
Secure Software Development using Fuzzing Techniques

Priyank Rathod* and Anurag

Intel Corporation Folsom, CA, USA

Citation: Rathod P, Anurag. Secure Software Development using Fuzzing Techniques. J Artif Intell Mach Learn & Data Sci 2024, 
2(1), 411-414. DOI: doi.org/10.51219/JAIMLD/priyank-anurag/114

Received: 01 January, 2024; Accepted: 18 January, 2024; Published: 20 January, 2024

*Corresponding author: Priyank Jayantilal Rathod, Intel Corporation Folsom, CA, USA, E-mail: rathodpriyank@gmail.com

Copyright: © 2024 Rathod P, et al., Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection.., This 
is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.

1

 A B S T R A C T 

Fuzzing is a method to try out random input samples to find bugs and vulnerabilities in the software application, where most 
software testing is limited to unit tests and static and dynamic code analysis. In recent years, after the heartbleed bug was found in 
a widely used open-source library, it became evident that secure testing is paramount for any software application used anywhere. 
As people are becoming increasingly reliant on the latest technologies and getting used to working more efficiently than ever, it 
becomes a necessity rather than a requirement to validate the software in all possible scenarios unimagined by the developer or 
the validation team. Fuzzing is becoming popular rapidly to secure systems for future attacks and vulnerabilities due to a lack of 
proper testing and secure code reviews.

Keywords: Secure Software, Fuzzing, Software Testing, Secure Coding, Bug & Vulnerability Detection, System Crash

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/priyank-anurag/114

1. Introduction
The World depends on software now more than ever. As the 

day goes by, the complexity of software systems and applications 
is growing exponentially. Growing usage of software would 
increase the threat and put the systems running this software 
in harm’s way in unimaginable ways. There are many critical 
systems running these software applications. Fuzzing is a 
technique where vulnerabilities would be found using various 
methods, such as malformed or out-of-bound input values. It adds 
significant value to any software application used in mission-
critical systems. Fuzzing generally operates on significant, 
unpredicted, unexpected inputs to make software applications 
behave abnormally and either crash or hang the system to 
identify the weak entry point for any software application. The 
most common vulnerabilities in any software application are 
memory-related, which can be exploited to gain unauthorized 
access to the system and its confidential information. 

Borzacchiello et al. 1propose a novel approximate solver 
called Fuzzy-Sat for concolic and hybrid fuzzing engines. 
Traditional consoles and hybrid fuzzing engines rely on 
Satisfiability Modulo Theories (SMT) solvers to explain the 
symbolic expressions generated during execution. But, the 
SMT solvers can be expensive and time-consuming, especially 
for complex expressions. Fuzzy-Sat addresses this challenge 
by providing an approximate solution that is faster than SMT 
solvers while still being able to find bugs effectively. 2Pham, 
2023 describes AFLSmart++ as an extension of the AFLSmart 
grey box fuzzer that improves its effectiveness and usability. 
AFLSmart is a structure-aware greybox fuzzer designed for 
testing programs that take highly structured inputs, such as PNG, 
PDF, and WAV files. AFLSmart++ improves upon AFLSmart in 
several ways. First, it introduces new structure-aware mutation 
operators more effective at generating valid and interesting test 
inputs. Second, it presents a composite input model that allows 
AFLSmart++ to handle more complex file formats.

https://doi.org/10.51219/JAIMLD/priyank-anurag/114
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/priyank-anurag/114


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss:1Rathod P, et al.,

2

 The paper outlines the need for fuzzing methods to ensure 
the software The development process incorporates these testing 
methods to mitigate any potential vulnerabilities in software 
applications in the future. In particular, we will detail the various 
fuzzing methods, including which method is more effective than 
others to achieve a higher degree of confidence in any software 
application. 

