
Real-Time Applications with Blazor and SignalR

Sai Vaibhav Medavarapu*

Citation: Medavarapu SV. Real-Time Applications with Blazor and SignalR. J Artif Intell Mach Learn & Data Sci 2022, 1(1), 975-
979. DOI: doi.org/10.51219/JAIMLD/sai-vaibhav-medavarapu/232

Received: 04 March, 2022; Accepted: 12 March, 2022; Published: 14 March, 2022

*Corresponding author: Sai Vaibhav Medavarapu, USA, E-mail: vaibhav.medavarapu@gmail.com

Copyright: © 2022 Medavarapu SV., This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/sai-vaibhav-medavarapu/232

 A B S T R A C T 
This paper explores the integration of Blazor and SignalR for developing real-time web applications. Blazor, a web framework for 

building interactive client-side web UI with. NET, combined with SignalR, a library for adding real-time web functionality, offers 
significant potential for creating dynamic and responsive applications. This study delves into the architecture, implementation, 
and performance aspects of using Blazor and SignalR together, showcasing experimental results that highlight the efficacy of this 
integration. The findings demonstrate that Blazor and SignalR can efficiently handle real-time updates, making them ideal for 
various applications, including chat applications, live dashboards, and collaborative tools.

Keywords: Blazor, SignalR, Real-Time Applications, Web Development, .NET

1. Introduction
The demand for real-time web applications has surged in 

recent years, driven by the need for interactive and dynamic 
user experiences. Traditional web development techniques of- 
ten fall short in meeting these demands due to their reliance on 
continuous polling or refresh cycles to update content. Blazor, a 
framework developed by Microsoft, enables developers to build 
rich web applications using C# and .NET instead of JavaScript1. 
SignalR, another Microsoft technology, sim- plifies the process 
of adding real-time web functionality to applications2.

Blazor represents a significant shift in web development by 
allowing developers to write client-side web UI using .NET, 
thus leveraging the extensive ecosystem and tooling available to 
.NET developers. Unlike traditional approaches that rely heavily 
on JavaScript for client-side interactions, Blazor allows for 
the creation of interactive web applications using C#. This not 
only unifies the development stack but also reduces the learning 
curve for developers familiar with .NET technologies3. Blazor 
supports both server-side and client-side hosting models, with 
Blazor Server providing the benefits of a .NET backend while 
Blazor WebAssembly allows for running C# code directly in the 
browser4.

SignalR, on the other hand, is a robust library for adding real-
time web functionality to applications. It enables server- side 
code to push content to connected clients instantly, facili- tating 
the creation of features such as live chat, real-time noti- fications, 
and streaming data updates5. SignalR abstracts the complexities 
of managing WebSocket connections, providing a simple API 
that supports various transport protocols, including WebSockets, 
Server-Sent Events, and Long Polling6. This flexibility ensures 
SignalR can be used in environments with varying network 
capabilities and client support.

The integration of Blazor and SignalR promises to address the 
challenges associated with building real-time web applications7. 
Blazor provides a seamless way to build modern web applications 
using a single language and runtime, while SignalR ensures 
that these applications can communicate in real-time8. This 
combination is particularly beneficial for scenarios requiring 
high interactivity and low latency, such as collaborative editing 
tools, live data dashboards, online gaming, and financial trading 
platforms9.

Real-time web applications require efficient handling of 
numerous simultaneous connections and rapid dissemination 
of updates, which can be challenging with traditional request- 

https://doi.org/10.51219/JAIMLD/sai-vaibhav-medavarapu/232
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/sai-vaibhav-medavarapu/232


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Medavarapu SV.,

2

response models. SignalR mitigates these challenges by 
maintaining persistent connections between clients and the server, 
enabling instantaneous data push from the server to the client. 
This capability is crucial for applications that demand real- time 
data synchronization across multiple users and devices10.

Blazor enhances this by offering a robust framework for 
building rich, client-side interactions without the need for 
JavaScript. By using C#, developers can leverage their existing 
knowledge and the extensive .NET ecosystem to build sophis- 
ticated front-end applications. Blazor’s component-based ar- 
chitecture allows for the development of modular and reusable 
UI components, streamlining the development process and 
improving maintainability11.

This paper investigates the architecture, implementation, and 
performance aspects of using Blazor and SignalR together. The 
main contributions of this paper are as follows:

• We provide an in-depth analysis of the integration be- 
tween Blazor and SignalR, highlighting the architectural 
considerations and implementation details12.

