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 A B S T R A C T 
This research targets workload partitioning for GPUs, TPUs and CPUs in heterogeneous distributed systems. This paper 

focuses on the issues connected with the heterogeneity of the hardware, balanced loads, latency of data transfer and energy 
consumption. It highlights the characteristics of proactive scheduling algorithms for resources, which enhance the system’s 
efficiency and capability. These applications are selected in the areas of machine learning and artificial intelligence, big data and 
cloud computing and scientific computing and modelling to demonstrate how systems with heterogeneity can improve certain 
computational workloads. Finally, the study provides information on fault tolerance and cost-effectiveness as a way of finding 
efficient and effective ways of managing available resources for mixed-distributed environments.
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1. Introduction
The efficient management of computational resources in 

heterogeneous distributed systems is critical in optimizing 
performance and minimizing operational costs. The systems 
consist of these heterogeneous processing units-Graphics 
Processing Units (GPUs), Tensor Processing Units (TPUs) and 
Central Processing Units (CPUs), which perform particularly 
well at specialized computation tasks. GPUs are designed for 
parallel workloads, like deep learning and scientific simulations, 
where things are parallel; TPUs are optimized for neural 
network inference and training; CPUs offer versatility, good for 
things that aren’t parallel or have branching (instructions that 
cause them to go to a different path). These heterogeneous units 
must be scheduled, resources must be allocated and loads must 
be balanced so that they do not incur bottlenecks and so that 
the resources are used optimally. In this research, we present 
an analysis of the interactions between hardware architecture, 
workload characteristics and dynamic scheduling mechanisms. 

The technical frameworks discussed include containerized 
environments and resource orchestration, workload profiling 
and runtime optimization strategies. This research takes an 
important step in the direction of improving the productivity 
of these mixed-distributed systems by providing solutions for 
such issues as contention, thermal management and power 
consumption.

1.1. Resource Scheduling in Heterogeneous Systems

Workload distribution between computing units of different 
types, GPUs, TPUs and CPUs, requires resource scheduling 
in heterogeneous distributed systems. Traditional resource 
management approaches are designed to work for homogeneous 
systems and although capable, they do not fully exploit 
dedicated hardware, such as GPUs (graphics processing units) 
and TPUs (tensor processing units)1. As heterogeneous systems 
arise, we must develop algorithms for dynamically placing tasks 
across diverse processing units sensitive to item-level workload, 
available processing power and user-specified energy utilization.
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use of the resource based on workload demands.

Power-aware scheduling has been proposed by a variety 
of techniques, such as dynamic voltage and frequency scaling 
(DVFS) and energy-efficient job placement algorithms. DVFS 
lowers the frequency used by the processing units to fit the 
workload and vice versa. The goal of energy-aware job placement 
is to place tasks into processing units that have capabilities to 
provide good performance and energy efficiency for the device. 
In addition to such means, there are some applications that 
incorporate machine learning models that predict the workloads’ 
energy consumption and, consequently, perform scheduling 
optimization.

1.4. Fault tolerance and reliability in heterogeneous systems

In this environment, system dependability is more significant 
because failure characteristics and rates of heterogeneous 
computing platforms often differ - the heterogeneous array 
may contain, for instance, GPUs, TPUs and CPUs. In any of 
these processing units, some failures may cause a system to 
become unstable and may also lead to inefficiency. They have 
tackled these challenges by implementing other fault-tolerant 
mechanisms of the resource management system, which work in 
real-time to discover and rectify the faults.

Such methods as redundancy and checkpointing are more 
familiar when used in fault-tolerance systems. Redundancy is 
where instead of keeping one device that does a certain job, two 
or more such machines are employed; in case one fails, the other 
is there to take over without anyone noticing. Checkpointing 
saves the state periodically and so in the event of failure, it 
becomes easier to restore the system to the most recent previous 
stable state4. Furthermore, passive monitoring is commonly used 
to predict hardware failures before they occur since possible 
actions are to transfer resources to other locations in an attempt 
to avoid potential breakdowns.

Other mechanisms, including Paxos and Raft for the 
distributed consensus, are further discussed to maintain reliability 
in heterogeneous systems. These protocols aid in keeping data 
duplicated and synchronized so that computations can go on 
even with some nodes out of reach. Managed effectively, the 
inclusion of fault tolerance within the resource management 
strategy means that the system stays resilient in the face of 
hardware dysfunction, including high availability with minimal 
outages.

1.5. Scalability and adaptation to dynamic environments

In heterogeneous distributed systems, where the resource like 
CPU, GPU or even TPU is being dynamically allocated to cope 
with fluctuating workload as well as system context, scalability 
is a major challenge5. And these systems must scale horizontally, 
adding or removing processing units based on the workload.

