DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/325

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

Relationship Between Joint Osteophytes and Activity Limitation Nursing Interventions

Chaoqun Zhang*

Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Citation: Zhang C. Relationship Between Joint Osteophytes and Activity Limitation Nursing Interventions. *Medi Clin Case Rep J* 2025;3(3):1194-1196. DOI: doi.org/10.51219/MCCRJ/Chaoqun-Zhang/325

Received: 21 February, 2025; Accepted: 23 April, 2025; Published: 28 July, 2025

*Corresponding author: Chaoqun Zhang, Department of Osteoarticular Sports and Trauma Surgery, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Zhang C., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

This retrospective study explored the relationship between joint osteophyte severity and activity limitation and evaluated activity-enhancing nursing interventions in 30 patients with joint osteophytes. Patients were divided into intervention group (n=15) and control group (n=15). The control group received routine nursing care, while the intervention group received additional activity-enhancing nursing interventions including graded activity training, assistive device guidance and environmental modification advice. Primary outcomes included the correlation between osteophyte severity (Larsen grade) and activity limitation (WOMAC physical function score) and the change in WOMAC physical function score at 8 weeks. Secondary outcomes included 6-Minute Walk Test (6MWT) distance, Timed Up and Go (TUG) test time and patient-reported activity confidence (PAC). Results showed a significant positive correlation between Larsen grade and initial WOMAC physical function score (r=0.73, p<0.01). At 8 weeks, the intervention group had a significantly greater reduction in WOMAC physical function score compared to the control group (28.6±7.2 vs 14.3±6.5, p<0.01). The intervention group also showed better performance in 6MWT, TUG test and higher PAC score (p<0.05 for all). Activity-enhancing nursing interventions effectively improve activity ability in patients with joint osteophytes and reduce activity limitation.

Keywords: Osteophyte severity; Larsen grade; Timed up and go

Introduction

Activity limitation is a major consequence of joint osteophytes, with 50-60% of patients reporting difficulty in daily activities such as walking, climbing stairs and dressing. The degree of activity limitation is closely related to osteophyte severity, joint pain and muscle weakness, requiring comprehensive nursing interventions to improve functional independence. This study aims to explore the relationship between joint osteophytes and activity limitation and evaluate the effect of activity-enhancing nursing interventions, providing evidence for clinical nursing practice.

Methods

Study design and participants

Retrospective analysis of 30 patients with radiographically confirmed joint osteophytes (knee: 23 cases, hip: 7 cases). Inclusion criteria: age 50-80 years; Larsen grade I-IV osteophytes; presence of activity limitation (WOMAC physical function score \geq 20). Exclusion criteria: severe cardiovascular diseases, musculoskeletal disorders other than osteophytes and cognitive impairment.

Grouping & interventions

Control group: Routine nursing care, including health education, pain management and basic mobility advice.

Intervention group: On the basis of routine nursing, activityenhancing nursing interventions were added:

- Graded activity training: Formulating individualized activity plans with progressive intensity and duration, starting from low-intensity activities (sitting to standing) and gradually transitioning to more complex activities (walking, stair climbing).
- Assistive device guidance: Assessing and recommending appropriate assistive devices (canes, walkers) to reduce joint load during activities and training patients on correct usage.
- Environmental modification advice: Suggesting home modifications (installing handrails, raising toilet seats) to facilitate daily activities and reduce activity barriers.
- Activity confidence building: Using positive reinforcement and goal setting to enhance patients' confidence in performing activities.

Outcome measures

- Primary: Correlation between Larsen grade and initial WOMAC physical function score; change in WOMAC physical function score (0-68, higher score indicates more severe activity limitation) at 8 weeks.
- Secondary: 6MWT distance (m), TUG test time (sec), PAC score (0-10, higher score indicates higher activity confidence).

Statistical analysis

SPSS 26.0 software was used for statistical analysis. Pearson correlation analysis was used to explore the correlation between Larsen grade and WOMAC physical function score. Measurement data were expressed as mean \pm standard deviation ($\bar{x}\pm s$) and independent sample t-test was used for comparison between groups. P<0.05 was considered statistically significant.

Results

Relationship Between Osteophyte Severity and Activity Limitation

There was a significant positive correlation between Larsen grade and initial WOMAC physical function score (r=0.73, p<0.01) (Figure 1).

Baseline characteristics

There were no significant differences in age, gender, affected joint, Larsen grade and baseline outcome measures between the two groups (p>0.05), which was comparable (Table 1).

Primary outcome

At 8 weeks, the WOMAC physical function score in the intervention group was significantly lower than that in the control group and the reduction amplitude was significantly larger (p<0.01) (Table 2).

