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 A B S T R A C T 
In order to solve the problems of effective resource allocation in low-power wide-area networks, this thesis investigates the 

scheduling of end devices in Internet of Things applications using LoRa WAN technology. The main goal of this research is to 
use RL to improve QoS measures including energy efficiency, throughput, latency and dependability. This was accomplished by 
using a simulation-based approach that evaluated the effectiveness of the RL-based scheduling algorithm using NS3 simulations.

The main findings show that, in comparison to current scheduling practices, the RL agent greatly improves data transmission 
reliability and improves network throughput. Furthermore, the suggested approach efficiently lowers average system latency and 
overall energy usage, improving network resource utilization. These findings imply that using reinforcement learning (RL) for job 
scheduling in LoRa WAN networks can offer a reliable and expandable solution to present problems, resulting in more intelligent 
and environmentally friendly IoT systems. In the end, this study finds that using RL-based techniques can help improve resource 
management in contexts that are dynamic and resource-constrained.
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Introduction
The Internet of Things (IoT) encompasses a vast network 

of interconnected devices that communicate and exchange 
data over the Internet, impacting various sectors such as smart 
cities, healthcare, agriculture and industry. The rapid expansion 
of IoT applications has created a pressing need for efficient 
resource allocation and task scheduling mechanisms to optimize 
resource utilization while meeting Quality of Service (QoS) 
requirements1.

LoRa WAN (Long Range Wide Area Network) is highlighted 
as a significant enabler for IoT, designed to provide long-
range communication with low power consumption. This 
wireless communication protocol is particularly optimized for 
IoT devices, allowing them to transmit small amounts of data 
over considerable distances. LoRa Wan’s capabilities make it 
suitable for applications requiring remote monitoring and data 
acquisition, thus facilitating the expansion of IoT solutions2,3. 
For example, LoRa WAN which is LPWAN technology can 
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connect battery-powered devices at very long distances while 
consuming minimum power, hence making it affordable4.

LoRa WAN operates in the unlicensed ISM bands, which 
vary according to region5. It employs chirp spread spectrum 
modulation techniques to attain long-distance communication 
with low power6. One of the main advantages of LoRa WAN 
is its remarkable coverage. For this reason, it can transmit data 
within several kilometers in open settings such as rural areas 
or large industrial facilities without the need for cellular towers 
and other infrastructure items. Consequently, LoRa WAN is best 
suitable for applications that need a wider coverage area, such 
as smart agriculture, asset tracking, environmental monitoring 
and smart city deployments1. Hence, LoRa WAN has become 
an attractive technology for IoT applications due to its unique 
combination of long-range capability, low power consumption 
and cost-effective deployment7 and LoRa WAN relies on four 
key components8.

(Figure 1) depicts the overall architecture of a LoRa WAN 
network, highlighting its key components and their interactions. 
The architecture consists of end devices (sensors), gateways, 
a network server and application servers, illustrating how data 
flows from the end devices to the application layer. End devices 
communicate wirelessly with gateways using LoRa technology, 
which then forwards the data to the network server, where it is 
processed and routed to the appropriate application server for 
further analysis or action, showcasing the hierarchical structure 
and functionality of the LoRa WAN ecosystem.

Figure 1: LoRa WAN Network Architecture8.

In LoRa WAN IoT applications, maintaining Quality 
of Service (QoS) is crucial due to challenges like limited 
resources, channel congestion and varying QoS requirements, 
which can lead to issues such as high latency and packet loss. 
Reinforcement Learning (RL) is identified as the most suitable 
machine learning approach for dynamic task scheduling in 
LoRa WAN networks, as it can adapt to changing conditions and 
optimize multiple QoS metrics simultaneously. By leveraging 
RL, nodes can self-optimize scheduling performance, enhancing 
reliability and efficiency in diverse applications such as smart 
agriculture, industrial IoT and smart city management9,10,7.

The study proposes the use of reinforcement learning (RL) 
techniques to develop a scheduling algorithm that can adapt 
to dynamic network conditions, optimize energy consumption 
and enhance overall system performance. By leveraging RL, 

the proposed solution aims to improve latency, reliability and 
efficiency in LoRa WAN networks, ultimately contributing to 
the sustainability and scalability of IoT deployments11,10.

Contributions of the Article

•	 Development of an RL-based scheduling algorithm: The 
article presents a novel reinforcement learning-based task 
scheduling algorithm specifically designed for LoRa WAN 
networks, enhancing resource allocation and optimizing 
Quality of Service (QoS) metrics.

•	 Performance evaluation: It provides a comprehensive 
performance analysis of the proposed algorithm through 
simulations, demonstrating its effectiveness in improving 
throughput, reducing delay and increasing packet delivery 
ratios compared to existing scheduling methods.

•	 Insights for future research: The findings and 
methodologies outlined in the article offer valuable insights 
and a foundation for future research in the field of IoT and 
LoRa WAN, encouraging further exploration of adaptive 
and intelligent scheduling techniques to address the 
evolving challenges in network management.

Related Work

LPWANs like LoRa WAN have revolutionized the IoT by 
enabling long-range communication with battery-powered 
devices. However, IoT applications within the IoT domain 
demand reliable and expedited data delivery, posing challenges 
for LoRa WAN due to inherent limitations in range, latency 
and energy constraints12. This review explores existing research 
related to Task Scheduling in LoRa WAN.

