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1. Introduction
Resource management is vital, considering cloud-native 

applications’ current complexity and demand-driven nature. 
Traditional approaches to scaling usually waste many resources 
or need more capacity to handle load peaks. This white paper 
presents how integrating predictive corrective machine 
learning with microservices, Kubernetes, and a state-of-the-art 
orchestration framework can help with such challenges.

2. Predictive Machine Learning for Auto-Scaling
In predictive machine learning, the historical data analyzed 

is used to project future resource needs. By identifying patterns 
and trends in the data, machine learning models can predict or 
foresee when an application requires more resources and scale 
on demand.

Key Components

•	 Data Collection: Gathering metrics on CPU usage, memory 
consumption, network traffic, user requests, thread waiting 
times, and thread processing times.

•	 Feature Engineering: Identifying relevant features that 
influence resource demand.

•	 Model Training: Using historical data to train machine 
learning models that predict future resource needs.

•	 Prediction and Scaling: Implementing a feedback loop 
where predictions trigger auto-scaling actions.

Benefits

•	 Efficiency: Optimizes resource allocation, reducing costs 
associated with over-provisioning.

•	 Performance: Ensures applications have the necessary 
resources to handle peak loads.

•	 Scalability: Facilitates seamless scaling to accommodate 
varying workloads.

3. Corrective Machine Learning for Auto-Deployment
Corrective machine learning focuses on identifying and 

rectifying system anomalies that could lead to downtime. 
Corrective machine-learning models can automatically deploy 

 A B S T R A C T 
Resource utilization and scalability are the two most prominent features in the dynamism of cloud-native environments. 

This white paper introduces predictive machine learning for auto-scaling and corrective machine learning for auto-deploying 
systems in connection with microservice-based software applications. Particular attention is given to seamless zero-downtime 
operation, assured with the help of state-of-the-art machine learning algorithms, Kubernetes, and an orchestration framework. 
The practical implementation architecture here will hopefully serve as a guide toward applying those concepts in real-world 
scenarios.
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corrective actions by continuously monitoring application 
performance and health.

Key Components

•	 Detect deviations: Using machine learning algorithms to 
detect deviations from normal behavior.

•	 Root Cause Analysis: Identifying the underlying causes of 
anomalies.

•	 Automated Responses: Deploying predefined corrective 
actions, such as restarting services or deploying additional 
instances.

•	 Continuous Learning: Refining models based on new data 
to improve accuracy and response times.

Benefits

•	 Reliability: Minimizes downtime by quickly addressing 
issues before they impact users.

•	 Autonomy: Reduces the need for manual intervention, 
allowing IT teams to focus on strategic initiatives.

•	 Adaptability: Continuously learns and adapts to changing 
application dynamics.

4. Implementation
An e-commerce microservice application that handles UI 

and API requests was considered to implement predictive and 
corrective auto-scaling. This application consists of multiple 
microservices, such as:

•	 UI Service: Manages the front-end user interface.
•	 API Service: Handles backend API requests for product 

information, user authentication, and order processing.
•	 Order Service: Manages order creation, updates, and 

status.
•	 Product Service: Handles product catalog and inventory 

management.
•	 User Service: Manages user data and authentication.

The sections below provide the bare minimum implementation 
of the white paper, which was used to implement predictive and 
corrective machine learning-based auto-scaling.

4.1 Data Collection

Zabbix: Collects metrics from each microservice.

Metrics include CPU usage, memory consumption, network 
traffic, user requests, thread waiting times, and thread processing 
times.

:zabbix_agent 
enabled: true   
host: zabbix.example.com  

Fluentd: Aggregates logs from each microservice.

