
Resource Management Strategies in Heterogeneous Distributed Systems

Anila Gogineni*

Citation: Gogineni A. Chaos Engineering in the Cloud-Native Era: Evaluating Distributed AI Model Resilience on Kubernetes. J
Artif Intell Mach Learn & Data Sci 2024, 2(2), 2182-2189. DOI: doi.org/10.51219/JAIMLD/anila-gogineni/478

Received: 02 September, 2024; Accepted: 18 September, 2024; Published: 20 September, 2024

*Corresponding author: Anila Gogineni, Independent Researcher, USA, E-mail: anila.ssn@gmail.com

Copyright: © 2024 Gogineni A., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 2 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/anila-gogineni/478

 A B S T R A C T
This research targets workload partitioning for GPUs, TPUs and CPUs in heterogeneous distributed systems. This paper

focuses on the issues connected with the heterogeneity of the hardware, balanced loads, latency of data transfer and energy
consumption. It highlights the characteristics of proactive scheduling algorithms for resources, which enhance the system’s
efficiency and capability. These applications are selected in the areas of machine learning and artificial intelligence, big data and
cloud computing and scientific computing and modelling to demonstrate how systems with heterogeneity can improve certain
computational workloads. Finally, the study provides information on fault tolerance and cost-effectiveness as a way of finding
efficient and effective ways of managing available resources for mixed-distributed environments.

Keywords: Resource management, Heterogeneous systems, Load balancing, GPU, TPU, CPU, Distributed computing,
Performance optimization, Scalability, Task scheduling

1. Introduction
The efficient management of computational resources in

heterogeneous distributed systems is critical in optimizing
performance and minimizing operational costs. The systems
consist of these heterogeneous processing units-Graphics
Processing Units (GPUs), Tensor Processing Units (TPUs) and
Central Processing Units (CPUs), which perform particularly
well at specialized computation tasks. GPUs are designed for
parallel workloads, like deep learning and scientific simulations,
where things are parallel; TPUs are optimized for neural
network inference and training; CPUs offer versatility, good for
things that aren’t parallel or have branching (instructions that
cause them to go to a different path). These heterogeneous units
must be scheduled, resources must be allocated and loads must
be balanced so that they do not incur bottlenecks and so that
the resources are used optimally. In this research, we present
an analysis of the interactions between hardware architecture,
workload characteristics and dynamic scheduling mechanisms.

The technical frameworks discussed include containerized
environments and resource orchestration, workload profiling
and runtime optimization strategies. This research takes an
important step in the direction of improving the productivity
of these mixed-distributed systems by providing solutions for
such issues as contention, thermal management and power
consumption.

1.1. Resource Scheduling in Heterogeneous Systems

Workload distribution between computing units of different
types, GPUs, TPUs and CPUs, requires resource scheduling
in heterogeneous distributed systems. Traditional resource
management approaches are designed to work for homogeneous
systems and although capable, they do not fully exploit
dedicated hardware, such as GPUs (graphics processing units)
and TPUs (tensor processing units)1. As heterogeneous systems
arise, we must develop algorithms for dynamically placing tasks
across diverse processing units sensitive to item-level workload,
available processing power and user-specified energy utilization.

https://doi.org/10.51219/JAIMLD/anila-gogineni/478
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/anila-gogineni/478

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Gogineni A.,

2

use of the resource based on workload demands.

Power-aware scheduling has been proposed by a variety
of techniques, such as dynamic voltage and frequency scaling
(DVFS) and energy-efficient job placement algorithms. DVFS
lowers the frequency used by the processing units to fit the
workload and vice versa. The goal of energy-aware job placement
is to place tasks into processing units that have capabilities to
provide good performance and energy efficiency for the device.
In addition to such means, there are some applications that
incorporate machine learning models that predict the workloads’
energy consumption and, consequently, perform scheduling
optimization.