• We conduct a series of experiments to evaluate the 
performance of real-time applications built with Blazor and 
SignalR under various conditions13.

• We present experimental results that demonstrate the effi- 
cacy of Blazor and SignalR in handling real-time updates 
with low latency and acceptable resource consumption14.

• We discuss the potential use cases and advantages of using 
Blazor and SignalR for real-time web applications15.

The rest of this paper is organized as follows: Section II 
reviews related work on real-time web applications, Blazor, 
and SignalR. Section III describes the experimental setup and 
methodology used to evaluate the performance of the Blazor 
and SignalR integration. Section IV presents the results of our 
experiments. Section V discusses the implications of our findings 
and potential areas for future research. Finally, Section VI 
concludes the paper.

2. Related Work
Numerous studies have explored various aspects of real- 

time web development, particularly focusing on technologies 
such as SignalR and frameworks like Blazor. SignalR has 
been extensively examined for its capability to provide real-
time updates in web applications8. SignalR facilitates real-time 
communication by enabling server-side code to push updates to 
connected clients, thus minimizing the latency associated with 
traditional HTTP requests16. This makes SignalR particularly 
suitable for applications requiring instantaneous data updates, 
such as live chat systems and real-time dashboards6.

Blazor, on the other hand, has been gaining attention as 
a promising framework for building client-side applications 
with .NET1. Blazor allows developers to write interactive 
web applications using C#, leveraging the rich ecosystem of 
.NET libraries and tools3. This is in contrast to traditional web 
development frameworks that rely heavily on JavaScript, thus 
presenting a unified development stack for developers who are 
proficient in .NET4.

The combination of SignalR and Blazor has been inves- 
tigated in several studies. For instance, Williams and Gomez 
conducted a performance evaluation of Blazor and WebAssem- 

bly, highlighting the efficiency of Blazor in handling client- side 
interactions with minimal overhead11. Similarly, Brown explored 
the use of SignalR for real-time notifications, demonstrating 
its effectiveness in reducing latency and enhancing user 
engagement2.

Moreover, several implementations have showcased the 
practical applications of these technologies. Liu and Zhang 
analyzed the performance of SignalR in real-time web 
applications, focusing on its scalability and responsiveness 
under different user loads13. Their findings suggest that SignalR 
can efficiently manage multiple concurrent connections, mak- 
ing it a viable solution for large-scale real-time applications. 
Additionally, research by Kim and Chen has demonstrated the 
integration of SignalR with microservices to create scalable real-
time applications7. This approach leverages the flexibility and 
modularity of microservices architecture, combined with the 
real-time communication capabilities of SignalR, to build robust 
and scalable web applications.

In the context of Blazor, Carter’s book “Advanced SignalR” 
delves into the intricacies of building real-time web applications, 
providing practical insights and best practices for integrating 
SignalR with Blazor9. Furthermore, Adams’ work on real-time 
web applications with Blazor and SignalR offers a comprehensive 
guide to developing interactive and dynamic web applications, 
emphasizing the synergies between these two technologies17.

Despite the growing body of research, there is still a gap in 
the literature regarding the detailed analysis of the combined use 
of Blazor and SignalR. Most studies focus on either Blazor or 
SignalR in isolation, with limited exploration of their integration. 
This paper aims to fill this gap by providing an in-depth analysis 
of their integration and performance.

Garcia’s study on real-time user interactions using Blazor 
and SignalR highlighted the user experience improvements 
that these technologies can bring to collaborative platforms14. 
Their research focused on how the responsiveness of the user 
interface can be significantly enhanced by leveraging Sig- nalR’s 
capabilities to push updates in real-time, thus creating a more 
seamless and interactive experience.

Furthermore, Roberts and Patel examined the use of SignalR 
for real-time data streaming in IoT applications, illustrating the 
versatility and robustness of SignalR in handling continuous 
data streams from multiple sensors and devices10. Their findings 
indicate that SignalR can be effectively integrated into IoT 
architectures to provide real-time monitoring and control 
functionalities.

In summary, while existing research has laid a solid foun- 
dation for understanding the individual capabilities of Blazor 
and SignalR, there is a need for further investigation into 
their combined use. This paper contributes to the literature by 
providing empirical evidence and practical insights into the 
integration of these technologies, highlighting their potential to 
transform real-time web development.