The paper13 proposes a dynamic transmission Priority 
Scheduling Technique (PST) based on an unsupervised learning 
clustering algorithm for dense LoRa WAN networks. The LoRa 
gateway classifies nodes into different priority clusters and the 
dynamic PST allows the gateway to configure transmission 
intervals based on cluster priorities. This approach aims to 
improve transmission delay and decrease energy consumption. 
Simulation results suggest that the proposed work outperforms 
conventional LoRa WAN and recent clustering and scheduling 
schemes, making it potentially well-suited for dense LoRa WAN 
deployments. 

In14 a Real-Time LoRa (RT-LoRa) communication protocol 
for industrial Internet of Things applications is introduced. The 
real-time flow is processed by the RT-LoRa using a medium 
access strategy. Static and movable nodes are used to build the 
entire network. The QoS level is regarded as being the same for 
every static node. Three classes-normal, dependable and most 
reliable-are used to categorize the QoS level for flows produced 
by mobile nodes. The technique distributes SF and CF based on 
the QoS level. A star topology is used to arrange and connect 
the mobile and static nodes to the gateway. The following are 
the important points raised in this paper: For a single gateway 
network using single-hop communication, the general process 
is described. Even within 180 meters, this results in a significant 
transmission delay of up to 28 seconds for the majority of 
dependable flows. This study has not addressed the need for 
greater coverage and reduced time delay for industrial data in 
real time. There are limitations in QoS provisioning because the 
QoS level is only assigned to mobile nodes and all static node 
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flows are given the same priority level. All nodes need a lot of 
energy to connect with the central gateway and nodes farther 
from the gateway use even more energy. 

The paper15 proposes a method to optimize the performance 
of LoRa WAN networks by dynamically assigning values for the 
Spreading Factor and Carrier Frequency radio parameters. This 
assignment is formulated as a Mixed Integer Linear Programming 
problem to maximize network metrics like Data Extraction Rate 
and minimize packet collisions. An approximation algorithm is 
also developed to solve the problem more efficiently at scale. 
The results show improved performance for metrics like DER 
and an average 6-13% fewer packet collisions compared to 
baseline policies. The performance evaluation of the proposed 
optimization algorithms is done through simulation using the 
LoRa Sim simulator. The optimization focuses on optimizing 
just the SF and CF parameters of the LoRa radio configuration. 
Considering additional parameters could lead to even better 
performance. The simulations assume a single gateway 
setup. Therefore, in summary, the key limitations are limited 
configuration parameters, static network assumptions and 
evaluation based on few metrics. 

In16, the authors explore the viability of real-time 
communication within LoRa WAN-based IoT systems. 
Leveraging an integer linear programming (ILP) model, they 
assess the feasibility of real-time communication during the 
network design stage. This model not only determines feasibility 
but also optimizes the number and placement of gateways 
necessary to achieve real-time requirements. The paper further 
validates the model’s performance through various scenarios, 
offering valuable insights into LoRa WAN’s scalability and 
real-time support limitations. However, it is important to note 
that the model primarily focuses on static network design at 
deployment. This may not fully capture the dynamic nature of 
real-world networks, where factors like interference, congestion 
and gateway availability can significantly affect real-time QoS 
performance.

In17, the authors present a low-overhead synchronization and 
scheduling concept implemented on top of LoRa WAN Class A. 
They design and deploy an end-to-end architecture on STM32L0 
microcontrollers (MCUs), where a central entity provides 
synchronization metrics and allocates transmission slots. By 
measuring clock drift in devices, the system defines slot lengths 
within the network. This approach achieves 10-millisecond 
accuracy and demonstrates significant improvements in packet 
delivery ratios compared to Aloha-based setups, especially under 
high network loads. Notably, the paper addresses the gap in the 
literature regarding experimental approaches to LoRa WAN 
scheduling and demonstrates the feasibility of the proposed 
concept. However, the paper does not delve into the energy 
consumption impact of the implemented scheduling algorithms.

Several existing studies have proposed different methods 
to reduce retransmissions, including adaptive retry limits 
and error correction mechanisms. However, most of these 
methods fundamentally fail to adapt dynamically to changing 
network conditions and this issue is addressed in the proposed 
reinforcement learning-based scheduling algorithm.

Research Methodology
Proposed Method

The research methodology focuses on designing and 
implementing a reinforcement learning (RL)--based scheduling 
algorithm for reliable data delivery in LoRaWAN networks. 
It adopts a design science research (DSR) approach, which 
emphasizes systematic development and evaluation of practical 
solutions to address inefficiencies in existing task scheduling 
mechanisms. The methodology begins with a detailed description 
of the research design, which emphasizes the need for a task-
scheduling algorithm that can effectively manage resources 
in dynamic environments. The study identifies the limitations 
of existing scheduling methods in LoRaWAN networks, 
particularly their inability to meet the QoS demands of modern 
IoT applications. To address these challenges, the research 
proposes a reinforcement learning (RL) based algorithm that 
can adapt to varying network conditions and optimize resource 
allocation.