1.4. Fault tolerance and reliability in heterogeneous systems

In this environment, system dependability is more significant
because failure characteristics and rates of heterogeneous
computing platforms often differ - the heterogeneous array
may contain, for instance, GPUs, TPUs and CPUs. In any of
these processing units, some failures may cause a system to
become unstable and may also lead to inefficiency. They have
tackled these challenges by implementing other fault-tolerant
mechanisms of the resource management system, which work in
real-time to discover and rectify the faults.

Such methods as redundancy and checkpointing are more
familiar when used in fault-tolerance systems. Redundancy is
where instead of keeping one device that does a certain job, two
or more such machines are employed; in case one fails, the other
is there to take over without anyone noticing. Checkpointing
saves the state periodically and so in the event of failure, it
becomes easier to restore the system to the most recent previous
stable state4. Furthermore, passive monitoring is commonly used
to predict hardware failures before they occur since possible
actions are to transfer resources to other locations in an attempt
to avoid potential breakdowns.

Other mechanisms, including Paxos and Raft for the
distributed consensus, are further discussed to maintain reliability
in heterogeneous systems. These protocols aid in keeping data
duplicated and synchronized so that computations can go on
even with some nodes out of reach. Managed effectively, the
inclusion of fault tolerance within the resource management
strategy means that the system stays resilient in the face of
hardware dysfunction, including high availability with minimal
outages.

1.5. Scalability and adaptation to dynamic environments

In heterogeneous distributed systems, where the resource like
CPU, GPU or even TPU is being dynamically allocated to cope
with fluctuating workload as well as system context, scalability
is a major challenge5. And these systems must scale horizontally,
adding or removing processing units based on the workload.

Such elastic scaling solutions as Kubernetes and Apache
Mesos have gained a lot of attention by offering a kind of
dynamism, especially in the use of heterogeneous facilities to
scale up or down as needed. They adapt the resources used by
the system where the workload is required according to the
processing requirements needed for the workload. However,
achieving efficient scaling between different approximate
hardware types poses definite challenges. Workload distribution
across GPUs, TPUs and CPUs is a complex process: the system
has to take into account not only the number of processing

A few recently published papers at the Reinforcement
Learning and Deep Discrete Optimization Workshop showed
how recent scheduling algorithm advances can be used to predict
where workloads should be placed to optimize performance
metrics based on historical data using deep learning techniques.
Furthermore, the problem’s inherent complexity is addressed
through scheduling in heterogeneous environments using
techniques like Reinforcement Learning (RL) and Multi
Objectives Optimization (MOO). These methods aim to optimize
power efficiency while minimizing response time with respect to
throughput balancing2. In environments of distributed workload,
it is necessary to avoid overload of particular processing units or
to use impactfully resources by local and functional schedulers
in a system. Thus, in addition, container orchestration systems
like Kubernetes have been extended to support heterogeneous
hardware by integrating native device drivers for GPUs and
TPUs to provide dynamic resource allocation on the basis of
task demand.

1.2. Workload partitioning and distribution strategies

Workload partitioning and distribution strategies that are
efficient for a distributed environment, in which workloads and
hardware accelerators are distributed, are important for balancing
multiple modes in diverse hardware accelerators. In systems
with hardware heterogeneity, tasks also need to be decomposed
in a way that best takes advantage of the performance of each
hardware unit (CPUs generally are better for doing low parallel
tasks, GPUs and TPUs are better at highly parallel tasks like
matrix multiplications or training deep learning models).

Task cloning was studied in3 as one method of automatic
workload partitioning: complex tasks are split into several
subtasks and these are assigned to the best hardware unit in
terms of their computational capacity. In recent years, hybrid
parallelism, having separate execution streams within a GPU
or CPU, has been used to improve performance for batched
operations in deep learning models ranging through frameworks
such as TensorFlow and PyTorch. To implement these systems,
we rely on both model parallelism and data parallelism strategies
for efficient splitting of computational workloads. Also, we have
a workload distribution scheme that includes load balancing and
moving tasks between devices in order to avoid bottlenecks and
devices that get utilized to maximum potential without under-
utilisation or over-utilisation.