3. Experimentation
To evaluate the performance and practicality of integrating 

Blazor with SignalR, we conducted a series of experiments. We 
developed a sample real-time chat application using Blazor for 
the front-end and SignalR for the real-time communication layer. 
The application was tested under various conditions, including 
different user loads and message frequencies.



3

Medavarapu SV., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:1

3.1. Setup

The experimental setup included a server running ASP.
NET Core with SignalR and a client implemented with Blazor 
WebAssembly. The server was hosted on a cloud-based virtual 
machine with 4 vCPUs and 8GB of RAM, running a Linux- 
based operating system. The client devices varied from high- end 
desktops to mid-range laptops and mobile devices to simulate 
diverse real-world usage scenarios.

The application architecture comprised a Blazor We- 
bAssembly front-end that communicated with the SignalR 
hub hosted on the server. The SignalR hub was responsible for 
managing client connections and broadcasting messages. A 
relational database (SQL Server) was used to store chat history 
and user information, ensuring data persistence and reliability. 
For the experimental setup, we ensured that all clients and 
servers were connected over a stable and high-speed network 
to minimize the impact of network variability on the results. 
The cloud infrastructure provided consistent performance char- 
acteristics, and we utilized Azure Monitor to track and log 
performance metrics in real-time.

3.2. Metrics

Key metrics evaluated included:

• Message Delivery Latency: The time taken for a mes- sage 
to travel from the sender to all connected clients.

• Server CPU Usage: The percentage of CPU resources 
utilized by the server.

• Memory Consumption: The amount of memory used by the 
server during the experiment.

• Network Throughput: The volume of data transmitted 
between the server and clients per unit time.

• User Experience: Measured through responsiveness and 
smoothness of interactions on client devices.

These metrics were chosen to provide a comprehensive view 
of the system’s performance under different loads. Addition- 
ally, network throughput and bandwidth usage were monitored 
to assess the efficiency of data transmission.

3.3. Scenarios

We tested the application under several scenarios to simulate 
real-world usage patterns:

• Scenario 1: Low Load - 10 users sending messages at a 
frequency of 1 message per second.

• Scenario 2: Moderate Load - 50 users sending messages at a 
frequency of 5 messages per second.

• Scenario 3: High Load - 100 users sending messages at a 
frequency of 10 messages per second.

• Scenario 4: Burst Load - Sudden spike to 200 users sending 
messages at a frequency of 20 messages per second for a 
short duration.

Each scenario was run for a duration of 30 minutes, and 
the metrics were recorded at regular intervals. The burst load 
scenario was specifically designed to test the system’s ability to 
handle sudden spikes in traffic, which is common in real- world 
applications.

3.4. Tools and methodology

We utilized several tools to conduct our experiments:

• JMeter - For generating user loads and simulating chat 
messages. JMeter allowed us to create realistic user behavior 
patterns and measure the performance of the application 
under load.

• Grafana - For real-time monitoring of server metrics such as 
CPU usage, memory consumption, and network throughput. 
Grafana dashboards provided visual insights into the 
performance characteristics of the system.

• Wireshark - For analyzing network traffic and ensur- ing 
efficient data transmission. Wireshark helped us to monitor 
packet-level details and identify any network bottlenecks.

• Blazor Performance Tools - For assessing client-side 
performance, including rendering times and responsive- 
ness. 

These tools provided detailed metrics on how the Blazor 
application performed on various client devices. The experiments 
were repeated multiple times to ensure consistency and reliability 
of results. Data was collected and averaged across these runs to 
account for any anomalies or variations.

3.5. Experimental procedure

The experimental procedure involved the following steps:

• Setup and Initialization: Configure the server and client 
environments, initialize the SignalR hub, and deploy the 
Blazor WebAssembly application.

• Load Generation: Use JMeter to simulate user behavior by 
generating chat messages at specified frequencies for each 
scenario.

• Monitoring and Data Collection: Utilize Grafana and Azure 
Monitor to track server performance metrics, and Wireshark 
to capture network traffic data.

• Performance Assessment: Measure message delivery latency, 
server CPU usage, memory consumption, and network 
throughput. Assess user experience through responsiveness 
and smoothness of interactions on client devices.

• Data Analysis: Analyze the collected data to identify 
performance trends and bottlenecks. Calculate average, 
minimum, and maximum values for each metric.

• Repeat and Validate: Repeat the experiments to vali- date the 
results and ensure reproducibility.

This systematic approach ensured that our experiments were 
thorough and the results were reliable and reproducible.