>source< 
type forward@   
port 24224   
>source/< 
>** match< 
type file@   
path /var/log/fluentd   
>match/<

4.2 Feature Engineering
Apache Spark: Processes large-scale data for feature 
engineering.

from pyspark.sql import SparkSession 
spark = SparkSession.builder.appName(“FeatureEngineer-
((ing”(.getOrCreate 
(”logs = spark.read.json(“hdfs://path/to/logs 
(”metrics = spark.read.json(”hdfs://path/to/metrics 
Combine logs and metrics # 
(”combined_data = logs.join(metrics, ”timestamp

Pandas: Handles data manipulation and analysis

import pandas as pd 
(”df = pd.read_json(“combined_data.json 
]’df]’feature’] = df[’metric1’] / df]’metric2

Scikit-learn: Facilitates feature extraction and preprocessing.

from sklearn.preprocessing import StandardScaler 
((scaler = StandardScaler 
([[’features = scaler.fit_transform(df[[’feature1’, ’feature2

4.3 Model Training

TensorFlow/PyTorch: Train machine learning models using 
historical data.

import tensorflow as tf 
](model = tf.keras.models.Sequential 
,(’tf.keras.layers.Dense(128, activation=’relu     
,(’tf.keras.layers.Dense(64, activation=’relu     
(tf.keras.layers.Dense(1     
([ 
model.compile(optimizer=’adam’, loss=’mean_squared_
(’error 
)model.fit(features, labels, epochs=10

Apache Kafka: Streams data for real-time training and updates.

:kafka 
bootstrap_servers: kafka.example.com:9092   
topic: metrics  

4.4 Prediction and Scaling

Kubernetes: Manages containerized applications.

apiVersion: apps/v1 
kind: Deployment 
:metadata 
name: ecommerce-api   
:spec 
replicas: 3   
:selector   
:matchLabels     
app: ecommerce-api       
:template   
:metadata     
:labels       
app: ecommerce-api         
:spec     
:containers       
name: api -       
image: ecommerce-api:latest         
:ports         
containerPort: 80 -        
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KubeFlow: Deploys machine learning workflows on Kubernetes.

apiVersion: kubeflow.org/v1 
kind: TFJob 
:metadata 
name: ecommerce-predictor   
:spec 
:tfReplicaSpecs   
:Worker     
replicas: 3       
:template       
:spec         
:containers           
name: tensorflow -           
image: tensorflow/tensorflow:latest            

HPA (Horizontal Pod Autoscaler): Automatically scales the 
number of pods.

apiVersion: autoscaling/v1 
kind: HorizontalPodAutoscaler 
:metadata 
name: ecommerce-api-hpa   
:spec 
:scaleTargetRef   
apiVersion: apps/v1     
kind: Deployment     
name: ecommerce-api     
minReplicas: 3   
maxReplicas: 10   
targetCPUUtilizationPercentage: 50  

4.5 Anomaly Detection
Elasticsearch, Logstash, Kibana (ELK Stack): Ingests, stores, 
and analyzes logs.

{ input 
{ file   
”path => “/var/log/fluentd/*.log     
”start_position => “beginning     
}   
} 
{ filter 
{ grok   
match => { “message” => “%{COMBINEDAPACHEL-     
} ”}OG 
}   
} 
{ output 
{ elasticsearch   
]”hosts => [“localhost:9200     
”index => “ecommerce-logs     
}   
}

TensorFlow: Detects anomalies in the system metrics.

](model = tf.keras.models.Sequential 
 tf.keras.layers.LSTM(128, input_shape=(timesteps,    
,((features 
(tf.keras.layers.Dense(1     
([ 

model.compile(optimizer=’adam’, loss=’mean_squared_er-
(’ror 
(model.fit(training_data, labels, epochs=10

4.6 Root Cause Analysis
Neo4j: Stores and analyzes relationships and dependencies.

(MATCH (s:Service(-[r:DEPENDS_ON]->(t:Service 
’WHERE s.name = ‘ecommerce-api 
RETURN t

TensorFlow: Identifies patterns and correlations.

from tensorflow.keras.models import Model 
  intermediate_layer_model = Model(inputs=model.input,
(outputs=model.get_layer(‘intermediate_layer’(.output 
intermediate_output = intermediate_layer_model.predict(-
(data

4.7 Automated Responses
Kubernetes: Orchestrates automated responses.

apiVersion: v1 
kind: Pod 
:metadata 
name: ecommerce-api-restart   
:spec 
:containers   
name: api -   
image: ecommerce-api:latest     
:lifecycle     
:preStop       
:exec         
]”command: ]“/bin/sh”, “-c”, “sleep 10          

Terraform: Manages infrastructure as code.

