
SAVIYNT IGA Solution for Simplifying and Streamlining the IT Operations

Naveen Muppa*

10494 Red Stone Dr Collierville, Tennessee, USA

Citation: Naveen Muppa. SAVIYNT IGA Solution for Simplifying and Streamlining the IT Operations. J Artif Intell Mach Learn 
& Data Sci 2023, 1(1), 242-245. DOI: doi.org/10.51219/JAIMLD/Naveen-muppa/77

Received: 02 May, 2023; Accepted: 18 May, 2023; Published: 20 May, 2023

*Corresponding author: Naveen Muppa, 10494 Red Stone Dr Collierville, Tennessee, USA

Copyright: © 2023 Muppa N. Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection.., This is an 
open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.

1

 A B S T R A C T 

Saviynt Identity Governance and Administration (IGA) ensures that users have seamless access to necessary resources on the 
cloud, on-premises, or in hybrid environments. Irrespective of whether the critical assets reside on the cloud or on-premises, 
IGA enables organization to effectively bring together all user and accounts information in a single pane using automation jobs 
and connections.

Keywords: Enterprise Identity Cloud (EIC) converges IGA capabilities and provides predefined connectors that can be 
configured by administrators and application owners to integrate with external, identity-aware applications, such as REST-based 
applications, Office 365, Microsoft Azure, and business-critical procurement and sourcing applications such as SAP Ariba. These 
connectors support capabilities, such as import of identity and access data (full/incremental), account creation and status change 
(enable/disable), account modification (assign or revoke entitlements, modify account attributes), account deletion based on 
deprovisioning or access rejection.

As part of phase 1B implementation, the ITPN team will focus on creating the connectors for 5 applications – Azure AD, 
CyberArk, M365, Azure DevOps, and Ariba. This document describes the high-level architecture for the 5 connector applications.

The SDD describes design goals and considerations, provides a high-level overview of the system architecture, and describes 
the data design associated with the system, as well as the human-machine interface and operational scenarios. The high-level 
system design is further decomposed into low-level detailed design specifications for each system component, including internal 
communications, software, system integrity controls, and external interfaces. 

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Naveen-muppa/77

1. Introduction
Saviynt EIC provides predefined connectors that can 

be configured by administrators and application owners to 
integrate with external, identity-aware applications, such as 
Microsoft Active Directory, Salesforce, database and REST-
based applications, Workday, Epic, Cerner, Office 365, Google 
Apps, Amazon AWS, Microsoft Azure, and GitHub. Predefined 
connectors are also available for on-premises business critical 
applications, such as SAP, Oracle EBS, and PeopleSoft.

Phase 1B is implementing the 3 Out-of-the-box connectors 

(Azure AD, CyberArk, M365) and 2 custom REST Connector 
(Azure DevOps, Ariba).

Figure 1: Context diagram.

https://doi.org/10.51219/JAIMLD/Naveen-muppa/77
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/Naveen-muppa/77


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Muppa N.,

2

The connectors provide data transfer capability to and 
from the Saviynt IGA system and the target system. This data 
transfer would be for either ingesting data into Saviynt for the 
purposes of governance and certification or for provisioning and 
de-provisioning users and accounts in the target system.

The detail requirements document for each of the connector 
can be found at the links below.

• Azure AD
• Azure DevOps
• CyberArk PVWA
• Microsoft 365
• Ariba

The first phase of Phase 1B will only focus on importing 
accounts and users from the target systems. Once the users and 
accounts are ingested into the Saviynt system, certifications will 
be performed. Phase 1B will focus on a hybrid of Application 
Owner/Manager certifications initially.

The goal of access certification is to understand who has 
access to what to strengthen least privilege access model. For 
that to happen, we need to pull user info, entitlements (roles), 
and mapping of user-to-roles from the target systems. We need 
user and related access/permission information.

The Phase 1B design is primarily API based. Saviynt IGA 
would use oAuth2 compliant REST APIs with target systems 
such as Azure AD, Azure DevOps, M365, CyberArk and Ariba. 
Each of these target systems support Open APIs that are REST 
or SCIM (System for Cross-domain Identity Management 
specification) compliant. Saviynt connectors would store the 
configuration required for authentication/authorization and calls 
to get the users, accounts, and entitlements.

Wherever possible, the connectors will be supplemented 
with the scripts needed to maintain them easily.