4. Results
The experimental results are summarized in Table I. The data 

indicates that the Blazor and SignalR integration can handle high 
message frequencies with minimal latency.

Table I: Performance metrics.

Number 
of Users

Message 
Frequency (msg/s) 

Avg. Latency 
(ms) 

CPU 
Usage (%) 

Memory 
Usage (MB)

10
50
100
200

1
5
10
20

50
60
70
85

10
20
35
50

200
300
450
700

4.1. Latency

Figure 1 shows the average message delivery latency across 
different scenarios. The latency remained relatively low, even 
as the number of users and message frequency increased. This 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Medavarapu SV.,

4

indicates that the SignalR and Blazor integration efficiently 
handles real-time communication without significant delays.

The results demonstrate that the average latency increases 
slightly as the load increases. For instance, at a low load of 10 
users with 1 message per second, the latency was approximately 
50ms. At a high load of 200 users with 20 messages per second, 
the latency increased to 85ms. This gradual increase suggests that 
the system is capable of scaling effectively while maintaining 
acceptable performance.

Figure 1: Average message delivery latency.

4.2. CPU usage

Figure 2 illustrates the server CPU usage under different 
loads. As expected, CPU usage increased with the number of 
users and message frequency. However, the increase was man- 
ageable, indicating that the server could handle the additional 
load without becoming a bottleneck.

Figure 2: Average message delivery latency.

The CPU usage results show a significant but controlled 
increase as the load intensifies. For example, CPU usage was 
around 10% at a low load, which rose to 50% under the highest 
load scenario. This demonstrates that the server infrastructure can 
accommodate higher loads with appropriate scaling strategies.

4.3. Memory consumption

Memory consumption is a critical metric for assessing the 
efficiency of real-time applications. Figure 3 shows the memory 
usage of the server across different scenarios. The results indicate 
that memory usage increases with the number of users and 
message frequency but remains within acceptable limits.

The memory usage data reveals that the server’s memory 
consumption grows proportionally with the load. At a low 
load, the server used approximately 200MB of memory, which 
increased to 700MB under the highest load scenario. This 

trend underscores the importance of optimizing memory usage 
and employing efficient data handling techniques in real-time 
applications.

Figure 3: Average message delivery latency.

4.4. Network throughput

Network throughput is another crucial factor in real-time 
applications, as it determines the volume of data that can be 
transmitted between the server and clients. Figure 4 depicts the 
network throughput observed during the experiments.

Figure 4: Average message delivery latency.

The network throughput results show a steady increase with 
higher message frequencies and user counts. This indicates that 
the system can handle increased data transmission efficiently. For 
instance, the throughput was relatively low at 10 users with 1 
message per second but increased significantly with 200 users 
and 20 messages per second. These findings high- light the need 
for efficient data serialization and compression techniques to 
optimize network usage.

4.5. User experience

User experience was evaluated based on responsiveness 
and smoothness of interactions on client devices. Feedback 
was collected from test users regarding their experience with 
the application under different loads. Overall, users reported 
a positive experience, noting that the application remained 
responsive even under high load conditions. Minor delays 
were observed during the burst load scenario, but they did not 
significantly impact the overall user experience.

Summary of Findings The experiments conducted provided 
valuable insights into the performance and scalability of the 



5

Medavarapu SV., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:1

Blazor and SignalR integration for real-time applications. The 
key findings are as follows:

• Latency: The system maintained low latency across different 
load scenarios, ensuring timely delivery of mes- sages.

• CPU Usage: Server CPU usage increased with load 
but remained within acceptable limits, indicating good 
scalability.

• Memory Consumption: Memory usage grew proportion- 
ally with the number of users and message frequency but 
stayed manageable.

• Network Throughput: The system effectively handled 
increased data transmission, highlighting the need for 
efficient data handling techniques.

• User Experience: Users reported a responsive and smooth 
experience, even under high load conditions, with minor 
delays only during burst load scenarios.

These findings confirm that Blazor and SignalR are well- 
suited for developing real-time web applications, providing 
a robust and scalable solution capable of handling high user 
engagement and data transmission requirements.

5. Discussion
The results demonstrate that the integration of Blazor and 

SignalR is capable of supporting real-time applications with 
substantial user engagement and low latency. The observed 
increase in CPU usage and latency with higher message fre- 
quencies and user counts is within acceptable limits for most 
real-time applications. This suggests that Blazor and SignalR can 
be effectively used for scenarios such as collaborative editing 
tools, live data dashboards, and real-time notifications15.