{ ”resource “kubernetes_deployment” “ecommerce_api 
{ metadata   
”name = “ecommerce-api     
}   
{ spec   
replicas = 3     
{ template     
{ metadata       
{ = labels         
”app = “ecommerce-api           
}         
}       
{ spec       
{ container         
”image = “ecommerce-api:latest           
”name  = “ecommerce-api           
{ port           
container_port = 80             
}           
}         
}       
}     
}   
}

Ansible: Automates configuration management and deployment 
tasks.

name: Restart ecommerce API service - 
hosts: all   
:tasks   
name: Restart Kubernetes pod -     
command: kubectl rollout restart deployment ecom-       
merce-api



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Veluru CS.,

4

4.8 Continuous Learning

TensorFlow: Continuously updates models with new data.

model.fit(new_data, new_labels, epochs=10, initial_ep-
(och=model.epochs

Apache Kafka: Streams new data for real-time model updates.

:kafka 
bootstrap_servers: kafka.example.com:9092   
topic: new_metrics  

Kubernetes: Deploys updated models.

apiVersion: apps/v1 
kind: Deployment 
:metadata 
name: ecommerce-model  

:spec 
replicas: 1   
:template   
:metadata     
:labels       
app: ecommerce-model         
:spec     
:containers       
name: model -       
image: ecommerce-model:latest        

5. Results and Discussion
Table 1: Collected Metrics shows the raw data collected by 
Zabbix and Fluentd, including CPU usage, memory usage, 
network traffic, user requests, thread waiting times, and thread 
processing times.

Timestamp CPU Usage (%) Memory Usage 
(MB)

Network	Traffic	
(MB) User Requests Thread Waiting Time 

(ms)
Thread Processing Time 

(ms)

7/4/22 10:00 45 1024 500 2000 50 100

7/4/22 10:05 50 1100 520 2100 55 110

7/4/22 10:10 60 1150 540 2200 60 120

7/4/22 10:15 70 1250 560 2300 65 130

7/4/22 10:20 80 1350 580 2400 70 140

Table 2: Feature Engineering illustrates how raw metrics are transformed into features that can be used for machine learning 
model training.

Timestamp CPU to Memory Ratio Requests per Thread Process Time per Request (ms(

7/4/22 10:00 0.044 40 0.05

7/4/22 10:05 0.045 38 0.052

7/4/22 10:10 0.052 37 0.054

7/4/22 10:15 0.056 35 0.057

7/4/22 10:20 0.059 34 0.058

Table 3: Model Predictions presents the predictions made by the trained models, including predicted CPU usage, memory usage, 
and user requests, along with the corresponding scaling actions (e.g., scaling up or down the number of pods(.

Timestamp Predicted CPU Usage (%( Predicted Memory Usage (MB) Predicted User Requests Scaling Action

7/4/22 10:25 85 1400 2500 Scale Up to 5 Pods

7/4/22 10:30 90 1450 2600 Scale Up to 7 Pods

7/4/22 10:35 88 1420 2550 Maintain 7 Pods

7/4/22 10:40 75 1300 2400 Scale Down to 6 Pods

7/4/22 10:45 70 1250 2300 Scale Down to 5 Pods

Table 4: Anomaly Detection captures the detection of anomalies in the system metrics, root cause analysis results, and the corrective 
actions taken to resolve the issues.

Timestamp Metric Observed Value Anomaly Detected Root Cause Analysis Corrective Action

7/4/22 10:30 Thread Waiting Time 100 ms Yes High load on API Service Restart API Service

7/4/22 10:35 Memory Usage 1600 MB Yes Memory leak detected in Product Service Adjust Memory Allocation

7/4/22 10:40 CPU Usage 95% Yes High CPU usage due to inefficient query Optimize Database Queries

7/4/22 10:45 User Requests 3000 No - -

7/4/22 10:50 Network Traffic 700 MB Yes Unusual traffic spike indicating potential DDOS Deploy Additional Instances
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Implementing predictive and corrective machine learning 
for the e-commerce application significantly improved resource 
utilization, scalability, and overall performance. The system 
collected comprehensive metrics such as CPU usage, memory 
consumption, network traffic, user requests, thread waiting 
times, and thread processing times using Zabbix and Fluentd. 
These metrics were processed using Apache Spark for feature 
engineering, resulting in feature sets that included historical 
usage patterns, workload characteristics, and application 
performance metrics.