Different models implement predictive analytics to forecast
workloads and preemptively allocate resources in order to
increase the accuracy of task scheduling. Further, in making the
allocation of resources to tasks more intelligent and adaptive,
machine learning-based methods are employed to optimize
task mapping as a function of historical performance data. To
minimize all kinds of hardware conflicts while maximizing
total system performance, the challenge lies in balancing
heterogeneous workloads.

1.3. Energy efficiency and power-aware resource management

One central concern in heterogeneous distributed systems is
energy consumption because a dedicated hardware accelerator
requires a high amount of power. The goal of power-aware
resource management is to minimize energy consumption that is
subject to a certain level of system performance and independence
from energy grids. Hardware-level power measurement tools are
utilized in these systems to monitor and dynamically adjust the

3

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

units but also their performance, energy consumption and other
factors6.

Further complicating the adaptation is the fact that we are
operating in dynamic environments, with additional external
factors such as varying network conditions, node availability
and unpredictable user workloads. This research has resulted
in the development of adaptive resource allocation algorithms
capable of dynamically adjusting resource distribution for both
optimized performance and lowered cost (Figure 1).

Figure 1: Resource Isolation and Virtualization.

Using resource isolation and virtualization, this diagram
depicts efficient task execution without conflicts between
workloads of different hardware types.

In the following, we describe an informative table
summarizing the key resource management strategies that enable
balancing GPU, TPU and CPU workloads in heterogeneous
distributed systems7. The table illustrates some techniques, their
use and the challenges that these techniques address.

The current table clearly explains in detail the resource
management strategies in heterogeneous distributed systems
along with the challenge of workload balancing of GPUs, TPUs
and CPUs, fault tolerance, scalability and load balancing. Each
strategy includes techniques that optimize performance and
address system complexities. The essential property of robust
scaling strategies and dynamic adaptation techniques can be used
to satisfy the requirements of modern computing workloads for
heterogeneous distributed systems, which provide the necessary
flexibility and efficiency in the manner of using resources in the
many processing units available.

Resource Management
Strategy

Description Purpose Techniques/Methods Challenges Addressed

Resource Scheduling Involves dynamically allocating
tasks to appropriate hardware
based on workload requirements
(CPU, GPU or TPU).

Maximize resource
utilization, minimize latency
and improve throughput.

Reinforcement Learning (RL)
Multi-Objective Optimization
(MOO)
Kubernetes integration

Improper load balancing
Performance degradation
Inefficient resource
usage

Workload Partitioning &
Distribution

Efficient decomposition and
distribution of tasks across
CPUs, GPUs and TPUs to exploit
hardware capabilities.

Ensure optimal usage of
hardware accelerators
(GPUs, TPUs) for specific
workloads.

Task Cloning
Hybrid Parallelism
Data and Model Parallelism

Uneven workload
distribution
Underutilization or
overloading of devices

Energy-Aware Resource
Management

Power-efficient scheduling of tasks
across heterogeneous hardware
to minimize energy consumption
while maintaining performance.

Reduce energy consumption
without compromising
performance.

Dynamic Voltage and
Frequency Scaling (DVFS)
Energy-Aware Scheduling
Predictive Energy Modeling

Power inefficiency
Balancing performance
and energy consumption

Fault Tolerance &
Reliability

Mechanisms to handle hardware
failures or faults in CPUs, GPUs
or TPUs, ensuring the system’s
reliability and performance in the
event of failures.

Enhance system robustness
and availability.

Redundancy
Checkpointing
Distributed Consensus
Protocols (Paxos, Raft)

System downtime
Inconsistent state after
failure
Fault recovery
complexity

Scalability & Adaptation The ability to scale resources
horizontally and adapt to
varying workloads in a dynamic
environment.

Ensure flexible and
responsive resource
allocation as workloads
change.

Elastic Scaling (e.g.,
Kubernetes)
Predictive Resource
Allocation (using ML
models)

Scalability across
different hardware types
Handling resource
demand fluctuations

Task Prioritization & QoS Prioritizing tasks based on
workload urgency and quality-
of-service (QoS) requirements in
heterogeneous environments.

