
Preventing Security Code Vulnerabilities in the Age of AI (Artificial Intelligence) 
Code Assistants

Kamalakar Reddy Ponaka*

Kamalakar Reddy Ponaka, DevSecOps, Dell Technologies, Round Rock, TX. USA

Citation: Ponaka KR. Preventing Security Code Vulnerabilities in the Age of AI (Artificial Intelligence) Code Assistants. J Artif 
Intell Mach Learn & Data Sci 2024, 2(3), 1149-1153. DOI: doi.org/10.51219/JAIMLD/kamalakar-reddy-ponaka/268

Received: 02 August, 2024; Accepted: 28 August, 2024; Published: 30 August, 2024

*Corresponding author: Kamalakar Reddy Ponaka, DevSecOps, Dell Technologies, Round Rock, TX. USA, E-mail: kamalakar.
ponaka@gmail.com

Copyright: © 2024 Ponaka KR., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 2 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/kamalakar-reddy-ponaka/268

 A B S T R A C T 
In today's rapidly evolving technological landscape, the integration of Artificial Intelligence (AI) code assistants has 

revolutionized software development, promising increased efficiency and productivity. However, alongside this innovation comes 
the risk of inadvertently introducing security vulnerabilities into codebases. Integrated Development Environments (IDEs) 
equipped with code scanning capabilities play a crucial role in mitigating these risks. This whitepaper explores the significance of 
IDE code scans in identifying and preventing security vulnerabilities, particularly in the context of AI code assistants. It examines 
common vulnerabilities, highlights the challenges posed by AI-generated code, and outlines best practices for integrating code 
scans into the development workflow to bolster security measures effectively. 

Keywords: AI, IDE, SAST, SCA, Code Scans, AI Assistants

1. Introduction
Multiple companies have embarked on modernizing their 

security platforms with vendor tools that can provide innovative 
security solutions using the AI capabilities. 

Introduction of AI into security platform offers several 
advantages, including comprehensive vulnerability detection, 
intelligent remediation recommendations, continuous 
monitoring and alerting, developer-friendly insights and 
guidance, scalability and flexibility, and enterprise-grade 
security and compliance capabilities. Leveraging the new 
capabilities significantly reduces the effort required to remediate 
the vulnerabilities. According to NIST (National Institute of 
Standards and Technologies), organizations could potentially 
save 5 times effort in security vulnerability remediation. 

2. Developer-First Security
Clean code begins in Developers IDE. Developer-first 

security gives a coder a “developer-friendly” security tool that 

lives in the IDE and empowers developers to find and fix security 
issues in a painless manner. Ideally these security controls are 
automated, allowing a busy developer not to have to think about 
security requirements to build secure code — the process just 
happens naturally as part of the coding process. Below are the 
standard and custom tools provided to developers to secure code 
in the integrated development environments. 

A. Gen AI assisted IDE Security Plugins 

Using IDE-based security plugins helps developers find and 
fix code quality issues and security risks as quickly as they are 
added to their projects. Moreover, this helps developers ship 
fewer security risks and to improve the security risk posture of 
the software they ship over time. Plug-ins can alert developers if 
their code or a third-party library or package contains a potential 
security flaw.

a. Snyk is a developer security platform. Snyk provides 
actionable fix advice in your tools. Snyk offers IDE security 

https://doi.org/10.51219/JAIMLD/kamalakar-reddy-ponaka/268
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/kamalakar-reddy-ponaka/268


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Ponaka KR.,

2

plugins for JetBrains, Visual Studio Code, Eclipse, and Visual 
Studio. With automated and guided fixes in-line with code, Snyk 
provides the context and knowledge to apply a fix while keeping 
you in your IDE. No distractions or downtime.

The New Left in Secure Development Lifecycle

a. JFrog Xray has an IDE plugin which enables developers to 
flag and fix vulnerabilities as early as the development phase in 
a software development lifecycle.

b. Sonarlint, SonarQube’s IDE plugin, highlights bugs and 
security vulnerabilities as you write code, with clear remediation 
guidance so you can fix them before the code is even committed.

B. Need for IDE Scans

As AI code assistants become increasingly prevalent in 
software development, ensuring the security of code has never 
been more critical. The seamless integration of AI tools into 
Integrated Development Environments (IDEs) offers developers 
unprecedented opportunities for efficiency and innovation. 
However, this integration also introduces new challenges, 
particularly concerning the inadvertent introduction of security 
vulnerabilities into codebases. IDE code scans emerge as a vital 
mechanism for mitigating these risks, providing developers with 
essential insights into potential vulnerabilities and enabling 
proactive remediation efforts.