2. Background 
This section briefly explains why secure software development 

is required for maximum defense against future threats. Many 
techniques currently used are inadequate to discover these threats 
beforehand; hence, more advanced techniques, such as fuzzing, 
are required. The most commonly used techniques are static 
analysis, dynamic analysis, symbolic execution, and advanced 
fuzzing, based on various methods and algorithms. Static 
analysis is one of the fastest methods to scan the source code 
and sometimes the object code to detect the vulnerability. While 
it is the quickest method, sometimes it can be a false positive, 
but the good thing is that all the issues can be addressed without 
running the code, saving the over-detection time. In contrast, 
dynamic analysis runs the program and monitors it in real-time 
to detect the issues. It offers slower speed but higher accuracy 
and fewer false positives for the code. Often, it includes human 
interfaces, which require strong technical skills to debug and fix 
them. Because of human intervention, it is not easily scalable to 
perform the analysis on larger systems. The symbolic execution 
method maintains the set of constraints for each execution path 
used in program inputs. When application execution interacts 
with components out of The environment, as explained, there 
would be system calls, APIs, or unreliable signals, and false 
positives would increase exponentially with the application. It is 
tricky and time-consuming to scale this type of threat detection. 
The last technique is the most advanced out of all of the others 
and has its own merits. It secures the application or system from 
current and future threats before they can happen.

3. Fuzzing
Several fuzzers are used based on their purpose and need. 

Based on the input, some of them are called generative and 
mutation fuzzers. Generative fuzzers are there to generate the 
inputs that rely on the random lines of slightly manipulated data. 
whereas mutation fuzzers take valid inputs and mutate them to 
trigger the crash.

Other types of fuzzers are based on the awareness of the 
different sets of developers or validators. There are three types 
of fuzzing in this approach. If it is black-box fuzzing in this 
approach, the software would be viewed as a black box, and 
testers would not have any idea about the internal workings of 
the software; still, inputs are generated randomly to make it crash 
or hang. The second one is white box fuzzing, where the tester or 
validator is aware of the functionality and inner workings of the 
software to generate the input to make the software more reliable 
using the fuzzing. The third type is grey box fuzzing, where the 
approach is a hybrid, and the tester may have some knowledge 
about the inner workings, but not all. Hence, it is more like a 
hybrid.

Fuzzing is a technique where inputs are provided so that the 
software malfunctions/hangs, or crashes in specific scenarios. 
The analogy would be throwing whatever input we can to the 
software entry points and seeing what makes the software 
behave abnormally or, better, make it crash. The software’s 

NoYesWhile loop

input would be unexpected data or symbols, out-of-range 
values, or something totally out of any expectation input. These 
inputs would be sent or bombarded to the software to make 
it malfunction or crash. fundamentally, fuzzing mutates and 
twists the inputs in some peculiar combinations. It is the most 
unconventional way to stress-test the software without rules or 
predefined values. 

The aim of running these sorts of stress testing is to expose 
the issues, bugs, crashes, vulnerabilities, security holes, and 
other unknown problems otherwise known. It is more like the 
simulation of real-world attacks before the software is released, so 
it is more like precautionary testing to build the secure software. 
While it sounds like a can-do-all tool, it has limitations, such as 
it won’t guarantee that it will be able to find 100% of the bugs 
in the software. Also is time-consuming, and it would increase 
based on The complexity of the software is exponential, and last 
but not least, it would require a secure coding background or 
expertise to interpret these results and fix them.

 4. Literature Survey
D. Kuts 3presented a method for handling symbolic 

addresses in dynamic symbolic execution. Symbolic addresses 
are addresses that are not known at compile time but are instead 
determined at runtime. This can make it difficult for dynamic 