The predictive models, trained with TensorFlow, used 
these features to forecast future resource demands. The models 
continuously received real-time metrics via Apache Kafka, 
allowing them to update predictions dynamically. When 
the predicted CPU utilization exceeded 70%, or memory 
consumption was projected to surpass 75%, the system 
triggered the Horizontal Pod Autoscaler (HPA( in Kubernetes. 
These thresholds were determined based on historical data and 
model training, ensuring proactive scaling before performance 
degradation occurred.

During a simulated peak load event, the predictive model 
anticipated a spike in user requests and increased CPU usage. 
As a result, the HPA scaled the number of API service pods from 
3 to 7, ensuring sufficient capacity to handle the increased load. 
This scaling action occurred seamlessly, maintaining application 
performance without any downtime.

TensorFlow models identified deviations in system metrics 
for anomaly detection that indicated potential issues. For 
instance, an unusual increase in thread waiting times was 
detected, suggesting a potential bottleneck. The anomaly 
detection triggered root cause analysis using Neo4j, pinpointing 
a specific microservice experiencing a high load. Automated 
responses orchestrated by Kubernetes and managed through 
Terraform and Ansible restarted the affected microservice 
and adjusted its resource allocation. Continuous learning was 
achieved by streaming new data into the models via Apache 
Kafka, allowing them to adapt to changing usage patterns and 
improve prediction accuracy over time. As a result, the system 
refined its thresholds and scaling actions based on real-time 
feedback, enhancing its responsiveness and reliability.

The implementation ensured that the e-commerce application 
could handle varying loads efficiently. The predictive and 
corrective machine learning models provided accurate scaling 
and automated deployment responses, maintaining optimal 
performance and resource utilization. By dynamically adjusting 
to workload demands, the system achieved zero downtime, 
improved user experience, and reduced operational costs. This 
practical implementation demonstrates the effectiveness of 
integrating machine learning with modern orchestration tools 
to enhance the performance and scalability of cloud-native 
applications.

6. Conclusion
This experimental study has shown that predictive and 

corrective machine learning-based auto-scaling and auto-
deployment in microservice-based e-commerce applications 
remarkably enhance resource utilization, scalability, and 
overall performance. The proposed approach combines state-
of-the-art machine learning algorithms with Kubernetes and 
an orchestration framework to efficiently predict resources and 

respond against anomalies throughout, ensuring zero downtime 
operations. The practical approach described in this white paper 
very clearly illustrates how predictive models can be best utilized 
to scale and correctives for maintaining application health to 
ensure optimum resource allocation, improved user experience, 
and reduced operational costs. It would readjust scaling and 
deployment strategies developed further for incorporating more 
sophisticated machine learning models, such as reinforcement 
learning, into the predictive and corrective machine learning 
system to enhance its capabilities and robustness; furthermore, 
ensemble learning techniques are likely to improve the accuracy 
and reliability of predictions and anomaly detections.

One can integrate more diverse data sources, including user 
behavior analytics, third-party APIs, and real-time market data, 
to give a more complete view of system performance and external 
factors influencing resource demand. Feature engineering tools 
and techniques can be adopted that will more appropriately 
identify and extract relevant features from the raw data to 
improve the predictive power of the models. This would be 
important in ensuring that the data and models are well protected 
against any possible breach and adherence to the regulations on 
data privacy. Anomaly detection systems integrated with SIEM 
tools can automate security responses and mitigate risks.

This can further improve with the adoption of serverless 
computing and edge computing paradigms, which would 
give better scalability and lower latency in applications with 
a geographically spread-out user base. Dynamic scaling and 
resource allocation would work in conjunction with continuous 
monitoring and optimization of the underpinning infrastructure. 
More granular, real-time monitoring and feedback loops would 
allow adjustments to be made immediately, based on real-time 
data, to keep the system adaptive and responsive. Performance 
would be clearly indicated through advanced visualization tools 
concerning system performance and predictive model accuracy.
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