Research design: The research employs a mixed-methods 
approach, combining quantitative research with design science 
to systematically design, develop and assess a QoS-aware task-
scheduling algorithm. This approach allows for addressing 
questions related to the effectiveness of the proposed algorithm 
in improving QoS in dynamic IoT environments.

Algorithm design and implementation 

•	 Algorithm design: The design of the RL-based scheduling 
algorithm focuses on creating an intelligent agent that 
optimizes task scheduling in a LoRa WAN environment. 
Key components include defining the state space, action 
space and reward function, which guide the agent’s learning 
process to make optimal scheduling decisions based on 
network conditions.

•	 State space: The state space encompasses various network 
parameters, such as node status, channel conditions and 
traffic patterns, allowing the agent to assess the current 
environment effectively.

•	 Action space: The action space includes possible scheduling 
actions, such as channel selection, task prioritization and 
gateway allocation, enabling the agent to make informed 
decisions to enhance QoS metrics.

•	 Reward function: The reward function is designed 
to provide feedback to the agent based on its actions, 
encouraging behaviors that lead to improved QoS outcomes, 
such as reduced delay, increased packet delivery ratio and 
minimized packet error rates.

•	 Policy	 (π): The policy defines the strategy the agent uses 
to select actions based on the observed state, enabling it to 
balance exploration and exploitation during learning.

•	 Learning algorithm: A suitable reinforcement learning 
algorithm, such as Deep Q-Networks (DQN), is employed 
to enable the agent to learn from its experiences and improve 
its scheduling decisions over time.

(Figure 2) illustrates the architecture of a Deep Q-network 
(DQN), which combines Q-learning with deep neural networks 
to enable reinforcement learning in complex environments. The 
architecture typically consists of the following key components:
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•	 Input layer: This layer receives the state representation of 
the environment, which can include various features relevant 
to the task at hand. The input is often a high-dimensional 
vector that captures the current state of the system.

•	 Hidden layers: The DQN architecture includes multiple 
fully connected hidden layers (in this case, two layers) 
that process the input data. Each hidden layer consists 
of a specified number of neurons (e.g., 128), which are 
responsible for extracting features and learning non-linear 
relationships between the input state and potential actions. 
ReLU (Rectified Linear Unit) activation functions are 
commonly used to introduce non-linearity.

•	 Output layer: The output layer generates Q-values for each 
possible action based on the processed input state. These 
Q-values represent the expected future rewards for taking 
specific actions in the given state, allowing the agent to 
make informed decisions about which action to take.

•	 Experience replay: Although not explicitly shown in the 
architecture diagram, experience replay is an integral part 
of the DQN framework. It involves storing past experiences 
(state, action, reward, next state) in a replay memory, which 
is sampled during training to improve learning stability and 
efficiency.

Figure 2: DQN Architecture18.

The diagram shows the agent taking action in the 
environment, receiving a new state and reward and updating its 
policy based on the experience. This iterative process allows the 
agent to learn an optimal policy for maximizing rewards in the 
environment.

Here’s a breakdown of the diagram’s elements:

•	 Agent: This is the decision-making entity. It receives the 
current state of the environment (s) and uses its policy (π) to 
select an action (a). The policy is typically implemented as 
a neural network (DNN) with parameters θ.

•	 Environment: This is the external world the agent interacts 
with. It receives the agent’s action (a) and provides the 
agent with a new state (s’) and a reward (r).

•	 State (s): The current situation or observation of the 
environment.

•	 Action (a): The decision or move made by the agent.
•	 Reward (r): A scalar value indicating the outcome of the 

agent’s action. Positive rewards encourage behaviors, while 
negative rewards discourage them.

•	 Policy	(π): A function that maps states to actions. In DRL, 
it’s often represented as a neural network.

Training phase of the proposed scheduling algorithm: 
(Figure 3) outlines the training phase of the proposed scheduling 
algorithm, which utilizes a Deep Q-network (DQN) approach 

to optimize task scheduling in a LoRa WAN environment. The 
training phase consists of several key steps:

•	 Initialization of DQN parameters: The training process 
begins with the initialization of essential DQN parameters, 
including the learning rate, which determines how much 
the Q-values are updated during training; epsilon, which 
controls the exploration-exploitation trade-off; and the 
experience replay buffer, which stores past experiences to 
enhance training stability.

•	 Observation of current state: The agent interacts with the 
OpenAI Gym environment to observe the current state of 
the network. This state includes various parameters such 
as network conditions, task queue status and other relevant 
metrics that influence scheduling decisions.

•	 Action selection and execution: Based on the observed 
state, the agent selects an action using an epsilon-greedy 
policy, balancing exploration of new actions and exploitation 
of known rewarding actions. The selected action is then 
executed within the environment.

•	 Reward calculation: After executing the action, the agent 
receives feedback in the form of a reward, which quantifies 
the effectiveness of the action taken in terms of QoS metrics 
such as delay, throughput and packet delivery ratio.

•	 Experience storage and learning: The agent stores the 
experience (state, action, reward, next state) in the replay 
buffer. A mini-batch of experiences is sampled from this 
buffer to update the Q-values, allowing the agent to learn 
from past actions and improve its scheduling policy over 
time.