Such elastic scaling solutions as Kubernetes and Apache 
Mesos have gained a lot of attention by offering a kind of 
dynamism, especially in the use of heterogeneous facilities to 
scale up or down as needed. They adapt the resources used by 
the system where the workload is required according to the 
processing requirements needed for the workload. However, 
achieving efficient scaling between different approximate 
hardware types poses definite challenges. Workload distribution 
across GPUs, TPUs and CPUs is a complex process: the system 
has to take into account not only the number of processing 

A few recently published papers at the Reinforcement 
Learning and Deep Discrete Optimization Workshop showed 
how recent scheduling algorithm advances can be used to predict 
where workloads should be placed to optimize performance 
metrics based on historical data using deep learning techniques. 
Furthermore, the problem’s inherent complexity is addressed 
through scheduling in heterogeneous environments using 
techniques like Reinforcement Learning (RL) and Multi 
Objectives Optimization (MOO). These methods aim to optimize 
power efficiency while minimizing response time with respect to 
throughput balancing2. In environments of distributed workload, 
it is necessary to avoid overload of particular processing units or 
to use impactfully resources by local and functional schedulers 
in a system. Thus, in addition, container orchestration systems 
like Kubernetes have been extended to support heterogeneous 
hardware by integrating native device drivers for GPUs and 
TPUs to provide dynamic resource allocation on the basis of 
task demand.

1.2. Workload partitioning and distribution strategies

Workload partitioning and distribution strategies that are 
efficient for a distributed environment, in which workloads and 
hardware accelerators are distributed, are important for balancing 
multiple modes in diverse hardware accelerators. In systems 
with hardware heterogeneity, tasks also need to be decomposed 
in a way that best takes advantage of the performance of each 
hardware unit (CPUs generally are better for doing low parallel 
tasks, GPUs and TPUs are better at highly parallel tasks like 
matrix multiplications or training deep learning models).

Task cloning was studied in3 as one method of automatic 
workload partitioning: complex tasks are split into several 
subtasks and these are assigned to the best hardware unit in 
terms of their computational capacity. In recent years, hybrid 
parallelism, having separate execution streams within a GPU 
or CPU, has been used to improve performance for batched 
operations in deep learning models ranging through frameworks 
such as TensorFlow and PyTorch. To implement these systems, 
we rely on both model parallelism and data parallelism strategies 
for efficient splitting of computational workloads. Also, we have 
a workload distribution scheme that includes load balancing and 
moving tasks between devices in order to avoid bottlenecks and 
devices that get utilized to maximum potential without under-
utilisation or over-utilisation.

Different models implement predictive analytics to forecast 
workloads and preemptively allocate resources in order to 
increase the accuracy of task scheduling. Further, in making the 
allocation of resources to tasks more intelligent and adaptive, 
machine learning-based methods are employed to optimize 
task mapping as a function of historical performance data. To 
minimize all kinds of hardware conflicts while maximizing 
total system performance, the challenge lies in balancing 
heterogeneous workloads.

1.3. Energy efficiency and power-aware resource management

One central concern in heterogeneous distributed systems is 
energy consumption because a dedicated hardware accelerator 
requires a high amount of power. The goal of power-aware 
resource management is to minimize energy consumption that is 
subject to a certain level of system performance and independence 
from energy grids. Hardware-level power measurement tools are 
utilized in these systems to monitor and dynamically adjust the 



3

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

units but also their performance, energy consumption and other 
factors6.

Further complicating the adaptation is the fact that we are 
operating in dynamic environments, with additional external 
factors such as varying network conditions, node availability 
and unpredictable user workloads. This research has resulted 
in the development of adaptive resource allocation algorithms 
capable of dynamically adjusting resource distribution for both 
optimized performance and lowered cost (Figure 1).

Figure 1: Resource Isolation and Virtualization.

Using resource isolation and virtualization, this diagram 
depicts efficient task execution without conflicts between 
workloads of different hardware types.

In the following, we describe an informative table 
summarizing the key resource management strategies that enable 
balancing GPU, TPU and CPU workloads in heterogeneous 
distributed systems7. The table illustrates some techniques, their 
use and the challenges that these techniques address.

The current table clearly explains in detail the resource 
management strategies in heterogeneous distributed systems 
along with the challenge of workload balancing of GPUs, TPUs 
and CPUs, fault tolerance, scalability and load balancing. Each 
strategy includes techniques that optimize performance and 
address system complexities. The essential property of robust 
scaling strategies and dynamic adaptation techniques can be used 
to satisfy the requirements of modern computing workloads for 
heterogeneous distributed systems, which provide the necessary 
flexibility and efficiency in the manner of using resources in the 
many processing units available.