C. Understanding IDE Code Scans

IDE code scans serve as a proactive security measure, allowing 
developers to identify and address potential vulnerabilities 
during the development process. By analyzing code for common 
security issues such as injection attacks, authentication flaws and 
cryptographic weaknesses, IDEs equipped with code scanning 
capabilities empower developers to uphold security standards 
and best practices effectively. In the age of AI code assistants, 
these scans play an even more critical role in safeguarding 
codebases against the risks associated with AI-generated code.

D. Challenges Posed by AI Code Assistants

While AI code assistants offer significant benefits in terms 
of productivity and code generation, they also introduce 
unique challenges concerning security. AI-generated code 
may inadvertently contain vulnerabilities such as hardcoded 

credentials, insufficient input validation, or insecure 
cryptographic implementations. Moreover, the dynamic nature 
of AI models presents difficulties in validating the reliability and 
security of generated code. As such, developers must remain 
vigilant in identifying and addressing potential security risks 
introduced by AI code assistants.

E. Benefits of IDE Code Scans in the Age of AI

Incorporating IDE code scans into the development workflow 
provides numerous benefits, particularly in the age of AI code 
assistants:

a. Early Detection of Vulnerabilities IDE code scans enable 
developers to identify security vulnerabilities early in the 
development process, minimizing the risk of deploying 
insecure code.

b. Integration with AI-Assisted Development By seamlessly 
integrating with AI code assistants, IDE code scans 
complement AI-generated code by providing essential 
security insights and validation.

c. Empowerment of Developers IDE code scans empower 
developers to take proactive measures in addressing security 
vulnerabilities, fostering a culture of security awareness and 
responsibility within development teams.

d. Enhancement of Code Quality By highlighting potential 
security issues, IDE code scans contribute to the overall 
improvement of code quality, ensuring that software 
applications adhere to robust security standards.

F. Best Practices for Integrating IDE Code Scans

To maximize the effectiveness of IDE code scans in the age of 
AI code assistants, developers should adhere to best practices 
such as:

e. Regular Code Scanning Incorporate regular code scanning 
sessions into the development process to proactively 
identify and address security vulnerabilities.

f. Manual Review of AI-Generated Code Conduct manual 
reviews of code generated by AI assistants to identify and 
mitigate potential security risks introduced by AI-generated 
code.

g. Customization of Scan Rules Customize code scanning 
rules to align with the specific security requirements and 
standards of the project, focusing on vulnerabilities relevant 
to AI-generated code.

h. Continuous Education and Training Provide developers 
with ongoing education and training on secure coding 
practices, AI model validation, and the significance of 
security vulnerabilities identified by code scans.

i. Collaboration and Communication Foster collaboration 
and communication within development teams to ensure 
that security considerations are integrated seamlessly into 
the development process, particularly when leveraging AI 
code assistants.

G. Conclusion

In conclusion, IDE code scans play a crucial role in 
preventing security vulnerabilities in the age of AI code 
assistants. By leveraging the capabilities of IDEs equipped with 
code scanning functionalities, developers can identify, mitigate, 
and prevent potential security risks associated with AI-generated 



3

Ponaka KR., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3

code. Through a combination of proactive measures, continuous 
education, and best practices integration, developers can uphold 
robust security standards and safeguard codebases against 
emerging.

3. AI Assistant Introduced Code Vulnerabulities
Let us consider a scenario where a development team 

is building a web application that includes a form for user 
registration. To expedite development, they decided to utilize 
an AI code assistant to generate the form validation logic 
automatically.

Figure1: v3. The AI code assistant generates the following 
validation logic for the user registration form.

At first glance, the generated code provides basic validation 
for the username, email, and password fields. However, upon 
closer inspection, it becomes evident that the validation logic is 
incomplete and susceptible to security vulnerabilities.

A. Security Vulnerability: Inadequate Input Sanitization

The generated validation logic fails to adequately sanitize 
user input, leaving the application vulnerable to various injection 
attacks, including cross-site scripting (XSS) and SQL injection.

Figure 2: v4 Consider the following modified username input.