•	 Iteration and convergence: The training process continues 
iteratively, with the agent observing new states, selecting 
actions and updating Q-values until a predefined maximum 
number of training iterations is reached or the performance 
converges to an acceptable level.

Figure 3: Training Phase of the Proposed Scheduling Algorit-
hm.

The trained proposed scheduling algorithm diagram: 
(Figure 4) presents a diagram of the trained proposed scheduling 
algorithm, illustrating the workflow and key components 
involved in the task scheduling process within a LoRaWAN 
environment. The diagram outlines the following steps:

•	 Receive task request: The process begins with the system 
receiving a new task-scheduling request, which includes 
critical parameters such as deadlines and network context. 
This initiates the scheduling cycle.
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•	 Retrieve network state: The algorithm retrieves the 
current network state, which encompasses various factors 
like Signal-to-Interference-plus-Noise Ratio (SINR), 
existing task queue and other relevant network conditions 
that influence scheduling decisions.

•	 Generate schedule: Utilizing the learned policy from 
the training phase, the reinforcement learning (RL) 
agent generates a schedule by assigning tasks to specific 
gateways. This assignment is optimized based on Quality 
of Service (QoS) metrics and the deadlines specified in the 
task request.

•	 Evaluate schedule feasibility: The generated schedule is 
assessed for feasibility, ensuring that it meets all required 
constraints and QoS criteria. This step is crucial to confirm 
that tasks can be completed within their deadlines and 
adhere to the necessary QoS standards.

•	 Feasibility check: If the schedule is deemed feasible, it 
is sent to the relevant gateways for execution. If not, the 
algorithm enters an adjustment phase to refine the schedule.

•	 Adjust schedule with RL agent: In cases where the initial 
schedule is infeasible, the RL agent recalibrates the task 
assignments to meet the QoS requirements, iteratively 
adjusting the schedule until it becomes feasible or the 
maximum number of attempts is reached.

•	 Re-evaluate schedule feasibility: The adjusted schedule 
undergoes another feasibility evaluation to ensure 
compliance with the required constraints.

•	 Final outcome: If a feasible schedule is produced, it is 
transmitted to the gateways for execution. If a feasible 
schedule cannot be achieved within the maximum attempts, 
a failure report is generated, indicating that the task 
scheduling request could not be fulfilled.

Overall, (Figure 4) effectively illustrates the structured 
workflow of the trained scheduling algorithm, highlighting 
the interaction between task requests, network state retrieval, 
schedule generation, feasibility evaluation and adjustments 
made by the RL agent to optimize task scheduling in a LoRa 
WAN network.

Figure 4: The trained proposed scheduling algorithm diagram.

Algorithm implementation: The implementation of the 
RL-based scheduling algorithm involves translating the 
designed components into a functional system that operates 
within the simulated LoRa WAN environment. This process 
includes several key steps:

•	 Initialization: The algorithm initializes the RL agent, setting 
up the state space, action space and reward structure, along 
with any necessary parameters for the learning process.

•	 Training phase: The agent interacts with the environment 
through a reinforcement learning loop, where it observes 
the current state, selects actions based on its policy, receives 
rewards and updates its knowledge (Q-values) to improve 
future decision-making.

•	 Integration with simulation: The algorithm is integrated 
with the network simulator (NS-3), allowing for real-
time interaction with the simulated LoRa WAN network. 
This integration enables the agent to adapt its scheduling 
decisions based on dynamic network conditions and traffic 
patterns.

•	 Evaluation: The performance of the implemented 
algorithm is evaluated using various QoS metrics, such as 
delay, packet delivery ratio and packet error rate, to assess 
its effectiveness in optimizing task scheduling in the LoRa 
WAN environment.

Overall, the implementation phase focuses on creating 
a working model of the algorithm that can learn and adapt to 
improve network performance in real-time scenarios.

Pseudocode for task scheduling algorithm: The LoRa WAN 
network improved task scheduling algorithm focuses on channel 
selection, task priority and adaptive gateway placement in 
order to achieve better QoS parameters. The RL agent interacts 
with the LoRa WAN environment, observes network states, 
selects actions based on policy, receives rewards and updates 
its knowledge to optimize QoS metrics like delay, reliability, 
throughput and energy efficiency.

Pseudocode structure

i. Initialization
ii. State Observation
iii. Action Selection
iv. Environment Interaction (OpenAI Gym Integration)
v. Reward Calculation
vi. Q-Value Update (Learning)
vii. Training Loop
viii. Policy Improvement and Execution

Algorithm 1: Initialization

i. Initialize Q-network with random weights
ii. Initialize target Q-network with the same weights as 

Q-network
iii. Initialize Replay Memory D with capacity N
iv. Set ϵ for ϵ-greedy policy
v. Set learning rate α, discount factor γ and batch size
vi. Define action space A = {channel selection, task 

prioritization, gateway allocation}
vii. Define state space S = {channel status, signal strength, 

gateway congestion, task deadlines}
viii. Define reward function R(s, a) based on QoS metrics
ix. Periodically synchronize target Q-network with Q-network 

weights every K episodes



Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

6

Algorithm 2: State Observation

i. Function Observe State ()
ii. Initialize state as an empty list
iii. Normalize current channel status, signal strength (SINR), 

gateway congestion and task deadlines
iv. Append normalized values to state
v. return state