 2. Design Considerations 
• Ariba REST API availability and usage – This was mitigated 

with the help of Ariba Procurement and Supplier team. 
The Saviynt REST connector can be used for importing 
into Saviynt. However, the Master Data API that enables 
this functionality does not support provisioning of users. 
The provisioning of users is supported by the Identity 
Provisioning SAP Ariba SCIM API that is currently in 
beta and available only to the SAP Task Center use case. 
This is an early access API with limited availability to a 
small set of customers. An alternative implementation for 
future provisioning use cases would be to use the SFTP 
Connector from Saviynt. This connector can query Saviynt 
IGA repository and upload a CSV file to target system FTP 
folder. The SAP scheduled job can then pick it from that 
SFTP folder.

• M365 Agent architecture needs to cover the long-term 
objectives. It must be maintainable. Where possible PaaS 
services should be used.

• CyberArk Identity Portal Licensing and SCIM API 
availability. The current installation of the CyberArk 
Privilege Vault Web Application (PVWA) doesn’t expose 
the SCIM API. Additionally, licenses must be purchased 
and SCIM Server must be configured. This is a must for the 
Saviynt CyberArk SCIM Connector.

• The primary goal of this project is to ingest all user accounts 
and entitlement data from target systems like Microsoft 
Azure AD, Ariba, CyberArk, M365, and ADO, into Saviynt 
IGA. 

• Additionally, once the entitlement data is in Saviynt, the 
application owners will run certification campaigns to certify 
the access and entitlements of individuals and groups.

• Where possible, the implementation will use Out-of-the-
box Connectors. When using REST/SCIM compliant APIs 
from the target host systems, the implementation will use 
Saviynt REST connectors. If the implementation is highly 
complex and is not covered by any of the built-in connectors 
the implementation will create custom code connectors.

• All connector implementations will be documented 
extensively for usage, maintainability, and extensibility.

• All connector JSON files will be stored and versioned in the 
project GIT repository in Azure DevOps.

• All connector JSON files will follow the documentation and 
best practices guidelines as provided by the Saviynt team.

3. Development Methods and Contingencies 
The Saviynt connector implementation uses several OOTB 

connectors. Each of these connectors can be configured to 
connect to target system REST endpoints. The design involved 
for this is primarily identifying target system APIs, and how they 
can be securely accessed from Saviynt. Each of the connectors 
would be hosted in a connector microservice. Sometimes the 
connectors do not exactly support the required integration 
between Saviynt and target systems. In these cases, custom 
connectors will be developed and hosted in these microservices.

Figure 2: EIC framework.

4. Architectural Strategies 
• Use of out-of-the-box Saviynt connectors. Wherever 

possible OOTB connectors are preferred to reduce 
development timeframes and need to testing custom code.

• Use of Saviynt REST connectors for integrating with target 
systems. Wherever needed Saviynt REST connector should 
be used to ingest user data from target API systems.

• Use of oAuth2 or OpenAI compliant REST/SCIM APIs. 
Industry standard authentication and swagger enabled 
protocols are preferrable when consuming REST/SCIM 
APIs from target systems.

• Use of Java for custom connector code. Saviynt uses java 
jar files for custom connector code. Therefore, we will 
create connectors using the same Spring Boot libraries.

• Use of .NET Web API for Azure DevOps API connectivity. 
Certain services run using delegated permissions from a 
service account. These services should be encapsulated in 
the .NET Web API.