Ensure critical tasks are
executed first, maintaining
performance levels for high-
priority workloads.

Task Prioritization
Algorithms
Quality-of-Service (QoS)
Policies
Resource Allocation
Scheduling

Resource starvation
Managing latency and
deadlines for time-
sensitive tasks

Load Balancing Distributes workloads across
available processing units to
avoid overloading any single unit,
ensuring smooth operation and
maximizing throughput.

Prevent bottlenecks and
resource overloading.

Dynamic Load Balancing
Algorithms
Distributed Load Balancing
Resource Migration

Uneven resource
distribution
Bottlenecks in
processing units

I n t e r - d e v i c e
Communication

Efficient data exchange between
heterogeneous hardware (CPUs,
GPUs, TPUs) to optimize
performance and reduce
communication latency.

Improve inter-device
communication efficiency
and reduce overhead.

H i g h - P e r f o r m a n c e
Interconnects (e.g., NVLink,
InfiniBand)
Distributed Memory Models

Data transfer bottlenecks
High communication
latency

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Gogineni A.,

4

Resource Isolation &
Virtualization

Ensures that workloads running on
GPUs, TPUs and CPUs are isolated
and don’t interfere with each
other while virtualizing hardware
resources for efficient usage.

Prevent interference between
workloads and ensure
efficient utilization of each
resource.

Virtualization Technologies
(e.g., Docker, VMs)
Resource Isolation
Techniques (e.g., NUMA,
groups)

Resource contention
Virtualization overhead
Inefficient isolation

Predictive Analytics for
Resource Allocation

Predicts future resource
requirements based on historical
data, enabling proactive resource
allocation to improve efficiency.

Optimize resource allocation
and anticipate needs before
they arise.

Machine Learning Models
(e.g., neural networks,
regression models)
Historical Data Analysis

Unpredictable workloads
Lack of accurate
prediction
Dynamic environment

Figure 2: Resource Scheduling Flowchart.

In heterogeneous environments, this flowchart depicts a
sequence of resource scheduling decisions as the decision
making for assigning tasks to CPUs, GPUs or TPUs according
to the characteristics of the workload.

This diagram shows how a workload on heterogeneous
devices (CPUs, GPUs, TPUs) is partitioned and distributed. Task
cloning and hybrid parallelism form the decision process here.

This flowchart illustrates the decision process for managing
power and performance trade-offs8. It considers the energy
efficient task scheduling techniques such as Dynamic Voltage
and Frequency Scaling (DVFS).

This first diagram illustrates the fault tolerance integrated into
the heterogeneous system. It deals with redundancy, checking
out and system recovery protocols.

1.6. Applications of resource management in heterogeneous
distributed systems

Balancing workloads across GPUs, TPUs and CPUs is
an important problem that resource management strategies
are increasingly important for in several high-performance
computing domains. In general, these systems are used to govern
machine learning, scientific computing, cloud computing, big
data analytics and image processing.

In scientific computing, tasks such as simulations of
molecular dynamics or weather modelling require significant
computational power, where GPUs and TPUs can be employed
to handle the parallelizable tasks, leaving CPUs to manage
orchestration, I/O operations and system monitoring. Similarly,
cloud computing services leverage heterogeneous environments
to dynamically allocate resources based on user demand. This
results in scalable and efficient infrastructure where workloads
are balanced between CPUs for general-purpose processing
and specialized processors (GPUs/TPUs) for high-performance
tasks.

Figure 3: Workload Partitioning and Distribution.

Figure 4: Energy-Aware Scheduling Strategy.

5

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

Figure 5: Fault Tolerance and Recovery Mechanism.

Figure 6: Applications in CPN with heterogeneous resources.

Big data analytics also benefits from resource management
in these environments [10]. GPUs and TPUs accelerate data
processing, enabling rapid analysis of large datasets, while
CPUs manage the overall infrastructure and orchestration of data
flow. In image processing and computer vision, GPUs and TPUs
provide the computational capacity for handling large volumes
of image data, making them crucial in industries like healthcare
(e.g., for medical image analysis), autonomous driving and
security surveillance systems.