Resource Management 
Strategy

Description Purpose Techniques/Methods Challenges Addressed

Resource Scheduling Involves dynamically allocating 
tasks to appropriate hardware 
based on workload requirements 
(CPU, GPU or TPU).

Maximize resource 
utilization, minimize latency 
and improve throughput.

Reinforcement Learning (RL)
Multi-Objective Optimization 
(MOO)
Kubernetes integration

Improper load balancing
Performance degradation
Inefficient resource 
usage

Workload Partitioning & 
Distribution

Efficient decomposition and 
distribution of tasks across 
CPUs, GPUs and TPUs to exploit 
hardware capabilities.

Ensure optimal usage of 
hardware accelerators 
(GPUs, TPUs) for specific 
workloads.

Task Cloning
Hybrid Parallelism
Data and Model Parallelism

Uneven workload 
distribution
Underutilization or 
overloading of devices

Energy-Aware Resource 
Management

Power-efficient scheduling of tasks 
across heterogeneous hardware 
to minimize energy consumption 
while maintaining performance.

Reduce energy consumption 
without compromising 
performance.

Dynamic Voltage and 
Frequency Scaling (DVFS)
Energy-Aware Scheduling
Predictive Energy Modeling

Power inefficiency
Balancing performance 
and energy consumption

Fault Tolerance & 
Reliability

Mechanisms to handle hardware 
failures or faults in CPUs, GPUs 
or TPUs, ensuring the system’s 
reliability and performance in the 
event of failures.

Enhance system robustness 
and availability.

Redundancy
Checkpointing
Distributed Consensus 
Protocols (Paxos, Raft)

System downtime
Inconsistent state after 
failure
Fault recovery 
complexity

Scalability & Adaptation The ability to scale resources 
horizontally and adapt to 
varying workloads in a dynamic 
environment.

Ensure flexible and 
responsive resource 
allocation as workloads 
change.

Elastic Scaling (e.g., 
Kubernetes)
Predictive Resource 
Allocation (using ML 
models)

Scalability across 
different hardware types
Handling resource 
demand fluctuations

Task Prioritization & QoS Prioritizing tasks based on 
workload urgency and quality-
of-service (QoS) requirements in 
heterogeneous environments.

Ensure critical tasks are 
executed first, maintaining 
performance levels for high-
priority workloads.

Task Prioritization 
Algorithms
Quality-of-Service (QoS) 
Policies
Resource Allocation 
Scheduling

Resource starvation
Managing latency and 
deadlines for time-
sensitive tasks

Load Balancing Distributes workloads across 
available processing units to 
avoid overloading any single unit, 
ensuring smooth operation and 
maximizing throughput.

Prevent bottlenecks and 
resource overloading.

Dynamic Load Balancing 
Algorithms
Distributed Load Balancing
Resource Migration

Uneven resource 
distribution
Bottlenecks in 
processing units

I n t e r - d e v i c e 
Communication

Efficient data exchange between 
heterogeneous hardware (CPUs, 
GPUs, TPUs) to optimize 
performance and reduce 
communication latency.

Improve inter-device 
communication efficiency 
and reduce overhead.

H i g h - P e r f o r m a n c e 
Interconnects (e.g., NVLink, 
InfiniBand)
Distributed Memory Models

Data transfer bottlenecks
High communication 
latency
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Resource Isolation & 
Virtualization

Ensures that workloads running on 
GPUs, TPUs and CPUs are isolated 
and don’t interfere with each 
other while virtualizing hardware 
resources for efficient usage.

Prevent interference between 
workloads and ensure 
efficient utilization of each 
resource.

Virtualization Technologies 
(e.g., Docker, VMs)
Resource Isolation 
Techniques (e.g., NUMA, 
groups)

Resource contention
Virtualization overhead
Inefficient isolation

Predictive Analytics for 
Resource Allocation

Predicts future resource 
requirements based on historical 
data, enabling proactive resource 
allocation to improve efficiency.

Optimize resource allocation 
and anticipate needs before 
they arise.

Machine Learning Models 
(e.g., neural networks, 
regression models)
Historical Data Analysis

Unpredictable workloads
Lack of accurate 
prediction
Dynamic environment

Figure 2: Resource Scheduling Flowchart.

In heterogeneous environments, this flowchart depicts a 
sequence of resource scheduling decisions as the decision 
making for assigning tasks to CPUs, GPUs or TPUs according 
to the characteristics of the workload.

