max MRI
normalization, IBSI-compliant RFs extraction, dimensionality
reduction and classification algorithms. SL and SSL strategies
are implemented with five-fold cross-validation and external
validation. Model robustness is evaluated through sensitivity
analysis to data size and feature importance is interpreted using
SHAP. Abbreviations: ML: Machine Learning, SL: Supervised
Learning, SSL: Semi-supervised learning, MRI: Magnetic
Resonance Imaging, IBSI: Image Biomarker Standardization
Initiative, RFs: Radiogenomics Features, SHAP: SHapley
Additive exPlanations.

Results
Classification Analysis Result

(Figure 2) illustrates the comparative performance of
different dimensionality reduction-classifier combinations
across individual MRI sequences (T1, T2, TICE and FLAIR)
as well as their combined use. While accuracy and its standard
errors remain central, additional evaluation metrics such as F1
score, AUC, precision, recall and specificity provide a more
nuanced picture of each model’s behavior.

Within the SSL framework, the combination of RFE with SVM
on all four MRI sequences (T1, T2, TICE, FLAIR) consistently
outperformed other pipelines. Beyond its strong cross-validation
and test accuracies (0.93 £ 0.01 and 0.75 £ 0.02, respectively),
this model achieved a high F1 score (0.94 validation, 0.74 test)
and excellent discriminative ability as indicated by its AUC
(0.97 validation, 0.84 test). Specificity also remained robust
(0.93 wvalidation, 0.92 test), underscoring its balance between
sensitivity and reliability in excluding false positives. A close
competitor was RFE with CNB on the same combined dataset,
which, although slightly lower in overall accuracy (0.87 £ 0.02
CV, 0.72 £+ 0.03 test), maintained competitive F1 performance
(0.89 validation, 0.70 test) and respectable AUC values (0.93
validation, 0.78 test). By contrast, alternative SSL pipelines such
as CC with VC or t-SNE with GNB displayed lower stability,
reflected in F1 scores near 0.58-0.73 and notably reduced
AUC values (as low as 0.59 in validation and 0.58 in testing),
confirming the superiority of RFE-based methods in capturing
informative features.

Under the SL framework, performance trends were largely
consistent. RFE with CNB on the multi-sequence mixture not
only delivered the highest test accuracy (0.80 = 0.006) but also
maintained excellent precision, recall and F1 balance (all at
0.80). Its AUC of 0.96 (validation) and 0.86 (test) confirmed
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strong discriminatory power. Similarly, RFE with SVM
achieved a validation F1 score of 0.92 and a test F1 of 0.78,
with AUC values of 0.96 and 0.85, respectively. Importantly,
the exceptionally small test error for RFE-CNB demonstrates
superior robustness to unseen cases. Other SL methods, such as
CC-VC and t-SNE-GNB, again showed substantially weaker
performance, with test F1 scores around 0.51-0.62 and lower
AUC values (0.62-0.69).

Looking at individual modalities, TICE emerged as the
strongest single sequence. Under SSL with AE-LR, it achieved
validation F1 and AUC values of 0.93 and 0.94, respectively,
with external test F1 and AUC still competitive at 0.74 and 0.82.
Other T1CE-based pipelines, including ETI-SVM and MI-
GNB, further demonstrated reliable generalization, with test F1
values in the 0.77-0.81 range and AUC spanning 0.70-0.85. In
contrast, T1 and T2 modalities exhibited moderate results. For
instance, T1 with SSL-AnovaFT-GNB achieved validation F1
of 0.87 but dropped to 0.69 on the test set; T2 pipelines generally
peaked at validation F1 ~0.85 but consistently dropped below
0.65 on external evaluation, reflecting limited robustness when
used in isolation. FLAIR alone proved the weakest, with best-
performing SSL-EmbENet-LR reaching validation F1 of 0.83
but only 0.59 in test F1, accompanied by reduced AUC values
(0.88 validation, 0.65 test). This highlights the instability of
FLAIR-derived models relative to multi-sequence integration.

Taken together, the results show that incorporating multi-
sequence input with RFE-based FSAs and robust classifiers
(SVM, CNB) yield the most balanced trade-offs across
accuracy, F1 and AUC, outperforming individual modalities and
alternative selectors such as LASSO, UMAP or t-SNE. Notably,
while SSL models provided slight gains in validation accuracy
and F1, SL models matched or exceeded their performance in
test generalization, particularly when stability and specificity
were considered. Statistical analysis confirmed significant
differences (p < 0.05, Benjamini—Hochberg corrected) between
top-performing pipelines on TICE and combined sequences
compared to weaker single modalities such as FLAIR or T2. A
comprehensive listing of all results, including feature sets and
hyperparameters, is available in Supplemental Files 1-10 for SL
and SSL analyses.