1.7. Challenges in resource management in heterogeneous
distributed systems

The resources in heterogeneous distributed systems that span
GPUs, TPUs and CPUs are managed to present several challenges.
The hardware itself is already heterogenous, which is one major

challenge. Some devices like CPUs and GPUs and TPUs have
such different architectures and performance characteristics.
GPUs and TPUs are made to perform well at parallel processing
such as deep learning and matrix computations while CPUs are
suited for attending sequential processing as well as general
purpose computation.

The problem of loading balancing8 is another challenge.
In multiple types of processor systems, some devices can be
overloaded while other devices can remain underutilized. And
it’s hard to get the optimal load distribution due to the fact that
every processor type has different memory and computational
requirements and that here can lead to bottlenecks. Real time
monitoring of system performance and redistributing workload
to avoid resource starvation or overuse is required to have
dynamic load balancing algorithms.

Data movement and communication latency also pose
significant challenges. In systems that schedule tasks across
devices, GPUs and TPUs often need to talk to CPUs or each other.
High data transfer latency between these devices12 can severely
degrade the overall performance of the system. Reducing these
delays requires efficient protocols for communication and data
transfer between all the nodes in the network and between them
and the VMs.

Energy consumption and efficiency remain long-standing
problems in heterogeneous distributed systems. The process of
trying to balance energy spending and computational efficiency
depends on the power consumption profile of the processors,
which have many different architectures and it is hard to
maintain a balance. Since data centers are becoming increasingly
expensive, it is important to consider how to better manage
resources and reduce energy consumption, using intelligent
resource management strategies that take into account the GPUs,
TPUs and CPUs that are used there.

1.8. Advantages of resource management in heterogeneous
distributed systems

Heterogeneous distributed systems offer several notable
advantages both in the strategic management of resources
and by optimizing system performance, operational costs and
scalability.

Performance optimization is one of the main benefits.
These systems balance workloads between CPUs, GPUs and
TPUs dynamically in order to place each task on the resource
which will most effectively execute it, dramatically improving
overall performance9. As a specific example, tasks like heavy
parallel processing that rely on GPUs or TPUs for training data,
for instance, deep learning, can be offloaded to those GPUs or
TPUs, while tasks that are CPU heavy, such as data processing
and control flow management, can be dedicated to the CPUs.
Throughput in computationally demanding applications
increases and it takes fewer resources to run those applications
due to this fine-tuned allocation of resources.

An additional advantage is its scalability. In general, efficient
scaling happens in heterogeneous distributed systems if our
problem already has enough devices (more GPUs or TPUs) to
accommodate growing workload needs. These systems easily
accommodate small-size or large-scale workloads and can
flexibly allocate resources based on real-time demand.

Heterogeneous systems significantly benefit from the cost-

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Gogineni A.,

6

effectiveness of the systems. These systems provide better
resource utilisation, which means that companies can work at
high performance without having to lay out large sums to invest
in high-end hardware. By balancing the load across various
processors, companies can make use of the existing resources to
maximise their use without underspending expensive hardware
like GPUs and TPUs while not overloading less expensive ones
(CPUs).

Intelligent resource management improved energy efficiency
as well. Systems can reduce the overall energy usage by large-
scale computations via efficient allocation of tasks according
to the power consumption profiles. Improving fault tolerance
additionally guarantees that if one resource fails the others will
step in without a steep performance penalty11. As a result, it
results in more resilient systems that can run satisfactorily even
in the prese

2. Conclusion
In conclusion, this thesis concludes that efficient resource

management in heterogeneous distributed systems, among
GPUs, TPUs and CPUs, is necessary to maximize performance,
scalability and energy efficiency. Deployment of computationally
intensive applications is possible only by overcoming challenges
such as hardware heterogeneity, load balancing and latency.
The research also explores trade-offs between performance and
energy consumption. However, in some cases, due to the long-
running tasks, execution on an energy-efficient device that is
slightly slower will provide much power savings, making this
a workable design. Another energy-saving strategy is idle time
management, where during periods of no activity, processors are
powered down to save energy. The system is sustainable and
yet able to meet performance targets through efficient power
management.