This diagram shows how a workload on heterogeneous 
devices (CPUs, GPUs, TPUs) is partitioned and distributed. Task 
cloning and hybrid parallelism form the decision process here.

This flowchart illustrates the decision process for managing 
power and performance trade-offs8. It considers the energy 
efficient task scheduling techniques such as Dynamic Voltage 
and Frequency Scaling (DVFS).

This first diagram illustrates the fault tolerance integrated into 
the heterogeneous system. It deals with redundancy, checking 
out and system recovery protocols.

1.6. Applications of resource management in heterogeneous 
distributed systems

Balancing workloads across GPUs, TPUs and CPUs is 
an important problem that resource management strategies 
are increasingly important for in several high-performance 
computing domains. In general, these systems are used to govern 
machine learning, scientific computing, cloud computing, big 
data analytics and image processing.

In scientific computing, tasks such as simulations of 
molecular dynamics or weather modelling require significant 
computational power, where GPUs and TPUs can be employed 
to handle the parallelizable tasks, leaving CPUs to manage 
orchestration, I/O operations and system monitoring. Similarly, 
cloud computing services leverage heterogeneous environments 
to dynamically allocate resources based on user demand. This 
results in scalable and efficient infrastructure where workloads 
are balanced between CPUs for general-purpose processing 
and specialized processors (GPUs/TPUs) for high-performance 
tasks.

Figure 3: Workload Partitioning and Distribution.

Figure 4: Energy-Aware Scheduling Strategy.
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Figure 5: Fault Tolerance and Recovery Mechanism.

Figure 6: Applications in CPN with heterogeneous resources.

Big data analytics also benefits from resource management 
in these environments [10]. GPUs and TPUs accelerate data 
processing, enabling rapid analysis of large datasets, while 
CPUs manage the overall infrastructure and orchestration of data 
flow. In image processing and computer vision, GPUs and TPUs 
provide the computational capacity for handling large volumes 
of image data, making them crucial in industries like healthcare 
(e.g., for medical image analysis), autonomous driving and 
security surveillance systems.

1.7. Challenges in resource management in heterogeneous 
distributed systems

The resources in heterogeneous distributed systems that span 
GPUs, TPUs and CPUs are managed to present several challenges. 
The hardware itself is already heterogenous, which is one major 

challenge. Some devices like CPUs and GPUs and TPUs have 
such different architectures and performance characteristics. 
GPUs and TPUs are made to perform well at parallel processing 
such as deep learning and matrix computations while CPUs are 
suited for attending sequential processing as well as general 
purpose computation.

The problem of loading balancing8 is another challenge. 
In multiple types of processor systems, some devices can be 
overloaded while other devices can remain underutilized. And 
it’s hard to get the optimal load distribution due to the fact that 
every processor type has different memory and computational 
requirements and that here can lead to bottlenecks. Real time 
monitoring of system performance and redistributing workload 
to avoid resource starvation or overuse is required to have 
dynamic load balancing algorithms.

Data movement and communication latency also pose 
significant challenges. In systems that schedule tasks across 
devices, GPUs and TPUs often need to talk to CPUs or each other. 
High data transfer latency between these devices12 can severely 
degrade the overall performance of the system. Reducing these 
delays requires efficient protocols for communication and data 
transfer between all the nodes in the network and between them 
and the VMs.

Energy consumption and efficiency remain long-standing 
problems in heterogeneous distributed systems. The process of 
trying to balance energy spending and computational efficiency 
depends on the power consumption profile of the processors, 
which have many different architectures and it is hard to 
maintain a balance. Since data centers are becoming increasingly 
expensive, it is important to consider how to better manage 
resources and reduce energy consumption, using intelligent 
resource management strategies that take into account the GPUs, 
TPUs and CPUs that are used there.

1.8. Advantages of resource management in heterogeneous 
distributed systems

Heterogeneous distributed systems offer several notable 
advantages both in the strategic management of resources 
and by optimizing system performance, operational costs and 
scalability.

Performance optimization is one of the main benefits. 
These systems balance workloads between CPUs, GPUs and 
TPUs dynamically in order to place each task on the resource 
which will most effectively execute it, dramatically improving 
overall performance9. As a specific example, tasks like heavy 
parallel processing that rely on GPUs or TPUs for training data, 
for instance, deep learning, can be offloaded to those GPUs or 
TPUs, while tasks that are CPU heavy, such as data processing 
and control flow management, can be dedicated to the CPUs. 
Throughput in computationally demanding applications 
increases and it takes fewer resources to run those applications 
due to this fine-tuned allocation of resources.

