
Property Based and Fuzz Testing in C++

Nilesh Jagnik*

Citation: Jagnik N. Property Based and Fuzz Testing in C++. J Artif Intell Mach Learn & Data Sci 2024, 2(1), 1598-1600. DOI: 
doi.org/10.51219/JAIMLD/nilesh-jagnik/358

Received: 03 January, 2024; Accepted: 28 January, 2024; Published: 30 January, 2024

*Corresponding author: Nilesh Jagnik, Los Angeles, USA, E-mail: nileshjagnik@gmail.com

Copyright: © 2024 Jagnik N., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

1

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/nilesh-jagnik/358

 A B S T R A C T 

Testing code is an essential practice for reliability and correctness of software systems. Traditionally testing, also known as 
example-based testing requires developers to think of edge cases where system may produce erroneous results and side effects. 
This technique relies on the expertise of the developer and is prone to missed edge cases, thereby reducing the efficacy of tests. In 
this paper, we discuss generative techniques that test code against a large number of generated test cases. These techniques allow 
for comprehensive testing by detecting bugs, vulnerabilities and performance regressions in code, thus improving the quality of 
software. We also discuss the FuzzTest library that provides support for these techniques in C++.

Keywords: software testing, example-based testing, property-based testing, fuzzing, performance testing

1. Introduction
Traditional software development involves writing code and 

tests that assert that code works correctly. The developer has to 
choose test cases that cover all edge cases. This is also called 
example-based testing. The problem with this approach is that, 
depending on the complexity of the code being tested, it might 
be easy to miss some edge cases. Some APIs may accept a wide 
range of inputs. For such APIs, creating test cases for every 
possible input would not even be possible.

Property-based testing can be used to solve this problem. 
These testing techniques implicitly create test cases based on 
specifications provided when writing tests. In this setup, tests are 
written in a generic manner and must specify input parameters. 
These parameters should be used by test logic to create the input 
to the test code and also perform assertions. The input parameters 
are then varied by a testing framework. How to vary the test 
inputs is specified to the framework by the test developer.

Property-based testing results in more thorough testing of 
application code. This is due to the fact that testing is more 

rigorous and captures many more test cases in comparison to 
traditional software development. Not only this, test developers 
can specify properties that a test must check for. This enables 
tests to be smarter and detect bugs which are hard to detect 
otherwise. 

In this paper we discuss the benefits and limitations of 
property-based testing. We also cover how to implement these 
testing techniques in C++.

2. Problems with Example Based Testing
Example-based testing refers to the traditional testing 

paradigm which involves identifying a set of test cases that 
represent the normal and edge case inputs which the code under 
test must process. The tests assert that the right output and side 
effects are generated by the code while processing inputs. There 
are several shortcomings of example-based testing.

A. Hard to Identify Edge Cases: The main issue with example-
based testing is the developer has to think of all edge cases where 
the code under test is likely to fail. Often times, the developer 
may not know the full domain of inputs that may be passed into 

https://doi.org/10.51219/JAIMLD/nilesh-jagnik/358
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/nilesh-jagnik/358


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Jagnik N.,

2

5. C++ FuzzTest
FuzzTest is a testing framework in C++ for writing property-

based tests which are executed using coverage guided fuzzing. 
In coverage guided fuzzing, test inputs are considered interesting 
if they cover more of the code under test. FuzzTest can be used 
with GoogleTest or other unit testing frameworks. The examples 
presented in this paper use GoogleTest.

a. Overview: (Figure 1) shows a typical example-based unit 
test written using GoogleTest. This test only covers one input. 
However, there may be some tricky edge cases which are hard 
to detect. 

Figure 1: Unit test that detects odd numbers.

FuzzTest can be used here to write a test which isn’t specific 
to a single input. The fuzzy test in (Figure 2) specifies to the 
framework that the test must be run over domain of integer 
inputs. This ensures that the test isn’t tied to a specific input and 
that the framework can generate inputs to test it thoroughly.

Figure 2: Fuzzy Unit test that detects odd numbers.

b. Property Function: FuzzTest requires writing parameterized 
tests. The main function that is run over all inputs in the property 
function.

This function should contain all necessary assertions 
and should return void. In the example in Figure 2, the 
DetectsOddsCorrectly method is the property function.

c. Input Domains: Contrary to parameterized tests, parameters 
in FuzzTest are specified in the form of input domains. This is 
the domain from which test inputs must be generated by the 
framework. The example in Figure 2 uses arbitrary integer as the 
domain, but many types of domains can be specified for inputs 
including but not limited to strings, chars, ints, enums, structs 
and protos.

d. Initial Seeds: Although not necessary, seed values can be 
provided for specifying the initial parameter values to the 
property function. The framework generates new parameters 
using seed values as a base. Seed values can be provided using 
the withSeeds() clause.