3

Rathod P, et al., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

symbolic execution tools to reason about the control flow of 
a program, as they need to know which memory locations are 
valid. The method uses a combination of SMT solving and 
symbolic execution to reason about symbolic addresses. SMT 
solving is used to determine the bounds of symbolic addresses, 
and symbolic execution is used to explore the possible values 
of symbolic addresses. This allows the tool to discover new 
execution paths that would otherwise be missed. It’s a promising 
new approach to handling symbolic addresses in dynamic 
symbolic execution. It can improve the tool’s accuracy and 
find new bugs in programs. 2Pham presented AFLSmart++, an 
extension of the structure-aware grey box fuzzer AFLSmart. 
AFLSmart++ improves AFLSmart in two main aspects: 
structure-aware low-level mutation and composite input 
model. These tools make low-level mutations to data chunks, 
fundamental building blocks for input data in any software 
application. At the same time, a composite input model provides 
a structured way for inputs to the software application. 4present 
Driller, a hybrid vulnerability excavation tool that combines 
fuzzing and selective symbolic execution to find deeper bugs in 
software. Traditional fuzzing is good at exploring large portions 
of the program’s state space, but it can struggle to find bugs that 
require satisfying complex path conditions. Symbolic execution, 
on the other hand, can be effective at finding such bugs, but it 
can be expensive and time-consuming to run on large programs. 
Driller addresses this challenge by using fuzzing to identify 
exciting paths in the program’s state space and then using 
symbolic execution to generate inputs that satisfy the complex 
conditions on those paths. This allows Driller to find bugs that 
would be missed by traditional fuzzing or symbolic execution 
alone. Generally, a driller is a powerful bug excavation tool that 
can find bugs rooted deep within software applications. 

 C. Zhang et al. 5have presented a method to extract the 
features of a specific software application and use them to 
recommend the methods to fuzz in the particular application 
targeted. The critical thing to remember is before removing the 
features from any software application, the developer needs 
to determine which features are required, and based on the 
requirement gathered from the developer or security researcher, 
the features are selected to select the appropriate fuzzer for 
the application6. proposed a malicious code image feature 
extraction method based on entropy filtering. Introducing an 
entropy filter helps identify the hidden patterns introduced by 
specific packers and encryptors; therefore, this method performs 
better than the previous method. Due to the rise of deep learning 
technology and its wide application in the field of vulnerability 
detection, more and more feature extraction will choose to use 
deep neural networks. 7proposed DL4MD. They introduced the 
stack autoencoder (SAE) model into malicious code analysis 
for the first time to realize unsupervised malicious code feature 
extraction. 8Popov used convolutional neural networks (CNN) 
to extract code features. Automatic coding technology based 
on feature learning and recurrent neural networks based on 
classifiers is used to realize feature extraction of malicious code. 
At the same time, there are some automatic tools to extract the 
characteristics of the target program, and most of them use 
artificial intelligence technology.

J. Shao et al. 9proposed a reinforcement learning-based 
fuzzing approach that can effectively improve the input and 
achieve higher code coverage. It would divide the fuzzing 
process into two stages: the stage where bytes causing the crash 
are identified and the The RL-based approach would apply 

mutation operators to these bytes to maximize the detection 
rate10 studied the BUGOSS, a real-world benchmark for 
regression bugs found in the OSS-Fuzz. It is designed to be used 
to evaluate regression fuzzing techniques. Regression fuzzing 
techniques are fuzzing techniques that are specifically designed 
to find regressions, which are bugs that are introduced in a new 
version of a program. The BUGOSS benchmark can evaluate 
the effectiveness of regression fuzzing techniques by comparing 
their ability to find the bugs represented by the study artifacts11 
use reinforcement fuzzing, a newer approach that uses the 
learnings from past inputs to learn how to provide the inputs that 
would likely find bugs in the software. Reinforcement fuzzing 
is effective in finding bugs in a variety of software programs. 
However, there are several challenges to using reinforcement 
fuzzing, including the fact that it can be difficult to design good 
rewards and that it can be computationally expensive to learn 
policies. The benefits would be more efficient and faster than 
other normal fuzzers.

5. Conclusion
In conclusion, many methods exist to identify and secure 

vulnerabilities in the code. Fuzzing is one of the most advanced 
techniques, with its pitfalls, but it still has more coverage than 
any other method. It is also proven to find any issues skipped 
during the code reviews or the unit testing of the code base. It also 
ensures that software works in all possible attack scenarios that 
would otherwise be catastrophic. It would be more effective if it 
could be used in any continuous integration environment where 
all the checked-in code is scanned for potential issues. Along 
these lines, there are some fuzzers that are highly advanced in 
detecting bugs using reinforcement-based learning to find bugs 
by predicting potential inputs that would cause the program 
to crash faster. So, in final remarks, fuzzing is a way forward, 
and using novel approaches surveyed in the paper, it is evident 
that fuzzing would essentially become part of the development 
process at some point. 