SVM  CNB ve GNB
(RFE)  (RFE)  (CC)  (1_SNE)

R 3 SVM NC GNB CNB LR SVM
(EmbENct) (LASSO) (UMAP)  (ENet) (AnovaFT)  (ENet) o (RFE)
0~ TICE T2
094
. i
08 -
207
F e
2 051
£ 04
=
= 039
021
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LR sVM GNB CNB Ve ve LR LR

(AE) (ETD) (MI) (1G) (AE) aca)  (SPCA)  (PCA)

Average Accuracy Across Five-Fold Cross-Validation

Figure 2: Bar plots showing the average accuracy of different
ML techniques applied to various combinations of RFs extracted
from different MRI sequences. The X axis indicates the best ML
techniques: Classifiers + Dimension Reduction algorithms and
the Y axis shows the metric values of average accuracy across
five-fold cross-validation.
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Impact of data size on the sensitivity of SL and SSL models

In the first scenario, the optimal SL configuration
(Complement Naive Bayes + RFE) was trained on progressively
larger fractions of labeled data (10%—100%), while the external
test sets (IvyGAP, TCGA-LGG and TCGA-GBM) remained
fixed. Averaged over 100 random splits of the training data, where
models were retrained and evaluated on the same fixed external
test sets, performance decreased slightly from 0.92 with 10%
labeled data to 0.90 with the full dataset, indicating diminishing
returns from additional labeled samples. Interestingly, this
decline was not uniform across all evaluation criteria. Precision
remained consistently high (~0.93-0.95), showing the model’s
robustness in minimizing false positives. Recall and F1-score,
however, showed modest fluctuations (~0.89—0.92 and ~0.90—
0.91, respectively), reflecting slight trade-offs between sensitivity
and overall balance of predictions. AUC values remained strong
(~0.94-0.96), demonstrating stable discriminative ability,
while specificity varied more widely (~0.76—0.82 on test sets),
suggesting that SL models were more sensitive to negative class
misclassification as dataset size increased.

In the second scenario, when both labeled and unlabeled
samples were increased simultaneously in 10% increments,
the SSL model (SVM + RFE) improved steadily, rising from
0.87 with 10% data to 0.93 with the full dataset. Beyond 60%,
accuracy gains tapered, but additional metrics highlighted SSL’s
advantage. F1-scores increased in parallel with accuracy (from
~0.87 to ~0.94), indicating that improvements were not biased
toward precision or recall alone but rather enhanced the balance
between them. AUC values remained consistently higher than
SL (~0.95-0.97), confirming that SSL models better captured
class separability. Moreover, specificity reached up to 0.92 on
external test sets, markedly outperforming SL, suggesting that
SSL approaches were more reliable at correctly identifying
negative cases.

In the third scenario, the same SSL configuration (SVM +
RFE) was evaluated by fixing the labeled set and incrementally
adding unlabeled samples. Accuracy rose quickly to 0.91 with
only 10% unlabeled data and stabilized, peaking at 0.93 with
the full pool. Importantly, precision and recall converged to
~0.93-0.95, resulting in F1-scores exceeding 0.92 across most
runs, indicating a consistent balance. AUC remained high
(~0.95-0.97), reinforcing SSL’s robustness. Specificity trends
highlighted one of the most notable advantages of SSL: with
even small additions of unlabeled data, specificity quickly
increased above 0.90 and remained stable, in contrast to SL,
where variability persisted.

Taken together, these findings indicate that while SL models
achieved strong precision, their recall, F1 and specificity
were more sensitive to dataset size, leading to variability in
generalization. By contrast, SSL models consistently maintained
high and stable F1 and AUC values alongside improved
specificity, demonstrating their ability to balance positive and
negative case detection while reducing overfitting to limited
labeled data. Across all scenarios, SSL approaches (particularly
Scenario 3) consistently outperformed SL in data-limited
contexts, underscoring the value of leveraging unlabeled data
to improve generalization and reduce sensitivity to dataset size
(Figure 3).
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Figure 3: Curve plots illustrate the sensitivity of top-performing
SL and SSL models for IDH prediction with respect to data
size. Average 5-fold cross-validation metrics (F1-score, AUC,
specificity, accuracy, precision and recall) are reported for three
scenarios: Scenario 1 (SL: RFE CNB), Scenario 2 (SSL + SL:
RFE _SVM) and Scenario 3 (SSL: RFE_SVM). Performance
is assessed across varying proportions of training data (10%-—
100%). Abbreviations: SL, supervised learning; SSL, semi-
supervised learning; IDH: Isocitrate Dehydrogenase, AUC: Area
Under the Curve, RFE: Recursive Feature Elimination, CNB:
Complement Naive Bayes, SVM: Support Vector Machine