Algorithm 3: Action Selection using ϵ-Greedy Policy 

i. Function SelectAction(state, ϵ)
ii. Generate a random number and ∈ [0, 1]
iii. if rand < ϵ then
iv. Choose a random action from action space A 
v.  else
vi. Compute Q-values for all actions using Q-network
vii. Choose action argmax(Q-values) // Select the action with 

the highest Q-value
viii. end if
ix. return action

Algorithm 4: Environment Interaction 

i. Function PerformAction(action)
ii. Initialize the OpenAI Gym environment
iii.  if action == “channel selection” then
iv. Select the channel with the lowest interference and load
v. else if action == “task prioritization” then
vi. Prioritize tasks based on deadlines
vii. else if action == “gateway allocation” then
viii. Assign tasks to gateways with optimal load balancing and 

signal quality
ix. end if
x. Execute the selected action in the LoRaWAN environment 

via OpenAI Gym
xi. Observe the resulting state, reward and whether the episode 

is done using GetEnvironmentFeedback() from Gym 
environment 

xii. return new state, reward, done

Algorithm 5: Reward Calculation

i. Function CalculateReward(state, action)
ii. Initialize reward = 0
iii. if QoS metrics are improved then
iv. reward += k // Positive reward for improved QoS metrics
v. else
vi. reward -= k // Negative reward for decreased QoS metrics
vii. end if
viii. return reward

Algorithm 6: Q-Value Update (Learning)

i. Function UpdateQNetwork()
ii. Sample a random minibatch of transitions (state, action, 

reward, next state) from Replay Memory D
iii. for each transition in the minibatch do

iv. target = reward
v. if not done then
vi. target += γ × max(target Q-network.predict(next state)) 
vii.  end if
viii. Compute loss as Mean Squared Error (MSE) between target 

and Q- network.predict(state, action)
ix. Perform gradient descent step to minimize loss 
x. end for
xi. Periodically synchronize target Q-network with Q-network 

weights

Algorithm 7: Training Loop

i. for episode in range(total_episodes) do
ii. state = ObserveState() 
iii. done = False
iv. while not done do
v. action = SelectAction(state, ϵ)
vi. new_state, reward, done = PerformAction(action)
vii. Store transition (state, action, reward, new_state, done) in 

Replay Memory D 
viii. if len(Replay Memory) > batch size then
ix. UpdateQNetwork()
x.  end if
xi.  state = new_state 
xii.  end while
xiii.  if ϵ > ϵ_min then
xiv.  ϵ *= epsilon_decay // Decay exploration rate 
xv.  end if
xvi.  if episode % evaluation_interval == 0 then
xvii.  EvaluatePolicyPerformance()
xviii. end if
xix.  end for

Algorithm 8: Policy Improvement and Execution 

i. Function EvaluatePolicyPerformance()
ii. Initialize performance metrics
iii. for test episode in range(test episodes) do
iv. state = ObserveState() 
v. done = False
vi. while not done do
vii. action = SelectAction(state, ϵ = 0) // Greedy action selection 

during evaluation
viii. new state, reward, done = PerformAction(action)
ix. Update performance metrics based on reward and QoS 

metrics 
x. state = new state
xi. end while
xii. end for
xiii. Return metrics

Algorithm complexity analysis: The algorithm complexity 
analysis encompasses three main aspects: time complexity, 
space complexity and scalability and feasibility.

• Time complexity: The training time complexity of the 
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RL-based scheduling algorithm is O(T × (|S| × |A| + L × 
N² + B log E)), where T is the number of training episodes, 
|S| is the number of states, |A| is the number of actions, L 
is the number of layers, N is the number of neurons per 
layer, B is the mini-batch size and E is the total experiences 
stored. This complexity arises from exploring the state-
action space, performing neural network computations and 
sampling experiences.

• Space complexity: The space complexity is defined as 
O(L × N² + E × M), where L × N² accounts for the neural 
network parameters and E × M represents the memory 
required for the replay buffer, with M being the memory 
space per experience tuple. This indicates the memory 
requirements for both the neural network and the experience 
replay mechanism.

• Scalability and feasibility: The DQN-based algorithm is 
computationally intensive during the training phase due 
to the complexity of state-action exploration and neural 
network computations. However, once trained, the decision-
making phase is efficient, requiring only a single forward 
pass through the neural network, making it suitable for real-
time scheduling tasks in LoRaWAN networks and enabling 
scalability to handle large numbers of devices.

Overall, the analysis highlights the algorithm’s computational 
demands and its potential for effective deployment in resource-
constrained environments.

•	 Reward function design: The reward function design 
is a critical component of the proposed scheduling 
algorithm, as it directly influences the learning process of 
the reinforcement learning (RL) agent and the quality of 
scheduling decisions. The reward function is structured as a 
weighted sum of various Quality of Service (QoS) metrics, 
including delay minimization, reliability maximization and 
throughput optimization.

• QoS Metrics: The design incorporates positive rewards 
for actions that improve QoS metrics, such as reducing 
task completion times, increasing successful packet 
delivery rates and enhancing overall network throughput. 
Conversely, negative rewards are assigned for actions that 
lead to excessive delays, packet losses or increased network 
congestion.

• Balancing Trade-offs: The reward function aims to balance 
trade-offs among different QoS metrics, ensuring that the 
RL agent can make informed scheduling decisions that 
optimize overall network performance while adhering to 
specific constraints.

• Implementation in Learning: The reward function is 
integrated into the learning process, guiding the agent’s 
actions based on the observed outcomes and facilitating the 
continuous improvement of the scheduling policy through 
experience replay and Q-value updates.

Overall, the reward function design is pivotal in shaping the 
agent’s behavior, promoting effective scheduling strategies that 
meet the dynamic demands of LoRa WAN networks.

Result and Analysis
Simulation setup and scenarios: The simulation setup and 
scenarios section outline the environment and parameters used 
to evaluate the proposed scheduling algorithm in a LoRa WAN 
context.

•	 Simulation environment: The simulations were conducted 
using the NS-3 simulator, specifically utilizing the ns-3-
lora module to accurately emulate LoRa WAN network 
characteristics. This environment allows for realistic 
simulations of long-range, low-power communication in an 
unlicensed spectrum, with a defined area of 200m x 200m 
and a maximum distance of 200m to the gateway.

•	 Parameters: Key simulation parameters include three 
gateways, 100 IoT devices, one network server, a LoRa 
Log Normal Shadowing propagation model, a frequency 
band of 868MHz and a maximum of five retransmissions. 
These parameters were selected to create a medium-
scale LoRaWAN network that balances complexity, 
communication reliability and computational efficiency.

•	 Tuning strategies: The performance of the reinforcement 
learning-based scheduling algorithm is highly dependent on 
the choice of parameters, such as learning rate, batch size 
and discount factor. The section discusses the importance of 
optimizing these parameters to enhance the convergence rate 
and overall effectiveness of the algorithm, ensuring it can 
adapt to varying network conditions and QoS requirements.

Overall, this section emphasizes the careful design of 
the simulation environment and parameters to facilitate a 
comprehensive analysis of the proposed scheduling algorithm’s 
performance in realistic scenarios.

(Table 1) outlines the key parameters used in the simulation 
of the LoRa WAN network to evaluate the proposed scheduling 
algorithm. The parameters include:

•	 Number of gateways: Set to 3, indicating the infrastructure 
available for communication within the network.

• Number of IoT Devices: A total of 100 devices are simulated, 
representing the end-user devices that will communicate 
through the gateways.

•	 Network server: There is 1 network server managing the 
communication and data processing for the IoT devices.

• Environment Size: The simulation area is defined as 200m 
x 200m, providing a controlled space for the network 
operations.

•	 Maximum distance to gateway: The maximum 
communication distance for devices to the gateway is set 
at 200m, reflecting the range capabilities of LoRa WAN 
technology.

•	 Propagation model: The LoRa Log Normal Shadowing 
Model is used to simulate realistic signal propagation 
conditions, accounting for environmental factors.

•	 Number of retransmissions: A maximum of 5 
retransmissions is allowed for packet delivery attempts, 
enhancing reliability.

•	 Frequency band: The simulation operates on the 
868MHz frequency band, commonly used for LoRa WAN 
communications.

•	 Spreading factor: Set to SF7, which determines the data 
rate and range of communication.

These parameters are carefully chosen to create a realistic 
medium-scale LoRa WAN environment, enabling the 
investigation of Quality of Service (QoS) metrics and the 
effectiveness of the scheduling algorithm.
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Table 1: Simulation parameters.
Parameter Value

Number of Gateways 3

Number of IoT Devices 100

Network Server 1

Environment Size 200m x 200m

Maximum Distance to Gateway 200m

Propagation Model LoRa Log Normal Shadowing Model

Number of Retransmissions 5(Max)

Frequency Band 868MHz

Spreading Factor SF7, SF8, SF9, SF10, SF11, SF12

Number of Rounds 1000

Voltage 3.3v

Bandwidth 125kHz

Payload Length 10 bytes

Timeslot Technique CSMA10

Data Rate (Max) 250kbps

Number of Channels 5

Simulation Time 600 Seconds

The above parameters have been chosen in order to perform 
a realistic LoRa WAN environment and investigate the QoS 
metrics in IoT applications. The selected parameters aim to 
simulate a realistic medium-scale LoRa WAN IoT network that 
offers a good balance between the complexity of the network 
and communication reliability and computational efficiency for 
reinforcement learning. They rely on widely adopted real-world 
LoRa WAN configurations but provide the flexibility needed to 
effectively test a range of QoS and scheduling algorithms.

Parameters and tuning strategies

The selection of the algorithm’s parameters generally affects 
a sizable portion of the outcomes of the RL-based scheduling 
method. The ensuing sections outline the recommended 
practices for modifying the primary parameters as well as how 
the modifications affect algorithms.

The parameters and tuning strategies for the algorithm are 
crucial for optimizing performance:

•	 Learning	rate	(α): Set at 0.001, it determines how much 
new information influences existing knowledge, balancing 
convergence speed and stability.

•	 Exploration-exploitation	 balance	 (ε	 in	 ε-greedy	
strategy): The exploration rate starts at 1 and decays to 
0.1, allowing the agent to explore initially while gradually 
favoring known actions.

•	 Discount	 factor	 (γ): Optimized at 0.95, it affects the 
importance of future rewards, promoting a balance between 
long-term and short-term rewards.

•	 Batch size for training: An optimal batch size of 128 is used 
to achieve faster convergence and effective generalization, 
avoiding overfitting or underfitting issues associated with 
larger or smaller sizes.

(Table 2) presents the key parameters utilized in the 
reinforcement learning-based scheduling algorithm, which are 
crucial for its performance and effectiveness. The parameters 
include:

•	 Number of hidden layers: Set to 2, indicating the depth of 
the neural network used in the scheduling algorithm.

• Number of Neurons per Layer: Each hidden layer contains 
128 neurons, which influences the network’s capacity to 
learn complex patterns and relationships in the data.

•	 Learning	rate	(α): Fixed at 0.001, this parameter controls 
the magnitude of updates to the network weights during 
training, impacting convergence speed and stability.

•	 Discount factor (Gamma): Set to 0.95, this factor balances 
the importance of immediate rewards versus future rewards, 
guiding the agent’s long-term decision-making.

•	 Exploration rate (Epsilon): Initialized at 1.0, this rate 
determines the likelihood of the agent exploring new actions 
versus exploiting known actions, promoting exploration in 
the early training stages.

•	 Exploration decay rate: Set at 0.995, this parameter 
gradually reduces the exploration rate over time, allowing 
the agent to focus more on exploitation as it learns.

•	 Minimum exploration rate: Fixed at 0.01, this ensures that 
the agent retains a small chance of exploring new actions 
even after extensive training.

•	 Replay buffer size: Set to 30,000, this parameter defines 
the capacity of the experience replay buffer, which stores 
past experiences for training stability.

•	 Batch size: Fixed at 64, this parameter determines the 
number of experiences sampled for each training iteration, 
balancing convergence speed and generalization.

•	 Target network update frequency: Set to every 500 steps, 
this parameter specifies how often the target network’s 
weights are synchronized with the main Q-network, aiding 
in stable learning.

These algorithm parameters are essential for tuning the 
performance of the scheduling algorithm, ensuring effective 
learning and adaptation to the dynamic conditions of the LoRa 
WAN network.

Table 2: Algorithm parameters.
Parameter Value

Number of Hidden Layers 2

Number of Neurons per Layer 128

Learning Rate 0.001

Discount Factor (Gamma) 0.95

Exploration Rate (Epsilon) 1.0

Exploration Decay Rate 0.995

Minimum Exploration Rate 0.01

Replay Buffer Size 30,000

Batch Size 64

Target Network Update Frequency Every 500 steps

Activation Function ReLU

Optimizer Adam

Loss Function Mean Squared Error

Performance metrics analysis

The Performance Metrics Analysis evaluates the effectiveness 
of the proposed algorithm using key indicators such as delay, 
reliability and throughput. The analysis demonstrates significant 
improvements in these metrics compared to baseline policies, 
highlighting the algorithm’s ability to optimize QoS in LoRa 
WAN networks. Overall, the results indicate that the RL-based 
scheduling approach enhances network performance, particularly 
in managing overlapping QoS requirements.
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Network delay: (Figure 5) illustrates the relationship between 
network delay and the number of nodes in a LoRa WAN 
environment.

•	 Trend analysis: The graph typically shows that as the 
number of nodes increases, the delay experienced in the 
network also increases. This trend is indicative of the 
growing contention for communication resources, leading 
to longer wait times for packet transmission.

•	 Comparison of algorithms: The figure likely compares 
the delay performance of different scheduling algorithms, 
such as the proposed RL-based algorithm versus traditional 
methods like LoRa+ and RT-LoRa. The RL-based 
algorithm is expected to demonstrate significantly lower 
delays, showcasing its effectiveness in optimizing resource 
allocation and scheduling tasks.

•	 Implications for QoS: The results presented in this 
figure highlight the importance of efficient scheduling 
in maintaining low latency, especially in scenarios with 
a high density of nodes. This is crucial for applications 
requiring real-time data transmission, emphasizing the need 
for advanced algorithms to manage network performance 
effectively.

Overall, (Figure 5) provides valuable insights into how 
network delay is affected by node density and the performance 
advantages of the proposed scheduling approach.

Figure 5: Delay vs number of nodes.

Packet Delivery Ratio (PDR): (Figure 6) depicts the 
relationship between the Packet Delivery Ratio (PDR) and the 
number of nodes in a LoRa WAN network.

•	 PDR trends: The graph typically shows that as the number 
of nodes increases, the PDR may initially rise but eventually 
plateaus or decline. This behavior indicates that while more 
nodes can enhance network coverage, increased contention 
and potential collisions can negatively impact the successful 
delivery of packets.

•	 Algorithm comparison: The figure highlights the 
performance of the proposed RL-based algorithm (DQN) 
in achieving the highest PDR compared to other algorithms 
like RT-LoRa and LoRa+. This superiority suggests that the 
RL-based approach effectively manages scheduling and 
resource allocation, minimizing packet losses.

•	 Significance	 for	 network	 performance: The PDR is a 
critical metric for assessing the reliability of communication 
in IoT networks. A higher PDR indicates better performance 
and reliability, which is essential for applications that require 
consistent data transmission, reinforcing the importance 
of advanced scheduling techniques in optimizing network 
performance.

Overall, (Figure 6) emphasizes the impact of node density 
on packet delivery success and showcases the advantages of the 
proposed algorithm in maintaining high delivery ratios.

Figure 6: Packet delivery ratio (PDR) vs Number of Nodes.

Packet Error Rate (PER): (Figure 7) illustrates the relationship 
between Packet Error Rate (PER) and the number of nodes in a 
LoRa WAN network.

•	 PER trends: The graph typically shows that as the number 
of nodes increases, the PER tends to rise, indicating a 
higher percentage of packets experiencing errors during 
transmission. This trend reflects the increased likelihood of 
packet collisions and interference in a congested network 
environment.

•	 Algorithm performance: The figure highlights that the 
RL-based algorithm exhibits the lowest PER compared to 
other algorithms like RT-LoRa and LoRa+. This lower PER 
is attributed to the dynamic optimization of scheduling and 
resource allocation performed by the RL-based approach, 
which effectively reduces packet collisions and transmission 
errors.

•	 Implications for network reliability: A lower PER 
is crucial for ensuring reliable communication in IoT 
applications, as it directly impacts the overall performance 
and efficiency of the network. The results presented in this 
figure underscore the importance of employing advanced 
scheduling algorithms to enhance network reliability and 
minimize transmission errors, especially in scenarios with 
a high number of nodes.

Overall, (Figure 7) emphasizes the correlation between node 
density and packet error rates, showcasing the effectiveness of 
the proposed RL-based algorithm in maintaining low error rates 
in a congested network.

Figure 7: Packet Error Rate (PER) vs Number of Nodes.

Throughput: (Figure 8) illustrates the relationship 
between throughput and the number of nodes in a LoRaWAN 
network. It shows that as the number of nodes increases, 
the throughput achieved by the RL-based algorithm (DQN) 
remains significantly higher compared to other algorithms like 
RT-LoRa and LoRa+. This superior performance is attributed to 
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the RL-based algorithm’s dynamic optimization of scheduling 
decisions, which effectively balances network load and 
minimizes collisions, resulting in enhanced data transmission 
rates even as node density increases.

Figure 8: Throughput vs Number of Nodes.

Conclusion and Recommendations
Conclusion

This section concludes our investigation into creating a 
reinforcement learning-based task-scheduling algorithm for 
LoRa WAN IoT applications that is QoS-aware. Researchers 
investigated how current scheduling techniques fall short 
of satisfying the various QoS needs of contemporary IoT 
applications, especially in dynamic and expansive LoRa WAN 
networks. To overcome this difficulty, we developed and assessed 
a task scheduling algorithm based on reinforcement learning to 
optimize important QoS metrics including throughput, latency 
and reliability. Our study showed that reinforcement learning has 
a great deal of promise for improving task scheduling in LoRa 
WAN networks. We compared the performance of our RL-based 
scheduler to baseline techniques, such as RT-LoRa and LoRa+, 
utilizing a thorough simulation-based analysis with NS-3. Our 
research showed that the RL-based method has significant 
benefits in several situations. Especially in situations with 
dynamic traffic, the RL scheduler continuously beats baseline 
algorithms. Especially during periods of high network traffic, 
it successfully adjusted and obtained a noticeably decreased 
average delay. In comparison to baselines, our RL scheduler 
continuously showed lower packet error rates and greater 
packet delivery ratios, indicating increased reliability. Higher 
average throughput was also attained by the RL-based method, 
demonstrating its efficiency in managing heavy network loads 
and optimizing data transfer rates.

We have demonstrated that the difficulties of current LoRa 
WAN scheduling techniques may be successfully addressed 
by using reinforcement learning, especially when it comes 
to meeting QoS requirements like throughput, latency and 
reliability. For real-world LoRa WAN deployments to optimize 
QoS, our RL-based scheduler must be able to learn and adjust to 
dynamically changing network conditions, traffic patterns and 
device attributes. For the development of intelligent scheduling 
systems for LoRa WAN networks across multiple sectors, 
our study offers a solid basis. Numerous applications, such 
as industrial automation, smart cities and remote healthcare 
monitoring, may perform better thanks to the optimized 
scheduling method.

Prospects for further research

Even though our study offers insightful information about RL’s 
potential for LoRaWAN scheduling, there are still several aspe-
cts that require further study and advancement: 

• Further enhancements in scheduling performance 
may result from evaluating additional reinforcement 
learning algorithms, such as deep reinforcement learning 
architectures, policy gradient methods or other cutting-edge 
techniques. 

• Deploying dependable and secure IoT applications requires 
addressing security and privacy issues in LoRaWAN 
scheduling. How to incorporate security measures into the 
RL-based algorithm can be investigated in future studies. 

• Extensive testing and assessment in realistic contexts 
are necessary for the proposed scheduler’s real-world 
implementation to validate its performance in the context 
of network dynamics, communication latency and device 
heterogeneity.
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