3. Appendix: Pseudocode

Energy-Aware Resource Scheduling Pseudocode

Define resources (CPUs, GPUs, TPUs)

resources = {

 “CPU”: {“type”: “CPU”, “power”: 50, “performance”: 2, “available”: True}, # Power in watts, performance units

 “GPU”: {“type”: “GPU”, “power”: 200, “performance”: 15, “available”: True},

 “TPU”: {“type”: “TPU”, “power”: 250, “performance”: 25, “available”: True}

}

Define workloads

workloads = [

 {“task_id”: 1, “required_compute”: 30, “task_type”: “DeepLearning”, “deadline”: 100},

 {“task_id”: 2, “required_compute”: 10, “task_type”: “DataProcessing”, “deadline”: 200},

 {“task_id”: 3, “required_compute”: 15, “task_type”: “GraphicsRendering”, “deadline”: 150}

]

Function to calculate energy efficiency of each resource

def calculate_energy_efficiency(resource):

 return resource[“performance”] / resource[“power”]

Function to find the most suitable resource for a task

def find_best_resource_for_task(task):

 best_resource = None

 max_efficiency = -1

 # Check each available resource for suitability

 for resource_name, resource in resources.items():

 if resource[“available”] and task[“required_compute”] <= resource[“performance”]:

 efficiency = calculate_energy_efficiency(resource)

 if efficiency > max_efficiency:

 best_resource = resource

 max_efficiency = efficiency

7

Gogineni A., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

 return best_resource

Function to schedule tasks on the most suitable resources

def schedule_tasks(workloads):

 for task in workloads:

 # Find the best resource for each task

 best_resource = find_best_resource_for_task(task)

 if best_resource:

 # Assign task to the resource

 print(f”Task {task[‘task_id’]} assigned to {best_resource[‘type’]} with efficiency {calculate_energy_efficiency(best_resource):.2f}”)

 best_resource[“available”] = False # Mark resource as occupied

 else:

 print(f”Task {task[‘task_id’]} could not be assigned due to insufficient resources.”)

Function to reset resource availability for the next scheduling round

def reset_resources():

 for resource in resources.values():

 resource[“available”] = True

Main scheduling loop

def main():

 # First scheduling round

 print(“Scheduling round 1:”)

 schedule_tasks(workloads)

 # Reset resources for the next round

 reset_resources()

 # Second scheduling round (different task set or changed conditions)

 print(“\nScheduling round 2:”)

 new_workloads = [

 {“task_id”: 4, “required_compute”: 40, “task_type”: “DeepLearning”, “deadline”: 120},

 {“task_id”: 5, “required_compute”: 20, “task_type”: “DataProcessing”, “deadline”: 180}

]

 schedule_tasks(new_workloads)

Execute the main scheduling algorithm

if __name__ == “__main__”:

 main()

4. References

1.	 Aggarwal Meenakshi, Khullar Vikas, Goyal Nitin, Rastogi
Rashi, Singh Aman and Yelamos Vanessa, Albahar Marwan.
Privacy preserved collaborative transfer learning model with
heterogeneous distributed data for brain tumor classification.
International Journal of Imaging Systems and Technology, 2023.

2.	 Thouheed Ahmed, Syed Kumar, Vinoth V, Mahesh TR,
Prasad L, Velmurugan AK, Muthukumaran V, Niveditha VR.
FedOPT: federated learning-based heterogeneous resource
recommendation and optimization for edge computing. Soft
Computing, 2024.

3.	 Anoushee Milad, Fartash Mehdi, Akbari Torkestani Dr. Javad.
An intelligent resource management method in SDN based fog
computing using reinforcement learning. Computing, 2023;106.