SHAP-based feature importance in SL and SSL for GBM
IDH mutation prediction

In this section, model interpretability was investigated using
SHAP to evaluate feature importance in SL and SSL frameworks.
The analysis focused on the top 25 high-performing combinations
of ML classifiers and FSAs or AEAs, identified through five-fold
cross-validation accuracy. These combinations consisted of five
distinct classifiers—Random Forest, Support Vector Machine,
Gradient Boosting, LR and Multi-Layer Perceptron—paired
with five FSAs or AEAs, applied to RFs extracted from multi-
center MRI sequences.

In the SL setting, Fig. 4(i) presents a heatmap visualizing
the average SHAP values for class 0 (wild-type IDH) and class
1 (mutant IDH) across features selected by the top 25 model-
FSA/AEAs combinations in a binary classification task. Each
row corresponds to a specific RF, such as textural (e.g., Gray
Level Co-occurrence Matrix, GLCM), morphological or
wavelet-transformed features, while the two columns represent
the average absolute SHAP values for class 0 and class 1,
respectively. The heatmap, (Figure 4), employs a color gradient
to highlight relative feature importance: deep red indicates
features with stronger contributions to class 0 predictions, while
deep blue signifies greater influence on class 1 predictions.
Class 1 (Mutant IDH): Features such as Sphericity (SF_Sp 3D
original, FLAIR), Difference Entropy (GLCM DiEn, LoG
sigma:2.0, TICE), Informational Measure of Correlation
(GLCM_IMC2, wavelet LHL, TICE) exhibited strong positive
SHAP contributions, indicating their critical role in predicting
IDH mutation status. These features are associated with higher
intensity blue regions in the heatmap, reflecting their robust
influence. In addition, Class 0 (Wild-type IDH): Features like
Contrast NGTDM_ con, wavelet LHL, T2), Root Mean Square
(FO_RMS original, TICE), Inverse Difference Normalized
(GLCM_IDN, wavelet LLH, T1CE) showed moderate positive
SHAP contributions, with less intense red regions compared
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to class 1 features. This suggests a relatively weaker but still
notable influence on wild-type IDH predictions. In conclusion,
Class 1 features generally demonstrated stronger individual
contributions, as evidenced by the more pronounced blue regions
in the heatmap. This facilitates both model interpretability and
the identification of potential biomarkers for IDH mutation
prediction in GBM.

(ii) Semi-supervised Learning
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Figure 4: Heatmaps illustrate the average SHAP values for
feature importance in (i) SL and (ii) SSL settings for predicting
IDH mutation status in GBM. Red tones indicate stronger
contributions to class 0 (wild-type IDH), while blue tones
highlight features with greater influence on class 1 (mutant
IDH). The following RFs are included: SF_Sp 3D: Sphericity
(Sp), GLCM_DiEn: Difference Entropy (DiEn), GLCM_IMC2:
Informational Measure of Correlation (IMC2), NGTDM_Coar:
Coarseness (Coar), FO_10P: The 10th Percentile (10P), GLCM _
IDMN: Inverse Difference Moment Normalized (IDMN),
GLSZM ZE: Zone Entropy (ZE), FO MaxIl: Maximum
Intensity (MaxI), GLSZM LAHGLE: Large Area High Gray
Level Emphasis (LAHGLE), NGTDM_S: Strength (S), FO_MI:
Mean Intensity (MI), GLDM_DV: Dependence Variance (DV),
GLRLM REn: Run Entropy (REn), GLCM IDN: Inverse
Difference Normalized (IDN), FO_RMS: Root Mean Square
(RMS), GLSZM _ZP: Zone Percentage (ZP), NGTDM_Con:
Contrast (Con), GLCM_Co: Contrast (Co), GLSZM_GLNN:
Gray Level Non-Uniformity Normalized (GLNN), GLCM
Corr: Correlation (Corr), GLSZM_SAHGLE: Small Area High
Gray Level Emphasis (SAHGLE), GLRLM_GLV: Gray Level
Variance (GLV), GLCM_IV: Inverse Variance(IV), FO V:
Variance (V), FO_rMAD: Robust Mean Absolute Deviation
(rtMAD), GLRLM GLNN: Gray Level Non-Uniformity
Normalized (GLNN), NGTDM B: Busyness (B), GLSZM
GLV: Gray Level Variance (GLV), GLCM_CS: Cluster Shade
(CS), FO IQR: Interquartile Range (IQR). Abbreviations:
SHAP: SHapley Additive exPlanations, SL: Supervised learning,
SSL: Semi-supervised learning, IDH: Isocitrate Dehydrogenase,
GBM: Glioblastoma, RFs: Radiogenomics Features.

