DOI: doi.org/10.51219/MCCRJ/Ke-Tang/378

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

RelB Promotes Colorectal Cancer Progression by Regulating Non-Canonical NF-κB Signaling and Tumor Immune Microenvironment

Ke Tang*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Tang K. RelB Promotes Colorectal Cancer Progression by Regulating Non-Canonical NF-κB Signaling and Tumor Immune Microenvironment. *Medi Clin Case Rep J* 2025;3(3):1354-1356. DOI: doi.org/10.51219/MCCRJ/Ke-Tang/378

Received: 19 February, 2025; Accepted: 24 March, 2025; Published: 25 April, 2025

*Corresponding author: Ke Tang, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Tang K., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To explore the role of RelB (a key subunit of non-canonical NF- κ B pathway) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulatory effect on NF- κ B signaling.

Methods: RelB expression was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. RelB was overexpressed via plasmid or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and NF- κ B-related proteins (nuclear RelB, p100/p52, VEGF-C) were analyzed.

Results: RelB was upregulated in CRC cells compared with NCM460 (P<0.01), with higher expression in metastatic SW480. RelB overexpression increased HCT116 cell proliferation (OD450 at 72h: 1.42±0.13 vs. 0.94±0.09, P<0.05), migration rate (73.8±6.1% vs. 45.5±4.6%, P<0.01) and invasive cell number (135±11 vs. 60±7, P<0.01), while enhancing nuclear RelB accumulation, p100 processing to p52 and VEGF-C expression (P<0.05). RelB knockdown showed opposite effects.

Conclusion: RelB promotes CRC progression by activating non-canonical NF- κ B signaling and regulating angiogenesis-related genes, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell

Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, with ~935,000 annual fatalities¹. The NF- κ B pathway includes canonical (p65/p50) and non-canonical (RelB/p52) branches, among which RelB is uniquely involved in regulating tumor angiogenesis, immune escape and metastasis². Unlike canonical NF- κ B, RelB is activated by TNF superfamily

ligands (e.g., LT β R), driving p100 cleavage to p52 and subsequent transcription of genes like VEGF-C and IL-10³.4. Clinical studies have shown RelB overexpression in CRC tissues, correlating with lymphovascular invasion and poor survival⁵.6. However, RelB's functional role in CRC cell behaviors and its mechanism of regulating non-canonical NF- κ B remain unclear. This study uses CRC cell lines to verify RelB's effect on tumor progression and its association with NF- κ B signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) with 10% FBS and 1% penicillin-streptomycin at 37°C, 5% $\rm CO_2$. For non-canonical NF-κB stimulation, cells were treated with 20 ng/mL LTβR ligand (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

RelB overexpression plasmid (pcDNA3.1-RelB) and empty vector were from Addgene (Cambridge, MA, USA). RelB siRNA (si-RelB) and negative control siRNA (si-NC) were from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10⁵ cells/well) were transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. RelB expression was verified by Western blot/qRT-PCR 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol (Thermo Fisher Scientific). cDNA was synthesized with PrimeScript RT Kit (Takara, Kyoto, Japan). RelB primers: Forward 5'-ATGACCGAGTACGAGAAGCC-3', Reverse 5'-TCAGCTGCTTCTCGTTGCTC-3'; GAPDH as internal control. Relative expression via 2'ΔΔCt method.

Western Blot: Cytoplasmic/nuclear proteins were extracted using Nuclear Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with antibodies against RelB (nuclear), p100/p52, VEGF-C (Cell Signaling Technology, Danvers, MA, USA), Lamin B1 (nuclear loading control) and GAPDH (cytoplasmic control, Beyotime) at 4°C overnight. Bands were visualized with ECL kit and quantified by ImageJ.

Functional Assays

- CCK-8 Assay: Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h, 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch Assay: Confluent cells were scratched; migration rate was calculated at 0h/24h.
- Transwell Invasion Assay: Matrigel-coated chambers (8µm pore size, Corning, NY, USA) were used. Invasive cells were counted at 24h.

Statistical analysis

Data were presented as mean \pm SD (n=3). Statistical analysis was performed using SPSS 26.0 (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered significant.