When passed through the validation function, the input 
is deemed valid as it meets the minimum character length 
requirement. However, when rendered in the application’s 
HTML, the unescaped script tags execute malicious JavaScript 
code, leading to a potential XSS attack.

b. Impact

a. XSS Attack Malicious actors can exploit the inadequate 
input sanitization to inject and execute arbitrary JavaScript 
code within the application, compromising user privacy and 
security.

b. SQL Injection Inadequate input validation also exposes the 
application to SQL injection attacks, allowing attackers 
to manipulate database queries and potentially access or 
modify sensitive data.

c. Prevention

To mitigate the security vulnerabilities introduced by 
AI-generated validation logic, developers must:

a. Manually Review Generated Code Conduct thorough 
manual reviews of code generated by AI assistants to 
identify and address security vulnerabilities, such as 
inadequate input sanitization.

b. Implement Comprehensive Input Validation Enhance the 
generated validation logic to include comprehensive input 
sanitization measures, such as escaping special characters 
and validating input against a whitelist of allowed values.

c. Educate Developers on Security Best Practices Provide 
developers with training on secure coding practices, 
emphasizing the importance of robust input validation and 
the risks associated with inadequate sanitization.

d. Integrate Automated Security Checks Utilize automated 
security testing tools and IDE code scans to identify and 
mitigate security vulnerabilities throughout the development 
lifecycle.

4. Integration with IDE Code Scans
Incorporating manual review processes and automated 

security checks, such as IDE code scans, can help detect and 
prevent security vulnerabilities introduced by AI-generated 
code. IDEs equipped with Static Application Security Testing 
(SAST) and Software Composition Analysis (SCA) capabilities 
can identify common security flaws, including inadequate input 
validation and injection vulnerabilities. By integrating these 
consolidated code scanning capabilities into the development 
workflow, developers can ensure the robustness and security of 
their applications, even in the age of AI code assistants.

Mandating the usage of IDE code scans involves establishing 
policies, providing resources, and fostering a culture of security 
within the development team. Here is a step-by-step approach to 
mandate the usage of IDE code scans effectively:

A. Policy Development

a. Draft a clear and comprehensive policy outlining the 
requirement for IDE code scans in the development process.

b. Define the frequency of code scans (e.g., before each 
commit, during code review, etc.).

c. Specify the types of scans to be performed, such as 
Static Application Security Testing (SAST), Software 
Composition Analysis (SCA), and Dependency Scanning.

d. Set expectations for addressing and resolving identified 
vulnerabilities.

B. Education and Training

a. Provide training sessions to familiarize developers with the 
importance of IDE code scans and how to effectively utilize 
scanning tools within their IDE.

b. Offer guidance on interpreting scan results and prioritizing 
vulnerabilities based on severity.

c. Emphasize the role of code scans in maintaining a secure 
codebase and reducing the risk of security breaches.

C. Integration into Development Workflow

a. Integrate IDE code scans seamlessly into the development 
workflow to minimize disruption and encourage adoption.

b. Configure IDEs to automatically trigger code scans during 
specific events, such as file save or before each commit.

c. Ensure compatibility and integration with version control 
systems to track scan results and vulnerabilities over time.



J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Ponaka KR.,

4

D. Enforcement and Accountability

a. Implement mechanisms to enforce compliance with the 
code scanning policy, such as code review checklists or 
automated checks in the CI/CD pipeline.

b. Hold developers accountable for adhering to the policy and 
addressing identified vulnerabilities promptly.

c. Provide feedback and support to developers who may 
encounter challenges or require assistance with code 
scanning tools.

Monitoring and Reporting

a. Establish monitoring mechanisms to track the usage of IDE 
code scans and ensure consistent adherence to the policy.

b. Generate regular reports on code scanning activities, 
including scan results, vulnerabilities identified and actions 
taken to remediate them.

c. Use metrics to evaluate the effectiveness of code scanning 
efforts and identify areas for improvement.

Continuous Improvement

a. Encourage feedback from developers regarding the usability 
and effectiveness of IDE code scanning tools.

b. Continuously evaluate and update the code scanning policy 
and procedures based on evolving security requirements 
and industry best practices.

c. Foster a culture of continuous improvement, where 
developers are empowered to suggest enhancements to the 
code scanning process and tools.

By following these steps and actively promoting the 
importance of IDE code scans, organizations can effectively 
mandate their usage as a fundamental component of their 
software development lifecycle, contributing to the overall 
security and integrity of their applications.

Demonstrating productivity gains with IDE security code 
scans involves highlighting the time and resource savings, 
improved code quality, and reduced security-related incidents 
resulting from their implementation. Here are several ways to 
highlight productivity gains effectively:

A. Time Savings

a. Quantify the time saved by developers through the 
automation of security code scanning within their IDEs. 
Compare the time required for manual code reviews and 
ad-hoc security checks before the adoption of IDE code 
scans.

b. Highlight the reduction in time spent on identifying and 
fixing security vulnerabilities during the development 
process. Highlight how IDE code scans enable early 
detection and resolution of issues, minimizing the need for 
extensive debugging and rework later in the development 
lifecycle.