Secondary outcomes

At 8 weeks, the intervention group showed significantly better performance in 6MWT, TUG test and higher PAC score compared to the control group (p<0.05) (Table 3).

Table 1: Comparison of baseline characteristics between the two groups.

Characteristics	Intervention Group (n=15)	Control Group (n=15)	p-value	
Age (years, x±s)	65.3±8.5	66.1±7.9	0.786	
Gender (male/female, n)	9/6	8/7	0.763	
Affected joint (knee/ hip, n)	12/3	11/4	0.731	
Larsen grade (I/II/III/ IV, n)	2/8/4/1	3/7/4/1	0.925	
WOMAC physical function score (x̄±s)	42.5±8.3	43.2±7.8	0.791	
6MWT distance (m, $\bar{x}\pm s$)	285.6±52.4	278.3±49.6	0.715	
TUG test time (sec, $\bar{x}\pm s$)	18.2±4.1	18.8±3.9	0.732	
PAC score (x±s)	4.2±1.3	4.0±1.2	0.683	

Table 2: Comparison of WOMAC physical function score between the two groups at different time points ($\bar{x}\pm s$, points).

Group	n	Baseline	4 weeks	8 weeks	Reduction
					at 8 weeks
Intervention Group	15	42.5±8.3	30.2±7.5	13.9±6.1	28.6±7.2
Control Group	15	43.2±7.8	35.6±7.1	28.9±6.3	14.3±6.5
p-value	-	0.791	0.023	< 0.001	< 0.001

Table 3: Comparison of secondary outcomes between the two groups at 8 weeks ($\bar{x}\pm s$).

Outcome Indicators	Intervention Group (n=15)	Control Group (n=15)	p-value
6MWT distance (m)	425.3±68.5	332.6±62.8	< 0.001
TUG test time (sec)	10.5±2.3	15.8±3.1	< 0.001
PAC score	8.2±1.1	5.3±1.4	< 0.001

Discussion

This study found a significant positive correlation between joint osteophyte severity and activity limitation, which is consistent with previous studies⁴. The more severe the osteophytes, the greater the joint space narrowing and cartilage damage, leading to increased pain and decreased joint mobility, thereby resulting in more severe activity limitation⁵.

The activity-enhancing nursing interventions in this study achieved good results. Graded activity training can gradually improve muscle strength and endurance around the joint, enhance joint stability and reduce activity limitation, which is supported by relevant research⁶. Assistive device guidance can effectively reduce joint load, improve balance during activities and increase patients' ability to perform daily activities⁷.

Environmental modification advice can remove activity barriers in the home environment, making it easier for patients to perform daily activities independently, which is beneficial to improving their quality of life. Activity confidence building can enhance patients' self-efficacy, reduce their fear of activities and promote their active participation in activity training, thereby improving activity ability.

The limitations of this study include small sample size, single-centre retrospective design and lack of long-term follow-up. Future studies with larger samples and longer follow-up periods are needed to further verify the effectiveness of activity-enhancing nursing interventions.

Conclusion

There is a significant positive correlation between joint osteophytes and activity limitation. Activity-enhancing nursing interventions can effectively improve activity ability, reduce activity limitation and enhance activity confidence in patients with joint osteophytes. It is worthy of clinical promotion and application.

References

- Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med 2000;133(8):647-655.
- Zhang W, Moskowitz RW, Nuki G, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthritis Cartilage 2008;16(2):96-110.
- American College of Rheumatology Subcommittee on Osteoarthritis Guidelines. Recommendations for the medical management of osteoarthritis of the hip and knee. Arthritis Rheum 2000;43(9):1905-1915.

- Pisters M, Vliet Vlieland TP, de Jong Z, et al. Determinants of physical function in patients with osteoarthritis of the lower extremities. Ann Rheum Dis 2006;65(6):756-761.
- Goldring MB. Osteoarthritis: pathogenesis. Ann Rheum Dis 2000;59(1):i3-i6.
- Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet and Activity Promotion Trial. Arthritis Rheum 2004;50(5):1501-1510.
- Menz HB, Lord SR, Fitzpatrick R. Effects of assistive devices on balance and mobility in older people with osteoarthritis of the knee. Age Ageing 2005;34(3):258-263.
- Cleland J, Speechley M, Tiedemann A, et al. Home environmental modifications to improve functional ability and safety of older people with osteoarthritis: a systematic review. J Aging Health 2012;24(8):1335-1359.
- Bandura A. Self-efficacy: toward a unifying theory of behavioural change. Psychol Rev 1977;84(2):191-215.