One of the significant findings from our experiments is the 
scalability of the Blazor and SignalR integration. The system 
was able to handle an increasing number of users and message 
frequencies with only a gradual increase in latency and CPU 
usage, indicating that the architecture is robust enough to support 
high-demand applications13. This scalability is cru- cial for 
applications like online gaming and financial trading platforms, 
where low latency and high throughput are essential12.

Another important aspect is the user experience. The 
integration of Blazor and SignalR provides a seamless and 
respon- sive user interface, which is vital for applications 
requiring real-time interaction, such as collaborative editing 
tools and live data dashboards14. The ability to push updates to 
the client instantly without requiring page refreshes significantly 
enhances the interactivity and usability of the application10.

The experimental results also highlight the potential for 
optimizing resource consumption. While the CPU usage in- 
creased with higher message frequencies and user loads, it 
remained within acceptable limits, suggesting that further 
optimizations could be explored to enhance performance even 
further11. Techniques such as load balancing, efficient data 
serialization, and optimizing SignalR’s transport protocols 
could be investigated in future work to improve scalability and 
efficiency18.

In conclusion, the integration of Blazor and SignalR offers a 
powerful solution for developing real-time web applications. The 
experimental results validate the efficacy of this combination in 
handling real-time updates with low latency and manageable 

resource consumption. Future research could focus on optimizing 
performance further and exploring more complex real-time 
scenarios to fully leverage the capabilities of Blazor and SignalR.

6. Conclusion
This paper has presented a detailed analysis of using Blazor 

and SignalR for building real-time web applications. The 
experimental results validate that this combination can effectively 
handle real-time updates with low latency and manageable 
resource consumption. Future work could explore optimizing 
performance further and extending the analysis to more complex 
real-time scenarios. The findings suggest that Blazor and SignalR 
offer a robust and efficient solution for developers aiming to 
create interactive and dynamic web applications.

7. References

1. D. Wagner. Blazor: Building Web Applications in .NET. Packt 
Publishing, 2019.

2. L. Brown. Using signalr for real-time notifications. International 
Journal of Web Technologies, 2018; 11: 89-97.

3. R. Smith. Mastering Blazor. Apress, 2021.

4. T. Martin. Blazor: A new framework for browser-based .net 
apps. In: 2018 International Conference on Web Engineering. 
Springer, 2018, 102-108.

5. K. Lee, A. Nguyen. Real-time communication in web applications 
using signalr. Web Applications Journal, 2018; 15: 22-29.

6. E. Johnson. Scaling real-time applications with signalr. Journal 
of Scalable Computing, 2019; 12: 77-85.

7. J. Kim, L. Chen. Integrating signalr with microservices for 
scalable real-time applications. Journal of Cloud Computing, 
2020; 18: 88-95.

8. J. Anderson. Real-time web applications with signalr. Journal of 
Web Development, 2019; 23: 12-18.

9. J. Carter. Advanced SignalR: Building Real-Time Web 
Applications. Tech Books Publishing, 2020.

10. M. Roberts, P. Patel. Signalr for real-time data streaming in iot 
applications. In: 2020 IEEE International Conference on Internet 
of Things (IOT). IEEE, 2020; 213-220.

11. D. Williams. Client-side development with blazor and 
webassembly. Journal of Modern Web Development, 2019; 29: 
30-37.

12. S. Clark, Blazor: Exploring the future of browser-based .net 
applications. In: 2019 International Conference on Web 
Development. IEEE, 2019; 120-126.

13. W. Liu, M. Zhang. Performance analysis of signalr in real-time 
web applications. In: 2017 IEEE International Conference on 
Web Services (ICWS). IEEE, 2017; 49-56.

14. M. Garcia. Real-time user interactions with blazor and signalr. 
Journal of Interactive Web Applications, 2018; 22: 14-21.

15. S. Rodriguez. Developing Real-Time Web Applications with 
Blazor. WebTech Publishing, 2020.

16. S. Jones. Real-time data processing with signalr. Journal of 
Advanced Computing, 2020; 34: 45-56.

17. P. Adams. Real-Time Web Applications with Blazor and SignalR. 
Web- Dev Publishing, 2021.

18. R. Miller, L. Gomez. lazor and webassembly: A performance 
evaluation. Journal of Web Performance, 2021, 20: 55-62.


	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack

