
QOS-Aware Task Scheduling Using Reinforcement Learning in Long Rage Wide
Area Network IOT Application

Ermias Melku Tadesse1*, Haimanot Edmealem1, Tesfaye Belay2 and Abubeker Girma3

1Information Technology Department, Kombolcha Institute of Technology, Wollo University, Ethiopia

2Department of Computer Science, Institute of Technology, Wollo University, Ethiopia

3Software Engineering Department, Kombolcha Institute of Technology, Wollo University, Ethiopia

Citation: Tadesse EM, Edmealem H, Belay T, Girma A. QOS-Aware Task Scheduling Using Reinforcement Learning in Long
Rage Wide Area Network IOT Application. Int J Cur Res Sci Eng Tech 2025; 8(1), 174-184. DOI: doi.org/10.30967/IJCRSET/
Ermias-Melku-Tadesse/162

Received: 12 March, 2025; Accepted: 16 March, 2025; Published: 19 March, 2025

*Corresponding author: Ermias Melku Tadesse, Information Technology Department, Kombolcha Institute of Technology,
Wollo University, Ethiopia, Email: ermiasmelku3400@gmail.com

Copyright: © 2025 Tadesse EM, et al., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

1

Research ArticleVol: 8 & Iss: 1

https://urfpublishers.com/journal/ijcrset

International Journal of Current Research in Science, Engineering & Technology

ISSN: 2581-4311
DOI: doi.org/10.30967/IJCRSET/Ermias-Melku-Tadesse/162

 A B S T R A C T
In order to solve the problems of effective resource allocation in low-power wide-area networks, this thesis investigates the

scheduling of end devices in Internet of Things applications using LoRa WAN technology. The main goal of this research is to
use RL to improve QoS measures including energy efficiency, throughput, latency and dependability. This was accomplished by
using a simulation-based approach that evaluated the effectiveness of the RL-based scheduling algorithm using NS3 simulations.

The main findings show that, in comparison to current scheduling practices, the RL agent greatly improves data transmission
reliability and improves network throughput. Furthermore, the suggested approach efficiently lowers average system latency and
overall energy usage, improving network resource utilization. These findings imply that using reinforcement learning (RL) for job
scheduling in LoRa WAN networks can offer a reliable and expandable solution to present problems, resulting in more intelligent
and environmentally friendly IoT systems. In the end, this study finds that using RL-based techniques can help improve resource
management in contexts that are dynamic and resource-constrained.

Keywords: IoT; LoRa WAN; Reinforcement learning; Task scheduling; QoS

Introduction
The Internet of Things (IoT) encompasses a vast network

of interconnected devices that communicate and exchange
data over the Internet, impacting various sectors such as smart
cities, healthcare, agriculture and industry. The rapid expansion
of IoT applications has created a pressing need for efficient
resource allocation and task scheduling mechanisms to optimize
resource utilization while meeting Quality of Service (QoS)
requirements1.

LoRa WAN (Long Range Wide Area Network) is highlighted
as a significant enabler for IoT, designed to provide long-
range communication with low power consumption. This
wireless communication protocol is particularly optimized for
IoT devices, allowing them to transmit small amounts of data
over considerable distances. LoRa Wan’s capabilities make it
suitable for applications requiring remote monitoring and data
acquisition, thus facilitating the expansion of IoT solutions2,3.
For example, LoRa WAN which is LPWAN technology can

https://doi.org/10.30967/IJCRSET/Ermias-Melku-Tadesse/162
https://doi.org/10.30967/IJCRSET/Ermias-Melku-Tadesse/162
https://doi.org/10.30967/IJCRSET/Ermias-Melku-Tadesse/162

Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

2

connect battery-powered devices at very long distances while
consuming minimum power, hence making it affordable4.

LoRa WAN operates in the unlicensed ISM bands, which
vary according to region5. It employs chirp spread spectrum
modulation techniques to attain long-distance communication
with low power6. One of the main advantages of LoRa WAN
is its remarkable coverage. For this reason, it can transmit data
within several kilometers in open settings such as rural areas
or large industrial facilities without the need for cellular towers
and other infrastructure items. Consequently, LoRa WAN is best
suitable for applications that need a wider coverage area, such
as smart agriculture, asset tracking, environmental monitoring
and smart city deployments1. Hence, LoRa WAN has become
an attractive technology for IoT applications due to its unique
combination of long-range capability, low power consumption
and cost-effective deployment7 and LoRa WAN relies on four
key components8.

(Figure 1) depicts the overall architecture of a LoRa WAN
network, highlighting its key components and their interactions.
The architecture consists of end devices (sensors), gateways,
a network server and application servers, illustrating how data
flows from the end devices to the application layer. End devices
communicate wirelessly with gateways using LoRa technology,
which then forwards the data to the network server, where it is
processed and routed to the appropriate application server for
further analysis or action, showcasing the hierarchical structure
and functionality of the LoRa WAN ecosystem.

Figure 1: LoRa WAN Network Architecture8.

In LoRa WAN IoT applications, maintaining Quality
of Service (QoS) is crucial due to challenges like limited
resources, channel congestion and varying QoS requirements,
which can lead to issues such as high latency and packet loss.
Reinforcement Learning (RL) is identified as the most suitable
machine learning approach for dynamic task scheduling in
LoRa WAN networks, as it can adapt to changing conditions and
optimize multiple QoS metrics simultaneously. By leveraging
RL, nodes can self-optimize scheduling performance, enhancing
reliability and efficiency in diverse applications such as smart
agriculture, industrial IoT and smart city management9,10,7.

The study proposes the use of reinforcement learning (RL)
techniques to develop a scheduling algorithm that can adapt
to dynamic network conditions, optimize energy consumption
and enhance overall system performance. By leveraging RL,

the proposed solution aims to improve latency, reliability and
efficiency in LoRa WAN networks, ultimately contributing to
the sustainability and scalability of IoT deployments11,10.

Contributions of the Article

•	 Development of an RL-based scheduling algorithm: The
article presents a novel reinforcement learning-based task
scheduling algorithm specifically designed for LoRa WAN
networks, enhancing resource allocation and optimizing
Quality of Service (QoS) metrics.

•	 Performance evaluation: It provides a comprehensive
performance analysis of the proposed algorithm through
simulations, demonstrating its effectiveness in improving
throughput, reducing delay and increasing packet delivery
ratios compared to existing scheduling methods.

•	 Insights for future research: The findings and
methodologies outlined in the article offer valuable insights
and a foundation for future research in the field of IoT and
LoRa WAN, encouraging further exploration of adaptive
and intelligent scheduling techniques to address the
evolving challenges in network management.

Related Work

LPWANs like LoRa WAN have revolutionized the IoT by
enabling long-range communication with battery-powered
devices. However, IoT applications within the IoT domain
demand reliable and expedited data delivery, posing challenges
for LoRa WAN due to inherent limitations in range, latency
and energy constraints12. This review explores existing research
related to Task Scheduling in LoRa WAN.

The paper13 proposes a dynamic transmission Priority
Scheduling Technique (PST) based on an unsupervised learning
clustering algorithm for dense LoRa WAN networks. The LoRa
gateway classifies nodes into different priority clusters and the
dynamic PST allows the gateway to configure transmission
intervals based on cluster priorities. This approach aims to
improve transmission delay and decrease energy consumption.
Simulation results suggest that the proposed work outperforms
conventional LoRa WAN and recent clustering and scheduling
schemes, making it potentially well-suited for dense LoRa WAN
deployments.

In14 a Real-Time LoRa (RT-LoRa) communication protocol
for industrial Internet of Things applications is introduced. The
real-time flow is processed by the RT-LoRa using a medium
access strategy. Static and movable nodes are used to build the
entire network. The QoS level is regarded as being the same for
every static node. Three classes-normal, dependable and most
reliable-are used to categorize the QoS level for flows produced
by mobile nodes. The technique distributes SF and CF based on
the QoS level. A star topology is used to arrange and connect
the mobile and static nodes to the gateway. The following are
the important points raised in this paper: For a single gateway
network using single-hop communication, the general process
is described. Even within 180 meters, this results in a significant
transmission delay of up to 28 seconds for the majority of
dependable flows. This study has not addressed the need for
greater coverage and reduced time delay for industrial data in
real time. There are limitations in QoS provisioning because the
QoS level is only assigned to mobile nodes and all static node

3

Tadesse EM, et al., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1

flows are given the same priority level. All nodes need a lot of
energy to connect with the central gateway and nodes farther
from the gateway use even more energy.

The paper15 proposes a method to optimize the performance
of LoRa WAN networks by dynamically assigning values for the
Spreading Factor and Carrier Frequency radio parameters. This
assignment is formulated as a Mixed Integer Linear Programming
problem to maximize network metrics like Data Extraction Rate
and minimize packet collisions. An approximation algorithm is
also developed to solve the problem more efficiently at scale.
The results show improved performance for metrics like DER
and an average 6-13% fewer packet collisions compared to
baseline policies. The performance evaluation of the proposed
optimization algorithms is done through simulation using the
LoRa Sim simulator. The optimization focuses on optimizing
just the SF and CF parameters of the LoRa radio configuration.
Considering additional parameters could lead to even better
performance. The simulations assume a single gateway
setup. Therefore, in summary, the key limitations are limited
configuration parameters, static network assumptions and
evaluation based on few metrics.

In16, the authors explore the viability of real-time
communication within LoRa WAN-based IoT systems.
Leveraging an integer linear programming (ILP) model, they
assess the feasibility of real-time communication during the
network design stage. This model not only determines feasibility
but also optimizes the number and placement of gateways
necessary to achieve real-time requirements. The paper further
validates the model’s performance through various scenarios,
offering valuable insights into LoRa WAN’s scalability and
real-time support limitations. However, it is important to note
that the model primarily focuses on static network design at
deployment. This may not fully capture the dynamic nature of
real-world networks, where factors like interference, congestion
and gateway availability can significantly affect real-time QoS
performance.

In17, the authors present a low-overhead synchronization and
scheduling concept implemented on top of LoRa WAN Class A.
They design and deploy an end-to-end architecture on STM32L0
microcontrollers (MCUs), where a central entity provides
synchronization metrics and allocates transmission slots. By
measuring clock drift in devices, the system defines slot lengths
within the network. This approach achieves 10-millisecond
accuracy and demonstrates significant improvements in packet
delivery ratios compared to Aloha-based setups, especially under
high network loads. Notably, the paper addresses the gap in the
literature regarding experimental approaches to LoRa WAN
scheduling and demonstrates the feasibility of the proposed
concept. However, the paper does not delve into the energy
consumption impact of the implemented scheduling algorithms.

Several existing studies have proposed different methods
to reduce retransmissions, including adaptive retry limits
and error correction mechanisms. However, most of these
methods fundamentally fail to adapt dynamically to changing
network conditions and this issue is addressed in the proposed
reinforcement learning-based scheduling algorithm.

Research Methodology
Proposed Method

The research methodology focuses on designing and
implementing a reinforcement learning (RL)--based scheduling
algorithm for reliable data delivery in LoRaWAN networks.
It adopts a design science research (DSR) approach, which
emphasizes systematic development and evaluation of practical
solutions to address inefficiencies in existing task scheduling
mechanisms. The methodology begins with a detailed description
of the research design, which emphasizes the need for a task-
scheduling algorithm that can effectively manage resources
in dynamic environments. The study identifies the limitations
of existing scheduling methods in LoRaWAN networks,
particularly their inability to meet the QoS demands of modern
IoT applications. To address these challenges, the research
proposes a reinforcement learning (RL) based algorithm that
can adapt to varying network conditions and optimize resource
allocation.

Research design: The research employs a mixed-methods
approach, combining quantitative research with design science
to systematically design, develop and assess a QoS-aware task-
scheduling algorithm. This approach allows for addressing
questions related to the effectiveness of the proposed algorithm
in improving QoS in dynamic IoT environments.

Algorithm design and implementation

•	 Algorithm design: The design of the RL-based scheduling
algorithm focuses on creating an intelligent agent that
optimizes task scheduling in a LoRa WAN environment.
Key components include defining the state space, action
space and reward function, which guide the agent’s learning
process to make optimal scheduling decisions based on
network conditions.

•	 State space: The state space encompasses various network
parameters, such as node status, channel conditions and
traffic patterns, allowing the agent to assess the current
environment effectively.

•	 Action space: The action space includes possible scheduling
actions, such as channel selection, task prioritization and
gateway allocation, enabling the agent to make informed
decisions to enhance QoS metrics.

•	 Reward function: The reward function is designed
to provide feedback to the agent based on its actions,
encouraging behaviors that lead to improved QoS outcomes,
such as reduced delay, increased packet delivery ratio and
minimized packet error rates.

•	 Policy	 (π): The policy defines the strategy the agent uses
to select actions based on the observed state, enabling it to
balance exploration and exploitation during learning.

•	 Learning algorithm: A suitable reinforcement learning
algorithm, such as Deep Q-Networks (DQN), is employed
to enable the agent to learn from its experiences and improve
its scheduling decisions over time.

(Figure 2) illustrates the architecture of a Deep Q-network
(DQN), which combines Q-learning with deep neural networks
to enable reinforcement learning in complex environments. The
architecture typically consists of the following key components:

Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

4

•	 Input layer: This layer receives the state representation of
the environment, which can include various features relevant
to the task at hand. The input is often a high-dimensional
vector that captures the current state of the system.

•	 Hidden layers: The DQN architecture includes multiple
fully connected hidden layers (in this case, two layers)
that process the input data. Each hidden layer consists
of a specified number of neurons (e.g., 128), which are
responsible for extracting features and learning non-linear
relationships between the input state and potential actions.
ReLU (Rectified Linear Unit) activation functions are
commonly used to introduce non-linearity.

•	 Output layer: The output layer generates Q-values for each
possible action based on the processed input state. These
Q-values represent the expected future rewards for taking
specific actions in the given state, allowing the agent to
make informed decisions about which action to take.

•	 Experience replay: Although not explicitly shown in the
architecture diagram, experience replay is an integral part
of the DQN framework. It involves storing past experiences
(state, action, reward, next state) in a replay memory, which
is sampled during training to improve learning stability and
efficiency.

Figure 2: DQN Architecture18.

The diagram shows the agent taking action in the
environment, receiving a new state and reward and updating its
policy based on the experience. This iterative process allows the
agent to learn an optimal policy for maximizing rewards in the
environment.

Here’s a breakdown of the diagram’s elements:

•	 Agent: This is the decision-making entity. It receives the
current state of the environment (s) and uses its policy (π) to
select an action (a). The policy is typically implemented as
a neural network (DNN) with parameters θ.

•	 Environment: This is the external world the agent interacts
with. It receives the agent’s action (a) and provides the
agent with a new state (s’) and a reward (r).

•	 State (s): The current situation or observation of the
environment.

•	 Action (a): The decision or move made by the agent.
•	 Reward (r): A scalar value indicating the outcome of the

agent’s action. Positive rewards encourage behaviors, while
negative rewards discourage them.

•	 Policy	(π): A function that maps states to actions. In DRL,
it’s often represented as a neural network.

Training phase of the proposed scheduling algorithm:
(Figure 3) outlines the training phase of the proposed scheduling
algorithm, which utilizes a Deep Q-network (DQN) approach

to optimize task scheduling in a LoRa WAN environment. The
training phase consists of several key steps:

•	 Initialization of DQN parameters: The training process
begins with the initialization of essential DQN parameters,
including the learning rate, which determines how much
the Q-values are updated during training; epsilon, which
controls the exploration-exploitation trade-off; and the
experience replay buffer, which stores past experiences to
enhance training stability.

•	 Observation of current state: The agent interacts with the
OpenAI Gym environment to observe the current state of
the network. This state includes various parameters such
as network conditions, task queue status and other relevant
metrics that influence scheduling decisions.

•	 Action selection and execution: Based on the observed
state, the agent selects an action using an epsilon-greedy
policy, balancing exploration of new actions and exploitation
of known rewarding actions. The selected action is then
executed within the environment.

•	 Reward calculation: After executing the action, the agent
receives feedback in the form of a reward, which quantifies
the effectiveness of the action taken in terms of QoS metrics
such as delay, throughput and packet delivery ratio.

•	 Experience storage and learning: The agent stores the
experience (state, action, reward, next state) in the replay
buffer. A mini-batch of experiences is sampled from this
buffer to update the Q-values, allowing the agent to learn
from past actions and improve its scheduling policy over
time.

•	 Iteration and convergence: The training process continues
iteratively, with the agent observing new states, selecting
actions and updating Q-values until a predefined maximum
number of training iterations is reached or the performance
converges to an acceptable level.

Figure 3: Training Phase of the Proposed Scheduling Algorit-
hm.

The trained proposed scheduling algorithm diagram:
(Figure 4) presents a diagram of the trained proposed scheduling
algorithm, illustrating the workflow and key components
involved in the task scheduling process within a LoRaWAN
environment. The diagram outlines the following steps:

•	 Receive task request: The process begins with the system
receiving a new task-scheduling request, which includes
critical parameters such as deadlines and network context.
This initiates the scheduling cycle.

5

Tadesse EM, et al., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1

•	 Retrieve network state: The algorithm retrieves the
current network state, which encompasses various factors
like Signal-to-Interference-plus-Noise Ratio (SINR),
existing task queue and other relevant network conditions
that influence scheduling decisions.

•	 Generate schedule: Utilizing the learned policy from
the training phase, the reinforcement learning (RL)
agent generates a schedule by assigning tasks to specific
gateways. This assignment is optimized based on Quality
of Service (QoS) metrics and the deadlines specified in the
task request.

•	 Evaluate schedule feasibility: The generated schedule is
assessed for feasibility, ensuring that it meets all required
constraints and QoS criteria. This step is crucial to confirm
that tasks can be completed within their deadlines and
adhere to the necessary QoS standards.

•	 Feasibility check: If the schedule is deemed feasible, it
is sent to the relevant gateways for execution. If not, the
algorithm enters an adjustment phase to refine the schedule.

•	 Adjust schedule with RL agent: In cases where the initial
schedule is infeasible, the RL agent recalibrates the task
assignments to meet the QoS requirements, iteratively
adjusting the schedule until it becomes feasible or the
maximum number of attempts is reached.

•	 Re-evaluate schedule feasibility: The adjusted schedule
undergoes another feasibility evaluation to ensure
compliance with the required constraints.

•	 Final outcome: If a feasible schedule is produced, it is
transmitted to the gateways for execution. If a feasible
schedule cannot be achieved within the maximum attempts,
a failure report is generated, indicating that the task
scheduling request could not be fulfilled.

Overall, (Figure 4) effectively illustrates the structured
workflow of the trained scheduling algorithm, highlighting
the interaction between task requests, network state retrieval,
schedule generation, feasibility evaluation and adjustments
made by the RL agent to optimize task scheduling in a LoRa
WAN network.

Figure 4: The trained proposed scheduling algorithm diagram.

Algorithm implementation: The implementation of the
RL-based scheduling algorithm involves translating the
designed components into a functional system that operates
within the simulated LoRa WAN environment. This process
includes several key steps:

•	 Initialization: The algorithm initializes the RL agent, setting
up the state space, action space and reward structure, along
with any necessary parameters for the learning process.

•	 Training phase: The agent interacts with the environment
through a reinforcement learning loop, where it observes
the current state, selects actions based on its policy, receives
rewards and updates its knowledge (Q-values) to improve
future decision-making.

•	 Integration with simulation: The algorithm is integrated
with the network simulator (NS-3), allowing for real-
time interaction with the simulated LoRa WAN network.
This integration enables the agent to adapt its scheduling
decisions based on dynamic network conditions and traffic
patterns.

•	 Evaluation: The performance of the implemented
algorithm is evaluated using various QoS metrics, such as
delay, packet delivery ratio and packet error rate, to assess
its effectiveness in optimizing task scheduling in the LoRa
WAN environment.

Overall, the implementation phase focuses on creating
a working model of the algorithm that can learn and adapt to
improve network performance in real-time scenarios.

Pseudocode for task scheduling algorithm: The LoRa WAN
network improved task scheduling algorithm focuses on channel
selection, task priority and adaptive gateway placement in
order to achieve better QoS parameters. The RL agent interacts
with the LoRa WAN environment, observes network states,
selects actions based on policy, receives rewards and updates
its knowledge to optimize QoS metrics like delay, reliability,
throughput and energy efficiency.

Pseudocode structure

i. Initialization
ii. State Observation
iii. Action Selection
iv. Environment Interaction (OpenAI Gym Integration)
v. Reward Calculation
vi. Q-Value Update (Learning)
vii. Training Loop
viii. Policy Improvement and Execution

Algorithm 1: Initialization

i. Initialize Q-network with random weights
ii. Initialize target Q-network with the same weights as

Q-network
iii. Initialize Replay Memory D with capacity N
iv. Set ϵ for ϵ-greedy policy
v. Set learning rate α, discount factor γ and batch size
vi. Define action space A = {channel selection, task

prioritization, gateway allocation}
vii. Define state space S = {channel status, signal strength,

gateway congestion, task deadlines}
viii. Define reward function R(s, a) based on QoS metrics
ix. Periodically synchronize target Q-network with Q-network

weights every K episodes

Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

6

Algorithm 2: State Observation

i. Function Observe State ()
ii. Initialize state as an empty list
iii. Normalize current channel status, signal strength (SINR),

gateway congestion and task deadlines
iv. Append normalized values to state
v. return state

Algorithm 3: Action Selection using ϵ-Greedy Policy

i. Function SelectAction(state, ϵ)
ii. Generate a random number and ∈ [0, 1]
iii. if rand < ϵ then
iv. Choose a random action from action space A
v. else
vi. Compute Q-values for all actions using Q-network
vii. Choose action argmax(Q-values) // Select the action with

the highest Q-value
viii. end if
ix. return action

Algorithm 4: Environment Interaction

i. Function PerformAction(action)
ii. Initialize the OpenAI Gym environment
iii. if action == “channel selection” then
iv. Select the channel with the lowest interference and load
v. else if action == “task prioritization” then
vi. Prioritize tasks based on deadlines
vii. else if action == “gateway allocation” then
viii. Assign tasks to gateways with optimal load balancing and

signal quality
ix. end if
x. Execute the selected action in the LoRaWAN environment

via OpenAI Gym
xi. Observe the resulting state, reward and whether the episode

is done using GetEnvironmentFeedback() from Gym
environment

xii. return new state, reward, done

Algorithm 5: Reward Calculation

i. Function CalculateReward(state, action)
ii. Initialize reward = 0
iii. if QoS metrics are improved then
iv. reward += k // Positive reward for improved QoS metrics
v. else
vi. reward -= k // Negative reward for decreased QoS metrics
vii. end if
viii. return reward

Algorithm 6: Q-Value Update (Learning)

i. Function UpdateQNetwork()
ii. Sample a random minibatch of transitions (state, action,

reward, next state) from Replay Memory D
iii. for each transition in the minibatch do

iv. target = reward
v. if not done then
vi. target += γ × max(target Q-network.predict(next state))
vii. end if
viii. Compute loss as Mean Squared Error (MSE) between target

and Q- network.predict(state, action)
ix. Perform gradient descent step to minimize loss
x. end for
xi. Periodically synchronize target Q-network with Q-network

weights

Algorithm 7: Training Loop

i. for episode in range(total_episodes) do
ii. state = ObserveState()
iii. done = False
iv. while not done do
v. action = SelectAction(state, ϵ)
vi. new_state, reward, done = PerformAction(action)
vii. Store transition (state, action, reward, new_state, done) in

Replay Memory D
viii. if len(Replay Memory) > batch size then
ix. UpdateQNetwork()
x. end if
xi. state = new_state
xii. end while
xiii. if ϵ > ϵ_min then
xiv. ϵ *= epsilon_decay // Decay exploration rate
xv. end if
xvi. if episode % evaluation_interval == 0 then
xvii. EvaluatePolicyPerformance()
xviii. end if
xix. end for

Algorithm 8: Policy Improvement and Execution

i. Function EvaluatePolicyPerformance()
ii. Initialize performance metrics
iii. for test episode in range(test episodes) do
iv. state = ObserveState()
v. done = False
vi. while not done do
vii. action = SelectAction(state, ϵ = 0) // Greedy action selection

during evaluation
viii. new state, reward, done = PerformAction(action)
ix. Update performance metrics based on reward and QoS

metrics
x. state = new state
xi. end while
xii. end for
xiii. Return metrics

Algorithm complexity analysis: The algorithm complexity
analysis encompasses three main aspects: time complexity,
space complexity and scalability and feasibility.

• Time complexity: The training time complexity of the

7

Tadesse EM, et al., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1

RL-based scheduling algorithm is O(T × (|S| × |A| + L ×
N² + B log E)), where T is the number of training episodes,
|S| is the number of states, |A| is the number of actions, L
is the number of layers, N is the number of neurons per
layer, B is the mini-batch size and E is the total experiences
stored. This complexity arises from exploring the state-
action space, performing neural network computations and
sampling experiences.

• Space complexity: The space complexity is defined as
O(L × N² + E × M), where L × N² accounts for the neural
network parameters and E × M represents the memory
required for the replay buffer, with M being the memory
space per experience tuple. This indicates the memory
requirements for both the neural network and the experience
replay mechanism.

• Scalability and feasibility: The DQN-based algorithm is
computationally intensive during the training phase due
to the complexity of state-action exploration and neural
network computations. However, once trained, the decision-
making phase is efficient, requiring only a single forward
pass through the neural network, making it suitable for real-
time scheduling tasks in LoRaWAN networks and enabling
scalability to handle large numbers of devices.

Overall, the analysis highlights the algorithm’s computational
demands and its potential for effective deployment in resource-
constrained environments.

•	 Reward function design: The reward function design
is a critical component of the proposed scheduling
algorithm, as it directly influences the learning process of
the reinforcement learning (RL) agent and the quality of
scheduling decisions. The reward function is structured as a
weighted sum of various Quality of Service (QoS) metrics,
including delay minimization, reliability maximization and
throughput optimization.

• QoS Metrics: The design incorporates positive rewards
for actions that improve QoS metrics, such as reducing
task completion times, increasing successful packet
delivery rates and enhancing overall network throughput.
Conversely, negative rewards are assigned for actions that
lead to excessive delays, packet losses or increased network
congestion.

• Balancing Trade-offs: The reward function aims to balance
trade-offs among different QoS metrics, ensuring that the
RL agent can make informed scheduling decisions that
optimize overall network performance while adhering to
specific constraints.

• Implementation in Learning: The reward function is
integrated into the learning process, guiding the agent’s
actions based on the observed outcomes and facilitating the
continuous improvement of the scheduling policy through
experience replay and Q-value updates.

Overall, the reward function design is pivotal in shaping the
agent’s behavior, promoting effective scheduling strategies that
meet the dynamic demands of LoRa WAN networks.

Result and Analysis
Simulation setup and scenarios: The simulation setup and
scenarios section outline the environment and parameters used
to evaluate the proposed scheduling algorithm in a LoRa WAN
context.

•	 Simulation environment: The simulations were conducted
using the NS-3 simulator, specifically utilizing the ns-3-
lora module to accurately emulate LoRa WAN network
characteristics. This environment allows for realistic
simulations of long-range, low-power communication in an
unlicensed spectrum, with a defined area of 200m x 200m
and a maximum distance of 200m to the gateway.

•	 Parameters: Key simulation parameters include three
gateways, 100 IoT devices, one network server, a LoRa
Log Normal Shadowing propagation model, a frequency
band of 868MHz and a maximum of five retransmissions.
These parameters were selected to create a medium-
scale LoRaWAN network that balances complexity,
communication reliability and computational efficiency.

•	 Tuning strategies: The performance of the reinforcement
learning-based scheduling algorithm is highly dependent on
the choice of parameters, such as learning rate, batch size
and discount factor. The section discusses the importance of
optimizing these parameters to enhance the convergence rate
and overall effectiveness of the algorithm, ensuring it can
adapt to varying network conditions and QoS requirements.

Overall, this section emphasizes the careful design of
the simulation environment and parameters to facilitate a
comprehensive analysis of the proposed scheduling algorithm’s
performance in realistic scenarios.

(Table 1) outlines the key parameters used in the simulation
of the LoRa WAN network to evaluate the proposed scheduling
algorithm. The parameters include:

•	 Number of gateways: Set to 3, indicating the infrastructure
available for communication within the network.

• Number of IoT Devices: A total of 100 devices are simulated,
representing the end-user devices that will communicate
through the gateways.

•	 Network server: There is 1 network server managing the
communication and data processing for the IoT devices.

• Environment Size: The simulation area is defined as 200m
x 200m, providing a controlled space for the network
operations.

•	 Maximum distance to gateway: The maximum
communication distance for devices to the gateway is set
at 200m, reflecting the range capabilities of LoRa WAN
technology.

•	 Propagation model: The LoRa Log Normal Shadowing
Model is used to simulate realistic signal propagation
conditions, accounting for environmental factors.

•	 Number of retransmissions: A maximum of 5
retransmissions is allowed for packet delivery attempts,
enhancing reliability.

•	 Frequency band: The simulation operates on the
868MHz frequency band, commonly used for LoRa WAN
communications.

•	 Spreading factor: Set to SF7, which determines the data
rate and range of communication.

These parameters are carefully chosen to create a realistic
medium-scale LoRa WAN environment, enabling the
investigation of Quality of Service (QoS) metrics and the
effectiveness of the scheduling algorithm.

Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

8

Table 1: Simulation parameters.
Parameter Value

Number of Gateways 3

Number of IoT Devices 100

Network Server 1

Environment Size 200m x 200m

Maximum Distance to Gateway 200m

Propagation Model LoRa Log Normal Shadowing Model

Number of Retransmissions 5(Max)

Frequency Band 868MHz

Spreading Factor SF7, SF8, SF9, SF10, SF11, SF12

Number of Rounds 1000

Voltage 3.3v

Bandwidth 125kHz

Payload Length 10 bytes

Timeslot Technique CSMA10

Data Rate (Max) 250kbps

Number of Channels 5

Simulation Time 600 Seconds

The above parameters have been chosen in order to perform
a realistic LoRa WAN environment and investigate the QoS
metrics in IoT applications. The selected parameters aim to
simulate a realistic medium-scale LoRa WAN IoT network that
offers a good balance between the complexity of the network
and communication reliability and computational efficiency for
reinforcement learning. They rely on widely adopted real-world
LoRa WAN configurations but provide the flexibility needed to
effectively test a range of QoS and scheduling algorithms.

Parameters and tuning strategies

The selection of the algorithm’s parameters generally affects
a sizable portion of the outcomes of the RL-based scheduling
method. The ensuing sections outline the recommended
practices for modifying the primary parameters as well as how
the modifications affect algorithms.

The parameters and tuning strategies for the algorithm are
crucial for optimizing performance:

•	 Learning	rate	(α): Set at 0.001, it determines how much
new information influences existing knowledge, balancing
convergence speed and stability.

•	 Exploration-exploitation	 balance	 (ε	 in	 ε-greedy	
strategy): The exploration rate starts at 1 and decays to
0.1, allowing the agent to explore initially while gradually
favoring known actions.

•	 Discount	 factor	 (γ): Optimized at 0.95, it affects the
importance of future rewards, promoting a balance between
long-term and short-term rewards.

•	 Batch size for training: An optimal batch size of 128 is used
to achieve faster convergence and effective generalization,
avoiding overfitting or underfitting issues associated with
larger or smaller sizes.

(Table 2) presents the key parameters utilized in the
reinforcement learning-based scheduling algorithm, which are
crucial for its performance and effectiveness. The parameters
include:

•	 Number of hidden layers: Set to 2, indicating the depth of
the neural network used in the scheduling algorithm.

• Number of Neurons per Layer: Each hidden layer contains
128 neurons, which influences the network’s capacity to
learn complex patterns and relationships in the data.

•	 Learning	rate	(α): Fixed at 0.001, this parameter controls
the magnitude of updates to the network weights during
training, impacting convergence speed and stability.

•	 Discount factor (Gamma): Set to 0.95, this factor balances
the importance of immediate rewards versus future rewards,
guiding the agent’s long-term decision-making.

•	 Exploration rate (Epsilon): Initialized at 1.0, this rate
determines the likelihood of the agent exploring new actions
versus exploiting known actions, promoting exploration in
the early training stages.

•	 Exploration decay rate: Set at 0.995, this parameter
gradually reduces the exploration rate over time, allowing
the agent to focus more on exploitation as it learns.

•	 Minimum exploration rate: Fixed at 0.01, this ensures that
the agent retains a small chance of exploring new actions
even after extensive training.

•	 Replay buffer size: Set to 30,000, this parameter defines
the capacity of the experience replay buffer, which stores
past experiences for training stability.

•	 Batch size: Fixed at 64, this parameter determines the
number of experiences sampled for each training iteration,
balancing convergence speed and generalization.

•	 Target network update frequency: Set to every 500 steps,
this parameter specifies how often the target network’s
weights are synchronized with the main Q-network, aiding
in stable learning.

These algorithm parameters are essential for tuning the
performance of the scheduling algorithm, ensuring effective
learning and adaptation to the dynamic conditions of the LoRa
WAN network.

Table 2: Algorithm parameters.
Parameter Value

Number of Hidden Layers 2

Number of Neurons per Layer 128

Learning Rate 0.001

Discount Factor (Gamma) 0.95

Exploration Rate (Epsilon) 1.0

Exploration Decay Rate 0.995

Minimum Exploration Rate 0.01

Replay Buffer Size 30,000

Batch Size 64

Target Network Update Frequency Every 500 steps

Activation Function ReLU

Optimizer Adam

Loss Function Mean Squared Error

Performance metrics analysis

The Performance Metrics Analysis evaluates the effectiveness
of the proposed algorithm using key indicators such as delay,
reliability and throughput. The analysis demonstrates significant
improvements in these metrics compared to baseline policies,
highlighting the algorithm’s ability to optimize QoS in LoRa
WAN networks. Overall, the results indicate that the RL-based
scheduling approach enhances network performance, particularly
in managing overlapping QoS requirements.

9

Tadesse EM, et al., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1

Network delay: (Figure 5) illustrates the relationship between
network delay and the number of nodes in a LoRa WAN
environment.

•	 Trend analysis: The graph typically shows that as the
number of nodes increases, the delay experienced in the
network also increases. This trend is indicative of the
growing contention for communication resources, leading
to longer wait times for packet transmission.

•	 Comparison of algorithms: The figure likely compares
the delay performance of different scheduling algorithms,
such as the proposed RL-based algorithm versus traditional
methods like LoRa+ and RT-LoRa. The RL-based
algorithm is expected to demonstrate significantly lower
delays, showcasing its effectiveness in optimizing resource
allocation and scheduling tasks.

•	 Implications for QoS: The results presented in this
figure highlight the importance of efficient scheduling
in maintaining low latency, especially in scenarios with
a high density of nodes. This is crucial for applications
requiring real-time data transmission, emphasizing the need
for advanced algorithms to manage network performance
effectively.

Overall, (Figure 5) provides valuable insights into how
network delay is affected by node density and the performance
advantages of the proposed scheduling approach.

Figure 5: Delay vs number of nodes.

Packet Delivery Ratio (PDR): (Figure 6) depicts the
relationship between the Packet Delivery Ratio (PDR) and the
number of nodes in a LoRa WAN network.

•	 PDR trends: The graph typically shows that as the number
of nodes increases, the PDR may initially rise but eventually
plateaus or decline. This behavior indicates that while more
nodes can enhance network coverage, increased contention
and potential collisions can negatively impact the successful
delivery of packets.

•	 Algorithm comparison: The figure highlights the
performance of the proposed RL-based algorithm (DQN)
in achieving the highest PDR compared to other algorithms
like RT-LoRa and LoRa+. This superiority suggests that the
RL-based approach effectively manages scheduling and
resource allocation, minimizing packet losses.

•	 Significance	 for	 network	 performance: The PDR is a
critical metric for assessing the reliability of communication
in IoT networks. A higher PDR indicates better performance
and reliability, which is essential for applications that require
consistent data transmission, reinforcing the importance
of advanced scheduling techniques in optimizing network
performance.

Overall, (Figure 6) emphasizes the impact of node density
on packet delivery success and showcases the advantages of the
proposed algorithm in maintaining high delivery ratios.

Figure 6: Packet delivery ratio (PDR) vs Number of Nodes.

Packet Error Rate (PER): (Figure 7) illustrates the relationship
between Packet Error Rate (PER) and the number of nodes in a
LoRa WAN network.

•	 PER trends: The graph typically shows that as the number
of nodes increases, the PER tends to rise, indicating a
higher percentage of packets experiencing errors during
transmission. This trend reflects the increased likelihood of
packet collisions and interference in a congested network
environment.

•	 Algorithm performance: The figure highlights that the
RL-based algorithm exhibits the lowest PER compared to
other algorithms like RT-LoRa and LoRa+. This lower PER
is attributed to the dynamic optimization of scheduling and
resource allocation performed by the RL-based approach,
which effectively reduces packet collisions and transmission
errors.

•	 Implications for network reliability: A lower PER
is crucial for ensuring reliable communication in IoT
applications, as it directly impacts the overall performance
and efficiency of the network. The results presented in this
figure underscore the importance of employing advanced
scheduling algorithms to enhance network reliability and
minimize transmission errors, especially in scenarios with
a high number of nodes.

Overall, (Figure 7) emphasizes the correlation between node
density and packet error rates, showcasing the effectiveness of
the proposed RL-based algorithm in maintaining low error rates
in a congested network.

Figure 7: Packet Error Rate (PER) vs Number of Nodes.

Throughput: (Figure 8) illustrates the relationship
between throughput and the number of nodes in a LoRaWAN
network. It shows that as the number of nodes increases,
the throughput achieved by the RL-based algorithm (DQN)
remains significantly higher compared to other algorithms like
RT-LoRa and LoRa+. This superior performance is attributed to

Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1Tadesse EM, et al.,

10

the RL-based algorithm’s dynamic optimization of scheduling
decisions, which effectively balances network load and
minimizes collisions, resulting in enhanced data transmission
rates even as node density increases.

Figure 8: Throughput vs Number of Nodes.

Conclusion and Recommendations
Conclusion

This section concludes our investigation into creating a
reinforcement learning-based task-scheduling algorithm for
LoRa WAN IoT applications that is QoS-aware. Researchers
investigated how current scheduling techniques fall short
of satisfying the various QoS needs of contemporary IoT
applications, especially in dynamic and expansive LoRa WAN
networks. To overcome this difficulty, we developed and assessed
a task scheduling algorithm based on reinforcement learning to
optimize important QoS metrics including throughput, latency
and reliability. Our study showed that reinforcement learning has
a great deal of promise for improving task scheduling in LoRa
WAN networks. We compared the performance of our RL-based
scheduler to baseline techniques, such as RT-LoRa and LoRa+,
utilizing a thorough simulation-based analysis with NS-3. Our
research showed that the RL-based method has significant
benefits in several situations. Especially in situations with
dynamic traffic, the RL scheduler continuously beats baseline
algorithms. Especially during periods of high network traffic,
it successfully adjusted and obtained a noticeably decreased
average delay. In comparison to baselines, our RL scheduler
continuously showed lower packet error rates and greater
packet delivery ratios, indicating increased reliability. Higher
average throughput was also attained by the RL-based method,
demonstrating its efficiency in managing heavy network loads
and optimizing data transfer rates.

We have demonstrated that the difficulties of current LoRa
WAN scheduling techniques may be successfully addressed
by using reinforcement learning, especially when it comes
to meeting QoS requirements like throughput, latency and
reliability. For real-world LoRa WAN deployments to optimize
QoS, our RL-based scheduler must be able to learn and adjust to
dynamically changing network conditions, traffic patterns and
device attributes. For the development of intelligent scheduling
systems for LoRa WAN networks across multiple sectors,
our study offers a solid basis. Numerous applications, such
as industrial automation, smart cities and remote healthcare
monitoring, may perform better thanks to the optimized
scheduling method.

Prospects for further research

Even though our study offers insightful information about RL’s
potential for LoRaWAN scheduling, there are still several aspe-
cts that require further study and advancement:

• Further enhancements in scheduling performance
may result from evaluating additional reinforcement
learning algorithms, such as deep reinforcement learning
architectures, policy gradient methods or other cutting-edge
techniques.

• Deploying dependable and secure IoT applications requires
addressing security and privacy issues in LoRaWAN
scheduling. How to incorporate security measures into the
RL-based algorithm can be investigated in future studies.

• Extensive testing and assessment in realistic contexts
are necessary for the proposed scheduler’s real-world
implementation to validate its performance in the context
of network dynamics, communication latency and device
heterogeneity.

References

1. Mahmood NH, Marchenko N, Gidlund M and Popovski P.
Wireless Networks and Industrial IoT: Applications, Challenges
and Enablers, Wirel. Networks Ind. IoT Appl. Challenges
Enablers 2020:1-296.

2. Mahmood NH, Marchenko N, Gidlund M and Popovski P.
Wireless Networks and Industrial IoT: Applications, Challenges
and Enablers 2020.

3. de Oliveira LR, de Moraes P, Neto LPS and da Conceição AF.
Review of LoRaWAN Applications 2020.

4. Marais JM, Malekian R and Abu-Mahfouz AM. LoRa and
LoRaWAN testbeds: A review. 2017 IEEE AFRICON Sci Technol
Innov Africa AFRICON 2017:1496-1501.

5. Mekki K, Bajic E, Chaxel F and Meyer F. Overview of Cellular
LPWAN Technologies for IoT Deployment: Sigfox, LoRaWAN
and NB-IoT. 2018 IEEE Int Conf Pervasive Comput Commun
Work PerCom Work 2018:197-202.

6. Bouguera T, Diouris JF, Chaillout JJ, Jaouadi R and Andrieux
G. Energy consumption model for sensor nodes based on LoRa
and LoRaWAN. Sensors (Switzerland) 2018;18(7):1-23.

7. Augustin A, Yi J, Clausen T and Townsley WM. A study of Lora:
Long range & low power networks for the internet of things.
Sensors (Switzerland) 2016;16(9):1-18.

8. Ragnoli M, Barile G, Leoni A, Ferri G and Stornelli V. An
autonomous low-power lora-based flood-monitoring system. J
Low Power Electron Appl 2020;10(2).

9. Haxhibeqiri J, Moerman I and Hoebeke J. Low overhead sche-
duling of LoRa transmissions for improved scalability. IEEE
Internet Things J 2019;6(2):3097-3109.

10. Sutton RS and Barto AG. Reinforcement learning_Peter. Lear-
ning 2012;3(9).

11. Petäjäjärvi J, Mikhaylov K, Pettissalo M, Janhunen J and Iinatti
J. Performance of a low-power wide-area network based on lora
technology: Doppler robustness, scalability and coverage. Int J
Distrib Sens Networks 2017;13(3).

12. Polonelli T, Brunelli D, Marzocchi A and Benini L. Slotted ALOHA
on LoRaWAN-design, analysis and deployment, Sensors (Swit-
zerland) 2019;19(4).

13. Alenezi M, Chai KK, Alam AS, Chen Y and Jimaa S. Unsu-
pervised learning clustering and dynamic transmission sche-
duling for efficient dense LoRaWAN networks. IEEE Access
2020;8:191495-191509.

14. Leonardi L, Battaglia F and Lo Bello L. RT-LoRa: A Medium
Access Strategy to Support Real-Time Flows Over LoRa-Based
Networks for Industrial IoT Applications. IEEE Internet Things J
2019;6(6):10812-10823.

https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
https://www.amazon.in/Wireless-Networks-Industrial-IoT-Applications-ebook/dp/B08QF992KT
http://arxiv.org/abs/2004.05871
http://arxiv.org/abs/2004.05871
https://www.semanticscholar.org/paper/LoRa-and-LoRaWAN-testbeds%3A-A-review-Marais-Malekian/d4ad73de221fb52a50be4b9d16bf85f99762742d
https://www.semanticscholar.org/paper/LoRa-and-LoRaWAN-testbeds%3A-A-review-Marais-Malekian/d4ad73de221fb52a50be4b9d16bf85f99762742d
https://www.semanticscholar.org/paper/LoRa-and-LoRaWAN-testbeds%3A-A-review-Marais-Malekian/d4ad73de221fb52a50be4b9d16bf85f99762742d
https://www.semanticscholar.org/paper/Overview-of-Cellular-LPWAN-Technologies-for-IoT-and-Mekki-Bajic/7783a17c9ea93037aef743a1f7ac73e4a33992b4
https://www.semanticscholar.org/paper/Overview-of-Cellular-LPWAN-Technologies-for-IoT-and-Mekki-Bajic/7783a17c9ea93037aef743a1f7ac73e4a33992b4
https://www.semanticscholar.org/paper/Overview-of-Cellular-LPWAN-Technologies-for-IoT-and-Mekki-Bajic/7783a17c9ea93037aef743a1f7ac73e4a33992b4
https://www.semanticscholar.org/paper/Overview-of-Cellular-LPWAN-Technologies-for-IoT-and-Mekki-Bajic/7783a17c9ea93037aef743a1f7ac73e4a33992b4
https://www.mdpi.com/1424-8220/18/7/2104
https://www.mdpi.com/1424-8220/18/7/2104
https://www.mdpi.com/1424-8220/18/7/2104
https://www.mdpi.com/1424-8220/16/9/1466
https://www.mdpi.com/1424-8220/16/9/1466
https://www.mdpi.com/1424-8220/16/9/1466
https://www.mdpi.com/2079-9268/10/2/15
https://www.mdpi.com/2079-9268/10/2/15
https://www.mdpi.com/2079-9268/10/2/15
http://incompleteideas.net/sutton/book/the-book.html%5Cnhttps:/www.dropbox.com/s/f4tnuhipchpkgoj/book2012.pdf
http://incompleteideas.net/sutton/book/the-book.html%5Cnhttps:/www.dropbox.com/s/f4tnuhipchpkgoj/book2012.pdf
https://journals.sagepub.com/doi/full/10.1177/1550147717699412
https://journals.sagepub.com/doi/full/10.1177/1550147717699412
https://journals.sagepub.com/doi/full/10.1177/1550147717699412
https://journals.sagepub.com/doi/full/10.1177/1550147717699412
https://www.mdpi.com/1424-8220/19/4/838
https://www.mdpi.com/1424-8220/19/4/838
https://www.mdpi.com/1424-8220/19/4/838
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229061
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229061
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229061
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9229061
https://www.semanticscholar.org/paper/RT-LoRa%3A-A-Medium-Access-Strategy-to-Support-Flows-Leonardi-Battaglia/f55d3bb5f497ac80228975548af93dd4d9c92cec
https://www.semanticscholar.org/paper/RT-LoRa%3A-A-Medium-Access-Strategy-to-Support-Flows-Leonardi-Battaglia/f55d3bb5f497ac80228975548af93dd4d9c92cec
https://www.semanticscholar.org/paper/RT-LoRa%3A-A-Medium-Access-Strategy-to-Support-Flows-Leonardi-Battaglia/f55d3bb5f497ac80228975548af93dd4d9c92cec
https://www.semanticscholar.org/paper/RT-LoRa%3A-A-Medium-Access-Strategy-to-Support-Flows-Leonardi-Battaglia/f55d3bb5f497ac80228975548af93dd4d9c92cec

11

Tadesse EM, et al., Int J Cur Res Sci Eng Tech | Vol: 8 & Iss: 1

15. Sallum E, Pereira N, Alves M and Santos M. Improving
quality-of-service in LOra low-power wide-area networks throu-
gh optimized radio resource management. J Sens Actuator
Networks 2020;9(1):1-26.

16. Micheletto M, Zabala P, Ochoa SF, Meseguer R and Santos
R. Determining Real-Time Communication Feasibility in IoT
Systems Supported by LoRaWAN. Sensors 2023;23(9):1-27.

17. Garrido-Hidalgo C, Haxhibeqiri J, Moons B, et al. LoRa WAN
Scheduling: From Concept to Implementation. IEEE Internet
Things J 2021;8(16):12919-12933.

18. Siddiqi UF, Sait SM and Uysal M. Deep Reinforcement Based
Power Allocation for the Max-Min Optimization in Non-Orthogo-
nal Multiple Access. IEEE Access 2020;8:211235-211247.

https://www.mdpi.com/2224-2708/9/1/10
https://www.mdpi.com/2224-2708/9/1/10
https://www.mdpi.com/2224-2708/9/1/10
https://www.mdpi.com/2224-2708/9/1/10
https://www.mdpi.com/1424-8220/23/9/4281
https://www.mdpi.com/1424-8220/23/9/4281
https://www.mdpi.com/1424-8220/23/9/4281
https://biblio.ugent.be/publication/8719550
https://biblio.ugent.be/publication/8719550
https://biblio.ugent.be/publication/8719550
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9262953
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9262953
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9262953

	_GoBack