In the SSL setting, Fig. 4(ii) illustrates the average SHAP
values for the same set of RFs, derived from the top 25 model-
FSA/AEAs combinations. The SSL framework leverages
unlabeled data through pseudo-labeling to enhance feature
separability and model performance. Similar to the SL analysis,
each row represents a selected RF, with SHAP values averaged
for class 0 and class 1. Class 1 (Mutant IDH): Root Mean Square
(FO_RMS original, TICE) emerged as the most discriminative
feature, with a strong positive SHAP value of +0.887 for class 1
and a negative SHAP value of -0.275 for class 0. This indicates
its significant role in favoring mutant IDH predictions while
reducing confidence in wild-type predictions. Also, Class 0
(Wild-type IDH): Features such as Contrast (GLCM_co, wavelet
LLL, TICE) and Gray Level Non-Uniformity Normalized
(GLSZM_GLNN, wavelet LLL, T1) showed negative SHAP
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contributions, suggesting they reduce model confidence for
class 0 predictions. In conclusion, the SSL framework enhances
the consistency and separability of key features, particularly
texture- and zone-based RFs, by leveraging unlabeled data to
refine decision boundaries. This results in improved model
performance and interpretability compared to the SL setting.
The SHAP-based analysis reveals distinct patterns in feature
importance between SL and SSL settings. In SL, class 1 features,
particularly wavelet-based textural features, dominate model
predictions, highlighting their potential as biomarkers for IDH
mutation. In SSL, the incorporation of unlabeled data amplifies
the discriminative power of features like FO_RMS, suggesting
that pseudo-labeling enhances the robustness of FSAs and model
interpretability. These findings underscore the value of SSL in
multi-center MRI-based GBM studies, where data heterogeneity
and limited labeled samples are common challenges.

Discussion

GBM is the most aggressive primary brain tumor and
IDH mutation status remains a key prognostic biomarker:
IDH-wildtype tumors follow a poorer clinical course than
IDH-mutant gliomas'?. While MRI and radiogenomics provide
a non-invasive pathway for IDH prediction, debate continues
over the most informative imaging sequence [7, 8]. Advances in
ML, particularly SSL, are shifting this paradigm by leveraging
both labeled and unlabeled data to improve prediction accuracy
in settings where annotated data are scarce. This multicenter
study is novel in integrating SL and SSL frameworks with
RFs extracted from multiple MRI sequences, systematically
comparing individual and combined modalities and embedding
interpretability analysis through SHAP. To our knowledge, this
is one of the first large-scale multicenter studies to evaluate the
prediction of IDH mutation status with such a comprehensive
design, addressing limitations of prior single-center, single-
sequence or purely supervised approaches.

Our results demonstrated that SSL consistently outperformed
SL, yielding higher accuracy and greater robustness to dataset
size variation. The best SL configuration (RFE + SVM) on the
combined T1, T2, T1CE and FLAIR sequences achieved a strong
cross-validation accuracy of 0.92, whereas the SSL framework
reached 0.93 and maintained stable performance even with
limited labeled samples. SHAP-based analysis revealed that
SSL amplified the discriminative power of features such as FO_
RMS and wavelet-based textural descriptors, producing more
consistent separation between IDH-mutant and wild-type tumors
and enhancing biomarker reliability. Importantly, multi-sequence
MRI (T1, T2, TICE, FLAIR) achieved the highest diagnostic
accuracy across both frameworks, while SSL markedly rescued
weak single-sequence performance. Clinically, these results
indicate that SSL reduces dependence on extensive annotation,
strengthens underperforming modalities and reinforces multi-
sequence imaging as the most reliable approach for glioma
subtyping and treatment planning.