4.	 Bader J, Lehmann F, Thamsen L, Leser U and Kao O.
“Lotar: Locally predicting workflow task runtimes for resource
management on heterogeneous infrastructures,” Future
Generation Computer Systems, 2024;150: 171-185.

5.	 Buyya Rajkumar, Ilager Shashikant, Arroba Patricia. Energy-
Efficiency and Sustainability in New Generation Cloud
Computing: A Vision and Directions for Integrated Management
of Data Centre Resources and Workloads, 2023.

https://www.researchgate.net/publication/375558289_Privacy_preserved_collaborative_transfer_learning_model_with_heterogeneous_distributed_data_for_brain_tumor_classification
https://www.researchgate.net/publication/375558289_Privacy_preserved_collaborative_transfer_learning_model_with_heterogeneous_distributed_data_for_brain_tumor_classification
https://www.researchgate.net/publication/375558289_Privacy_preserved_collaborative_transfer_learning_model_with_heterogeneous_distributed_data_for_brain_tumor_classification
https://www.researchgate.net/publication/375558289_Privacy_preserved_collaborative_transfer_learning_model_with_heterogeneous_distributed_data_for_brain_tumor_classification
https://www.researchgate.net/publication/375558289_Privacy_preserved_collaborative_transfer_learning_model_with_heterogeneous_distributed_data_for_brain_tumor_classification
https://www.researchgate.net/publication/377237648_FedOPT_federated_learning-based_heterogeneous_resource_recommendation_and_optimization_for_edge_computing
https://www.researchgate.net/publication/377237648_FedOPT_federated_learning-based_heterogeneous_resource_recommendation_and_optimization_for_edge_computing
https://www.researchgate.net/publication/377237648_FedOPT_federated_learning-based_heterogeneous_resource_recommendation_and_optimization_for_edge_computing
https://www.researchgate.net/publication/377237648_FedOPT_federated_learning-based_heterogeneous_resource_recommendation_and_optimization_for_edge_computing
https://www.researchgate.net/publication/377237648_FedOPT_federated_learning-based_heterogeneous_resource_recommendation_and_optimization_for_edge_computing
https://www.researchgate.net/publication/366838727_An_intelligent_resource_management_method_in_SDN_based_fog_computing_using_reinforcement_learning
https://www.researchgate.net/publication/366838727_An_intelligent_resource_management_method_in_SDN_based_fog_computing_using_reinforcement_learning
https://www.researchgate.net/publication/366838727_An_intelligent_resource_management_method_in_SDN_based_fog_computing_using_reinforcement_learning
https://arxiv.org/abs/2309.06918
https://arxiv.org/abs/2309.06918
https://arxiv.org/abs/2309.06918
https://arxiv.org/abs/2309.06918
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3248
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3248
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3248
https://onlinelibrary.wiley.com/doi/full/10.1002/spe.3248

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Gogineni A.,

8

6.	 https://link.springer.com/article/10.1007/s11042-023-16399-2.

7.	 https://ieeexplore.ieee.org/document/10415079.

8.	 Zahra A and N Mansouri. “A comprehensive survey on scheduling
algorithms using fuzzy systems in distributed environments,”
Artificial intelligence review, 2024;57.

9.	 https://arxiv.org/abs/2306.04207.

10.	 h t tps : / /www.sc ienced i rec t . com/sc ience /a r t i c l e /p i i /
S2307187723002924?via%3Dihub.

11.	 https://arxiv.org/abs/2305.01974.

12.	 https://ieeexplore.ieee.org/document/10673918.

https://link.springer.com/article/10.1007/s11042-023-16399-2
https://ieeexplore.ieee.org/document/10415079
https://link.springer.com/article/10.1007/s10462-023-10632-y
https://link.springer.com/article/10.1007/s10462-023-10632-y
https://link.springer.com/article/10.1007/s10462-023-10632-y
https://arxiv.org/abs/2306.04207
https://www.sciencedirect.com/science/article/pii/S2307187723002924?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2307187723002924?via%3Dihub
https://arxiv.org/abs/2305.01974
https://ieeexplore.ieee.org/document/10673918