An additional advantage is its scalability. In general, efficient 
scaling happens in heterogeneous distributed systems if our 
problem already has enough devices (more GPUs or TPUs) to 
accommodate growing workload needs. These systems easily 
accommodate small-size or large-scale workloads and can 
flexibly allocate resources based on real-time demand. 

Heterogeneous systems significantly benefit from the cost-
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effectiveness of the systems. These systems provide better 
resource utilisation, which means that companies can work at 
high performance without having to lay out large sums to invest 
in high-end hardware. By balancing the load across various 
processors, companies can make use of the existing resources to 
maximise their use without underspending expensive hardware 
like GPUs and TPUs while not overloading less expensive ones 
(CPUs).

Intelligent resource management improved energy efficiency 
as well. Systems can reduce the overall energy usage by large-
scale computations via efficient allocation of tasks according 
to the power consumption profiles. Improving fault tolerance 
additionally guarantees that if one resource fails the others will 
step in without a steep performance penalty11. As a result, it 
results in more resilient systems that can run satisfactorily even 
in the prese

2. Conclusion
In conclusion, this thesis concludes that efficient resource 

management in heterogeneous distributed systems, among 
GPUs, TPUs and CPUs, is necessary to maximize performance, 
scalability and energy efficiency. Deployment of computationally 
intensive applications is possible only by overcoming challenges 
such as hardware heterogeneity, load balancing and latency. 
The research also explores trade-offs between performance and 
energy consumption. However, in some cases, due to the long-
running tasks, execution on an energy-efficient device that is 
slightly slower will provide much power savings, making this 
a workable design. Another energy-saving strategy is idle time 
management, where during periods of no activity, processors are 
powered down to save energy. The system is sustainable and 
yet able to meet performance targets through efficient power 
management.

3. Appendix: Pseudocode

# Energy-Aware Resource Scheduling Pseudocode

# Define resources (CPUs, GPUs, TPUs)

resources = {

 “CPU”: {“type”: “CPU”, “power”: 50, “performance”: 2, “available”: True}, # Power in watts, performance units

 “GPU”: {“type”: “GPU”, “power”: 200, “performance”: 15, “available”: True},

 “TPU”: {“type”: “TPU”, “power”: 250, “performance”: 25, “available”: True}

}

# Define workloads

workloads = [

 {“task_id”: 1, “required_compute”: 30, “task_type”: “DeepLearning”, “deadline”: 100},

 {“task_id”: 2, “required_compute”: 10, “task_type”: “DataProcessing”, “deadline”: 200},

 {“task_id”: 3, “required_compute”: 15, “task_type”: “GraphicsRendering”, “deadline”: 150}

]

# Function to calculate energy efficiency of each resource

def calculate_energy_efficiency(resource):

 return resource[“performance”] / resource[“power”]

# Function to find the most suitable resource for a task

def find_best_resource_for_task(task):

 best_resource = None

 max_efficiency = -1

 

 # Check each available resource for suitability

 for resource_name, resource in resources.items():

 if resource[“available”] and task[“required_compute”] <= resource[“performance”]:

 efficiency = calculate_energy_efficiency(resource)

 if efficiency > max_efficiency:

 best_resource = resource

 max_efficiency = efficiency
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 return best_resource

# Function to schedule tasks on the most suitable resources

def schedule_tasks(workloads):

 for task in workloads:

 # Find the best resource for each task

 best_resource = find_best_resource_for_task(task)
 

 if best_resource:

 # Assign task to the resource

 print(f”Task {task[‘task_id’]} assigned to {best_resource[‘type’]} with efficiency {calculate_energy_efficiency(best_resource):.2f}”)

 best_resource[“available”] = False # Mark resource as occupied

 else:

 print(f”Task {task[‘task_id’]} could not be assigned due to insufficient resources.”)

# Function to reset resource availability for the next scheduling round

def reset_resources():

 for resource in resources.values():

 resource[“available”] = True

# Main scheduling loop

def main():

 # First scheduling round

 print(“Scheduling round 1:”)

 schedule_tasks(workloads)
 

 # Reset resources for the next round

 reset_resources()
 

 # Second scheduling round (different task set or changed conditions)

 print(“\nScheduling round 2:”)

 new_workloads = [

 {“task_id”: 4, “required_compute”: 40, “task_type”: “DeepLearning”, “deadline”: 120},

 {“task_id”: 5, “required_compute”: 20, “task_type”: “DataProcessing”, “deadline”: 180}

 ]

 schedule_tasks(new_workloads)

# Execute the main scheduling algorithm

if __name__ == “__main__”:

 main()
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