https://gtus365.sharepoint.com/:w:/r/sites/IAMIdentityAccessManagement/Shared%20Documents/IAM%20Phase%20I/SG%204%20-%20Commercial%20Build/Phase%201B/Project%20Management/Planning/Business%20Requirements/Saviynt%20Phase%201B%20Azure%20AD%20Requirements%20Document_Draft_05.26.2023.docx?d=w8de9aa018d054f259c2f3b708267ea57&csf=1&web=1&e=6IwDKT
https://gtus365.sharepoint.com/:w:/r/sites/IAMIdentityAccessManagement/Shared%20Documents/IAM%20Phase%20I/SG%204%20-%20Commercial%20Build/Phase%201B/Project%20Management/Planning/Business%20Requirements/Saviynt%20Phase%201B%20DevOps%20Requirements%20Document_Draft_05.26.2023.docx?d=wc2e22c036e9f4162853dffa624f6b708&csf=1&web=1&e=OFheBI
https://gtus365.sharepoint.com/:w:/r/sites/IAMIdentityAccessManagement/Shared%20Documents/IAM%20Phase%20I/SG%204%20-%20Commercial%20Build/Phase%201B/Project%20Management/Planning/Business%20Requirements/Saviynt%20Phase%201B%20CyberArk%20Requirements%20Document_Draft_05.26.2023.docx?d=w9563f6cb0eaa43078ef7c5c08fa52aa1&csf=1&web=1&e=DLZjVR
https://gtus365.sharepoint.com/:w:/r/sites/IAMIdentityAccessManagement/Shared%20Documents/IAM%20Phase%20I/SG%204%20-%20Commercial%20Build/Phase%201B/Project%20Management/Planning/Business%20Requirements/Saviynt%20Phase%201B%20M365%20Requirements%20Document_Draft_05.26.2023.docx?d=wb50eeb02eff64e719fa9640ba46fde6c&csf=1&web=1&e=hueMnV
https://gtus365.sharepoint.com/:w:/r/sites/IAMIdentityAccessManagement/Shared%20Documents/IAM%20Phase%20I/SG%204%20-%20Commercial%20Build/Phase%201B/Project%20Management/Planning/Business%20Requirements/Saviynt%20Phase%201B%20Ariba%20Sourcing%20and%20Procurement%20Requirements%20Document_Draft_05.26.2023.docx?d=w3029250342e843ab89aa304074897b45&csf=1&web=1&e=LyslBs


3

Muppa N., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

• Future connector development will build a gateway of 
APIs used across multiple connectors. There will be a mix 
of custom code connectors, REST connectors and OOTB 
connectors used in future application integrations.

• The implementations will use IaaS and PaaS cloud services 
as needed for the connector integration.

• The implementation shall hook on to Saviynt’s internal error 
handling using the available error and exception sections in 
the JSON provided for the internal OOTB connectors. When 
implementing custom connectors, the developer should 
follow the same error and exception handling patterns.

• The system shall scale up and scale out as needed for 
handling connector traffic from different target systems.

• The current state IAM architecture has Saviynt IGA 
application servers hosted in the AWS cloud with a peering 
connection between the cloud network and on-premises 
network. The on-premises Saviynt client interacts with the 
database and active directory servers. 

• The future state of the IAM architecture for the downstream 
systems will onboard the numerous applications like 
Microsoft 365 SharePoint, and Teams applications, 
Ariba Procurement and Sourcing applications, CyberArk 
Password Vault application, Dynamics 365 etc. 

Figure 3: Actual diagram.

5. Goals and Guidelines 
The primary goal of this project is to ingest all user accounts 

and entitlement data from target systems like Microsoft Azure 
AD, Ariba, CyberArk, M365, and ADO, into Saviynt IGA.

Additionally, once the entitlement data is in Saviynt, the 
application owners will run certification campaigns to certify the 
access and entitlements of individuals and groups.

Where possible, the implementation will use Out-of-the-box 
Connectors. When using REST/SCIM compliant APIs from the 
target host systems, the implementation will use Saviynt REST 
connectors. If the implementation is highly complex and is not 
covered by any of the built-in connectors the implementation 
will create custom code connectors.

All connector implementations will be documented 
extensively for usage, maintainability, and extensibility.

All connector JSON files will be stored and versioned in the 
project GIT repository in Azure DevOps.

All connector JSON files will follow the documentation and 
best practices guidelines as provided by the Saviynt team.

All connectors will follow the mapping requirements as 
stated in the business requirements documents.

As most of the connector data transfer activity happens 
behind the scenes during a schedule import job execution, 

it is important to test the connector configurations and the 
import jobs for reliability, responsiveness, and durability. The 
configuration should not result in hung jobs and should fail 
promptly after a period of execution as mentioned in the timeout 
period parameter.

The connectors are hosted in a microservices container, and 
these containers are hosted at the edge either in a single tenant 
or multitenant model. Saviynt services are hosted in a single-
tenant edge model. As the number of connectors increases the 
edge services like container scaling parameters, elastic and RDS 
databases, MQ topic partitioning should be adjusted to optimize 
the performance of the Saviynt IGA system. A ticket should be 
opened with the Saviynt helpdesk to resolve performance related 
issues.

Performance requirements are the defined scalability or 
responsiveness expectations of specific workloads that are 
processed on a system.

Figure 4: SAVIANT cloud architecture.