6. Limitations of Property Based and Fuzz Testing
a. Difficult to Write: Writing good property tests is difficult 

as it requires parameterizing tests and writing good property 
functions. As such, it has a learning curve associated with it.

b. Time Consuming and Resource Intensive: Since tests 
are run through a lot of generated inputs, this can get quite 
expensive especially for APIs that do complex operations.

the code at runtime. Even if the developer knows the domain, 
it may be hard to identify edge cases since they may not be 
obvious. This leads to less-than-optimal testing and bugs and 
vulnerabilities at runtime.
B. Too Many Test Cases: For through testing of applications 
may require testing against many test inputs. This is done to 
improve correctness and ensure that there are no vulnerabilities 
in the system. Using example-based testing in such cases may 
require writing too many tests. This would make tests tedious 
to write and cumbersome to maintain. A large number of tests 
would also make the test code hard to read. All of these are 
undesirable characteristics of test code.

3. Property Based, Table Driven and Fuzz Testing
In contrast to testing for specific test cases as discussed 

in example-based testing, property-based testing emphasizes 
testing for properties being satisfied by test inputs. Property-
based testing requires writing test assertions in a form that tests 
that certain properties are satisfied regardless of input that is 
passed to a test. These tests must be written in a generic way 
and test inputs are parameterized. Then, parameterized testing is 
used to pass in inputs to these generic property tests. The inputs 
can be passed in a few ways:

A. Table Driven Testing: In cases where the set of interesting 
or edge case input is already known, these inputs can be passed 
in to the generic tests written for property-based testing. Table-
driven tests are parameterized tests where the input can be read 
from a table of values.
B. Fuzz Testing: Fuzz testing (aka Fuzzing) creates test input 
by generating data points that satisfy the input domain. Fuzzing 
can be used to create a lot of data points to even cover the full 
set of inputs that can actually be passed into a test. Historically, 
this technique has been used extensively to detect bugs and 
vulnerabilities in code. As expected, fuzzing tools may take a 
long time to generate the input set and execute tests with them. 
Fuzz testing is quite exhaustive and therefore detects bugs which 
are very difficult to detect otherwise.

Note that both table-driven testing and fuzz testing are 
input generation techniques and can be used independently of 
property-based testing. That being said, it is quite common to 
use them together as that yields the most benefit.

4. Benefits Of Property Based and Fuzz Testing
Property-based and fuzz testing when used together can 

solve most of the issues present in example-based testing.

a. Better Test Quality: In property-based testing, the 
properties that the code under test are clearly specified in 
code. This leads to more robust tests. Property-based testing 
also increases code re-use leading to fewer lines to code that 
needs to be maintained. 

b. Exhastive Coverage of Input Domains: Fuzz testing 
can automatically generate all possible inputs within the 
domain of inputs. This helps test exhaustively for errors 
and vulnerability in the code under test. Doing this results 
in identifying all inputs for which the system behaves 
erroneously. 

c. Performance Testing: Apart from errors and vulnerabilities, 
fuzz testing tests can also be used to detect efficiency and 
performance bugs in code. By running a parameterized test 
with fuzzed inputs, performance reports can be generated 
for measuring performance for processing different inputs.



3

Jagnik N., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

8. References

1. https://increment.com/testing/in-praise-of-property-based-
testing/#

2. https://dave.cheney.net/2019/05/07/prefer-table-driven-tests 

3. https://hypothesis.works/articles/what-is-property-based-
testing/ 

4. https://www.mayhem.security/blog/what-is-property-based-
testing

5. https://github.com/google/fuzztest

6. h t tps: / /www.code- in te l l igence.com/blog/caro l ine- le-
mieux-expanding-fuzzing 

7. https://www.covertswarm.com/post/fuzzing-hacking 

c. Difficult to Setup: For code that makes external RPCs, it 
may not be feasible to setup fakes/mocks that handle all 
generated inputs. Using the real external endpoint may add 
too much traffic on it and mocking it efficiently may not be 
possible.

d. Complex Input Domain: Testing APIs which have 
complex input may not be feasible, either due to framework 
limitations or simply due to difficulties associated with 
resources required for generating complex input.

7. Conclusion
Traditional example-based testing is fine for basic testing in 

scenarios where the domain of possible inputs is small. However, 
for productionizing services at large scale, thorough testing is 
needed. Property-based and fuzz testing should be used to ensure 
that software does not have any bugs or vulnerabilities. Not only 
this, these techniques can also be used to detect performance 
regressions. Using these techniques can ensure that software 
systems run efficiently and reliably.

https://dave.cheney.net/2019/05/07/prefer-table-driven-tests
https://hypothesis.works/articles/what-is-property-based-testing/
https://hypothesis.works/articles/what-is-property-based-testing/
https://www.mayhem.security/blog/what-is-property-based-testing
https://www.mayhem.security/blog/what-is-property-based-testing
https://github.com/google/fuzztest
https://www.code-intelligence.com/blog/caroline-lemieux-expanding-fuzzing
https://www.code-intelligence.com/blog/caroline-lemieux-expanding-fuzzing
https://www.covertswarm.com/post/fuzzing-hacking

	_GoBack
	_Hlk181532415
	_GoBack