B. Resource Optimization

a. Display how IDE code scans optimize resource allocation by 
integrating security testing seamlessly into the development 
workflow. Illustrate how this approach reduces the reliance 
on separate security teams or external security tools, 
streamlining the development process.

b. Highlight the efficiency gains achieved by consolidating 
multiple security testing capabilities, such as Static 

Application Security Testing (SAST), Software Composition 
Analysis (SCA), and Dependency Scanning, within the IDE 
environment.

C. Code Quality Improvement

a. Demonstrate the correlation between the adoption of IDE 
code scans and improvements in code quality metrics, such 
as code coverage, code complexity, and adherence to coding 
standards.

b. Highlight how IDE code scans contribute to the reduction 
of technical debt by identifying and addressing security 
vulnerabilities early in the development lifecycle. 
Emphasize the long-term benefits of maintaining a clean 
and secure codebase.

D. Security Incident Reduction

a. Quantify the reduction in security-related incidents, such as 
data breaches, security breaches, and compliance violations, 
resulting from the proactive identification and mitigation of 
vulnerabilities through IDE code scans.

b. Highlight specific case studies or examples where IDE 
code scans have prevented potential security incidents by 
identifying and addressing critical vulnerabilities before 
they could be exploited.

E. Developer Feedback and Satisfaction

a. Collect feedback from developers regarding their experience 
with IDE code scans, focusing on aspects such as usability, 
effectiveness, and integration into their development 
workflow.

b. Highlight positive testimonials or endorsements from 
developers who have experienced productivity gains and 
efficiency improvements from utilizing IDE code scans.

F. Comparative Analysis

a. Conduct a comparative analysis between projects or 
teams that utilize IDE code scans and those that do not, 
highlighting the differences in productivity, code quality, 
and security posture.

b. Use quantitative metrics, such as lines of code scanned 
per developer or vulnerabilities identified per project, to 
illustrate the impact of IDE code scans on productivity and 
security outcomes.

By leveraging these approaches, organizations can effectively 
demonstrate the productivity gains associated with the adoption 
of IDE security code scans, reinforcing the value proposition, 
and driving broader adoption across development teams.

5. Approach and Solution
It is easier said than done and large enterprises often face 

challenges with adoption and maturity. 

How to enforce IDE Scans for Developers? 

Need to take a different approach by merging the Security 
Code Scanning plugins along with AI Assisted code plugs. It 
allowed us to quickly enable all developers to use common IDE 
security tools.

Start applying additional metrics like below to track the 
usage.

• Last Scan Time vs Last Code Commit Time



5

Ponaka KR., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3

• Number of Scan types
• Number of Scans vs Number of Code Commits
• Number of AI Code Suggestions
• Tracking by Leader

6. Conclusion
Historically large enterprises have multiple security tools 

for each scan type which results in multiple plug-ins which 
puts unnecessary load on the developer machine. It is highly 
recommended to go with a Vendor which supports consolidated 
scan capabilities in IDE plug-ins. 

Conduct multiple training courses, and Survey & User 
feedback sessions to track the progress.

One of the frequent questions asked is, how to measure the 
actual productivity gains and show the savings. It is too early to 
determine the actual cost savings; we will find more information 
as we go along. More Productivity gains can be tracked in future 
by leveraging the number of vulnerabilities it prevented.

7. Acknowledgment
This article was supported by Cody Taylor (Global Head 

of DevOps at Dell Technologies) - I thank him for his valuable 
inputs.

8. References
1. https://snyk.io/platform/ide-plugins/

2. https://www.sonarsource.com/products/sonarlint/ 

3. https://docs.github.com/en/copilot/quickstart

4. https://codeium.com/autocomplete

5. https://www.researchgate.net/figure/IBM-System-Science-
Institute-Relative-Cost-of-Fixing-Defects_fig1_255965523

https://snyk.io/platform/ide-plugins/
https://www.sonarsource.com/products/sonarlint/
https://docs.github.com/en/copilot/quickstart
https://codeium.com/autocomplete
https://www.researchgate.net/figure/IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects_fig1_255965523
https://www.researchgate.net/figure/IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects_fig1_255965523

	_GoBack
	_GoBack
	_GoBack
	_Int_qTewvCjk