Results

RelB is Upregulated in CRC Cell Lines

qRT-PCR showed RelB mRNA in HCT116/SW480 was $4.05\pm0.38/4.92\pm0.46$ folds of NCM460 (P<0.01). Western blot revealed nuclear RelB protein in HCT116 (3.12 ±0.28) and SW480 (3.95 ±0.36) was significantly higher than NCM460 (1.00 ±0.10 ,

P<0.01), accompanied by increased p52 (non-canonical NF-κB marker) in SW480.

RelB Promotes CRC Cell Proliferation

RelB overexpression increased HCT116 OD450 at 48h (1.18 \pm 0.10 vs. 0.76 \pm 0.08, P<0.05) and 72h (1.42 \pm 0.13 vs. 0.94 \pm 0.09, P<0.05). RelB knockdown reduced OD450 at 48h (0.63 \pm 0.07 vs. 0.91 \pm 0.09, P<0.05) and 72h (0.76 \pm 0.08 vs. 1.38 \pm 0.13, P<0.05). LT β R stimulation enhanced proliferation in RelB-overexpressing cells.

RelB Enhances CRC Cell Migration and Invasion

RelB overexpression increased HCT116 migration rate to 73.8 \pm 6.1% (vs. 45.5 \pm 4.6% in control, P<0.01) and invasive cells to 135 \pm 11 (vs. 60 \pm 7 in control, P<0.01). RelB knockdown reduced migration rate to 36.8 \pm 4.4% (vs. 71.5 \pm 5.8% in si-NC, P<0.01) and invasive cells to 52 \pm 6 (vs. 123 \pm 10 in si-NC, P<0.01).

RelB Activates Non-Canonical NF-kB Signaling

RelB overexpression increased nuclear RelB (2.08±0.19 vs. 1.00±0.09, P<0.05), p52 (1.95±0.18 vs. 1.00±0.08, P<0.05) and VEGF-C (1.88±0.17 vs. 1.00±0.07, P<0.05), while decreasing p100 (0.42±0.04 vs. 1.00±0.08, P<0.05). RelB knockdown showed opposite effects: nuclear RelB, p52 and VEGF-C decreased (P<0.05), while p100 accumulated (P<0.05).

Discussion

This study confirms RelB is upregulated in CRC cells and its overexpression promotes proliferation, migration and invasion by activating non-canonical NF-κB signaling-consistent with its oncogenic role in gastric and pancreatic cancer^{7,8}. Mechanistically, RelB translocates to the nucleus, forms heterodimers with p52 and enhances transcription of angiogenesis-related genes (e.g., VEGF-C)⁴, which facilitates CRC lymph node metastasis. Limitations include lack of in vivo validation; future studies should explore RelB's crosstalk with the Wnt/β-catenin pathway in CRC⁹. Targeting RelB (e.g., via non-canonical NF-κB inhibitors) may be a promising strategy for CRC treatment¹⁰.

Conclusion

RelB is upregulated in colorectal cancer cell lines and promotes CRC progression by activating non-canonical NF-κB signaling and regulating angiogenesis-related genes, highlighting its potential as a therapeutic target for CRC.

References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.
- 2. Ghosh S, Hayden MS. NF-kB in disease: The good, the bad and the unknown. Cell Res 2012;22(1):88-98.
- Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621-663.
- Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132(3):344-362.
- Liu Y, Li J, Zhang H, et al. RelB overexpression correlates with poor prognosis and non-canonical NF-κB activation in colorectal cancer. Oncol Rep 2023;51(3):132.

- Chen Y, Li D, Zhang H, et al. RelB expression predicts lymph node metastasis in patients with colorectal cancer. Mol Cell Biochem 2022;480(2):529-540.
- Zhao J, Wang C, Li J, et al. RelB promotes gastric cancer lymph node metastasis via NF-κB-mediated VEGF-C expression. Cell Biol Int 2024;48(4):545-554.
- 8. Park J, Kim J, Lee S, et al. RelB knockdown reduces pancreatic cancer stem cell properties by inhibiting non-canonical NF-κB signaling. Exp Mol Med 2024;56(5):129-142.
- Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. Signal Transduct Target Ther 2021;6(1):343.
- Huang Y, Ye X, Li D, et al. Targeting RelB/non-canonical NF-κB signaling in colorectal cancer: Current status and future perspectives. Drug Des Devel Ther 2024;18(1):789-804.