6. System Architecture and Architecture Design
Saviynt EIC provides predefined connectors that can 

be configured by administrators and application owners to 
integrate with external, identity-aware applications, such as 
Microsoft Active Directory, Salesforce, database and REST-
based applications, Workday, Epic, Cerner, Office 365, Google 
Apps, Amazon AWS, Microsoft Azure, and GitHub. Predefined 
connectors are also available for on-premises business critical 
applications, such as SAP, Oracle EBS, and PeopleSoft.

Standard connectors support capabilities, such as import 
of identity and access data (full/incremental), password 
synchronization, account creation and status change (enable/
disable), account modification (assign or revoke entitlements, 
modify account attributes), account deletion based on 
deprovisioning or access rejection, password management, and 
management of AD/LDAP groups.

The above diagram depicts the Saviynt connector architecture 
for Azure AD, CyberArk, Azure DevOps, Ariba, and M365.

At the onset, an azure app registration with proper application 
permissions to graph and office 365 APIs is provisioned. Azure 
acts as the Identity provider for Office 365, Azure AD, CyberArk, 
and Azure DevOps Saviynt connectors. Ariba Connector uses 
SAP Ariba’s own Identity provider.

The following interfaces are used for the connectors below.

1. Azure AD – oAuth2 REST using the Graph APIs
2. Azure DevOps – oAuth2 REST using the VSTS APIs
3. CyberArk – oAuth2 SCIM API
4. M365 – oAuth2 REST using Graph and Office 365 APIs

Ariba – oAuth2 using the Ariba OpenAI.



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Muppa N.,

4

Figure 5: Future state architecture.

Figure 6: Connector architecture.

The general connector architecture is a pattern taken from 
the API gateway book. Each connector has a security system 
which acts as an application wrapper for the target system API 
connection. The application wrapper is called an endpoint. 
It provides an interface to configure the authentication, 
authorization, and search API calls to the target application.

A Security System represents the connection between EIC 
and the target application.

A Connected Application is the target application for which 
EIC manages the identity repository. 

An Endpoint is an instance of an application within the context 
of a security system. A Connector is a software component that 
enables communication between EIC and Azure through the 
Azure Management API. 

Import Job is a background scheduled job using crontab to 
import or provision data from the Azure AD system.

7. Azure AD and DEVOPS Connector Architecture

Figure 7: Azure IDP authentication.

EIC for Azure AD delivers comprehensive security 
management, governance, and intelligence for Azure AD 
accounts by continuously scanning objects, such as users, roles, 
groups, and applications, for any risky misconfiguration or 
unauthorized user access.

The above architecture diagram illustrates Saviynt’s Azure 
Connector architecture and communication with Azure AD. The 
right-side depicts the Azure and left side depicts the EIC. Azure 
AD Connector is used for reconciliation of all the users and 
accounts. Azure Management API is used for integration between 
EIC and Azure AD. Saviynt uses the Azure IDP to authenticate 
and authorize users based on the permissions granted to the 
tenant associated with the Saviynt connector registration. Once 
the AuthN/AuthZ routine is completed the subsequent calls to 
the graph API are performed using the access/refresh token 
procured from the authentication calls.

Azure AD connectors are triggered by import jobs. Azure AD 
import jobs perform the following:

On the first day: Saviynt import job performs a full import of 
objects (accounts, access, or users) to bring in all existing records 
from the Azure application to EIC. As part of this process, the 
records that are deleted in the target system are also identified 
and marked as inactive. Microsoft Graph API is used to keep 
track of users and groups imported from Azure AD to EIC. After 
it does a full import of users and groups, it stores a delta token 
in EIC.

On the nth day: After the first full import, an incremental 
import job for bringing in only the changes that are made in the 
target application after the last full import, is run. From the next 
run onwards, only the Azure AD objects that have been added, 
modified, or deleted after the first import operation are fetched 
for importing.

During incremental import, Microsoft Graph API uses the 
delta token to check and verify the users that are newly imported 
after the first full import. It skips already imported users and 
groups, and only imports the newly added users or groups after 
the full import to EIC. The incremental import performs an 
import of updated users and groups and newly added/removed 
users and groups to EIC. The incremental import job is run daily.

8. References

1. https://savantwealth.com/our-process/ 

2. https://www.saviantconsulting.com/blog/bi-maturity-model.aspx 

https://savantwealth.com/our-process/
https://www.saviantconsulting.com/blog/bi-maturity-model.aspx

	_Hlk163820540