Our findings align with emerging literature on SSL in
biomedical prediction. In lung cancer, SSL significantly improved
survival outcome prediction across multiple trajectories®®.
Another study showed that SSL incorporating unlabeled, diverse
datasets—such as head and neck cancer alongside lung cancer-
enhanced survival prediction in multi-fold cross-validation
[36]. Similarly, SSL improved pathogenic variant prediction

in Parkinson’s disease, outperforming SL as a framework for
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genetic stratification®’. These results support our conclusion that
SSL can generalize across diseases, data types and modalities.
Salmanpour, et al. reported SSL gains of up to 17% for CT-based
lung cancer prognosis, even when only 10% of cases were
labeled, underscoring its robustness and cost-effectiveness
across multicenter cohorts®. Our study extends these insights to
neuro-oncology, demonstrating that SSL maintains performance
advantages in multicenter MRI-based molecular prediction.

The relationship between dataset size and model performance
is critical across domains ranging from medical imaging to
cancer diagnostics and even remote sensing, highlighting
the universal importance of data efficiency. In our study, SSL
achieved high accuracy (0.91-0.93) even with limited labeled
data, while SL performance plateaued and showed diminishing
returns as labeled samples increased. Similar patterns were
observed by Al-Azzam, et al.’®, who found that SSL achieved
competitive accuracy (90-98%) with only half the labeled data.
Ramezan, et al.’® further demonstrated that ensemble-based
SL methods, such as Random Forest, remained robust under
severe label reductions, while algorithms like SVM and neural
networks were highly sensitive. Our findings corroborate these
observations, as SSL stabilized fragile models (e.g., SVM),
enabling them to achieve consistent performance with fewer
annotations. Mechanistically, this suggests that SSL leverages
unlabeled data to refine decision boundaries, reduce noise
sensitivity and mitigate overfitting risks, while ensemble-based
SL methods may provide resilience in parallel under constrained
conditions.

The integration of SSL with SHAP-based interpretability
underscores the dual importance of accuracy and transparency.
In our GBM analysis, SSL improved the discriminative capacity
of features such as FO RMS (TICE) and wavelet-derived
descriptors, surpassing the interpretability and stability observed
in SL settings. This parallels the findings of Salmanpour, et
al.?%, where SSL amplified the prognostic value of texture- and
zone-based features in CT lung cancer cohorts. Mechanistically,
these results suggest that SSL enhances feature separability by
reducing sensitivity to noise and leveraging pseudo-labeling to
stabilize decision boundaries. This not only improves model
accuracy but also supports reproducible biomarker discovery
by highlighting biologically plausible, cross-center consistent
features.

For translation into practice, SSL offers three major benefits.
First, it reduces annotation demands, lowering the resource
and time burden associated with manual labeling. Second, it
improves the utility of weaker MRI sequences such as T2 and
FLAIR, which are widely available in routine neuro-oncology but
typically underperform when used alone. Third, SSL reinforces
multimodal integration, confirming that no single sequence
can consistently match the predictive power of combined data.
T1CE alone performed nearly as well as multimodal integration,
reflecting its biological relevance in capturing tumor vascularity
and enhancement, but the added stability of combining multiple
sequences confirms the value of fusion strategies. Clinically,
these findings suggest that SSL-driven radiogenomics models can
support earlier IDH prediction when biopsy is contraindicated,
when molecular testing is delayed or in resource-limited settings,
thereby guiding treatment planning and patient counseling.

This study has several limitations. It’s retrospective
design and inter-site protocol variability may have introduced
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confounding factors, although SSL’s consistent performance
across centers suggests resilience to such heterogeneity. While
external validation was included, prospective evaluation in
independent cohorts is essential for clinical deployment.
Additionally, this work focused exclusively on IDH mutation;
extending SSL to other biomarkers such as MGMT methylation
and 1p/19q codeletion will be critical for comprehensive
molecular profiling. Future research should also explore SSL
across multi-omics datasets-integrating imaging, genomic and
pathology features—and assess real-time integration of SSL
models into decision support systems.

Conclusion

Our multicenter study shows that SSL reliably outperforms
SL for non-invasive prediction of IDH mutation status in
glioblastoma. By leveraging unlabeled data, SSL improved
accuracy, generalization and feature stability, offering greater
robustness in data-limited and heterogeneous settings. SHAP-
based analysis further demonstrated that SSL enhanced the
discriminative power of key RFs, reinforcing interpretability
and supporting biomarker discovery. Clinically, SSL rescued the
diagnostic value of weaker sequences such as T2 and confirmed
multi-sequence integration (T1, T2, TICE, FLAIR) as the most
reliable strategy for glioma molecular stratification. These results
establish SSL as a scalable and label-efficient framework that
reduces annotation demands while increasing the reliability of
imaging biomarkers. In summary, SSL advances radiogenomics
toward clinically actionable decision support in neuro-oncology,
providing a pathway to more accessible, interpretable and
precise precision-care tools.
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