6. References

1.	 Borzacchiello L, Coppa E, Demetrescu C. Fuzzing Symbolic 
Expressions. 2021 IEEE/ACM 43rd ICSE, 2021; 711-722.

2.	 Pham V-T. AFLSmart++: Smarter Greybox Fuzzing. 2023 IEEE/
ACM International Workshop on SBFT 2023; 76-79.

3.	 Kuts D. Towards Symbolic Pointers Reasoning in Dynamic 
Symbolic Execution. 2021 IVMEM 2021; 42-49.

4.	 Stephens N, Grosen J, Salls C, et al. Driller: Augmenting fuzzing 
through selective symbolic execution. NDSS ‘16 2016.

5.	 Zhang C, Chen J. Fuzzing Methods Recommendation Based on 
Feature Vectors. 2021 36th IEEE/ACM International Conference 
on Automated Software Engineering 2021; 1079-1081.

6.	 Dey A, Bhattacharya S, Chaki N. Byte label malware classification 
using image entropy: volume eight. Proceedings of the 2017 
IEEE International Conference on Advanced Computational and 
Communication Paradigms 2019; 17-29.

7.	 Hardy W, Chen L, Hou S, Ye Y, Li X. DL4MD: A deep learning 
framework for intelligent malware detection. Proceedings of the 
2016 Int’l Conf. Data Mining 2016; 61-67.

8.	 Popov I. Malware detection using machine learning based 
on word2vec embeddings of machine code instructions. 
Proceedings of the 2017 SSDSE 2017; 1-4.

9.	 Shao J, Zhou Y, Liu G, Zheng D. Optimized Mutation of Grey-
box Fuzzing: A Deep RL-based Approach. 2023 IEEE 12th 
DDCLS 2023; 1296-1300.

https://ieeexplore.ieee.org/document/9402056
https://ieeexplore.ieee.org/document/9402056
https://ieeexplore.ieee.org/document/10190407
https://ieeexplore.ieee.org/document/10190407
https://ieeexplore.ieee.org/document/9693768
https://ieeexplore.ieee.org/document/9693768
https://sites.cs.ucsb.edu/~vigna/publications/2016_NDSS_Driller.pdf
https://sites.cs.ucsb.edu/~vigna/publications/2016_NDSS_Driller.pdf
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678630
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678630
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678630
https://www.covert.io/research-papers/deep-learning-security/DL4MD-%20A%20Deep%20Learning%20Framework%20for%20Intelligent%20Malware%20Detection.pdf
https://www.covert.io/research-papers/deep-learning-security/DL4MD-%20A%20Deep%20Learning%20Framework%20for%20Intelligent%20Malware%20Detection.pdf
https://www.covert.io/research-papers/deep-learning-security/DL4MD-%20A%20Deep%20Learning%20Framework%20for%20Intelligent%20Malware%20Detection.pdf
https://ieeexplore.ieee.org/document/8071952
https://ieeexplore.ieee.org/document/8071952
https://ieeexplore.ieee.org/document/8071952
https://ieeexplore.ieee.org/document/10166955
https://ieeexplore.ieee.org/document/10166955
https://ieeexplore.ieee.org/document/10166955


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss:1Rathod P, et al.,

4

10.	 Kim J, Hong S. BugOss: A regression bug benchmark for 
empirical study of regression fuzzing techniques. 2023 IEEE 
Conference on Software Testing, Verification and Validation 
2023; 470-473. 

11.	 Böttinger K, Godefroid P, Singh R. Deep reinforcement fuzzing. 
2018 IEEE Security and Privacy Workshops 2018; 116-122.

https://ieeexplore.ieee.org/document/10132165
https://ieeexplore.ieee.org/document/10132165
https://ieeexplore.ieee.org/document/10132165
https://ieeexplore.ieee.org/document/10132165
https://ieeexplore.ieee.org/document/8424642
https://ieeexplore.ieee.org/document/8424642

	_17bjmcieekg4
	_qd3hcrmgf9us
	_xcz6492j94tx
	_GoBack
	_pduhdoh7pi70

