ISSN: 2583-9888 (yURF PUBLISHERS

R
DOI: doi.org/10.51219/JAIMLD/utpal-barma/633 = connect with research world

Journal of Artificial Intelligence, Machine Learning and Data Science

https://urfpublishers.com/journal/artificial-intelligence

Vol: 3 & Iss: 4 Research Article

Polyglot Persistence - Usage and Challenges

Utpal Barman™" and Kailash Joshi?
1Manager, IT, Charter Communications, Missouri, USA

*Professor, University of St. Louis Missouri (UMSL), St. Louis, Missouri, USA

Citation: Barman U, Joshi K. Polyglot Persistence - Usage and Challenges. J Artif Intell Mach Learn & Data Sci 2025 3(4), 3079-
3089. DOL: doi.org/10.51219/JAIMLD/utpal-barma/633

Received: 19 November, 2025; Accepted: 24 November, 2025; Published: 26 November, 2025
*Corresponding author: Utpal Barman Manager, I'T, Charter Communications, Missouri, USA, E-mail: ubarman@gmail.com

Copyright: © 2025 Barman U, et al., This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

ABSTRACT

This paper investigates the theoretical foundations of polyglot persistence by grounding the discussion in aggregate-oriented
database principles and Domain-Driven Design (DDD). It examines mechanisms for integrating heterogeneous data stores-such
as MongoDB-Neo4j synchronization pipelines, APOC (Awesome Procedures on Cypher) and Change Data Capture (CDC)-
and evaluates their implications for consistency and real-time data propagation. The study further analyzes the major challenges
associated with polyglot adoption, including data consistency, synchronization overhead and operational complexity. While
polyglot persistence offers improved flexibility, scalability and performance, the paper argues that these benefits require careful
architectural planning and governance to mitigate inherent trade-offs. Additionally, the paper reviews containerization and
Database-as-a-Service (DBaaS) deployment models, highlighting their impact on consistency, security and cost. It concludes
with a forward-looking assessment of emerging trends-such as AI-driven orchestration and autonomous data fabrics that are
poised to influence future distributed data system architectures.

Keywords: NoSQL, Polyglot persistence, Heterogeneous databases, NoSQL, Domain-driven design, Data synchronization,
APOC, Change data capture, Database-as-a-service, AI-driven orchestration

services and data characteristics. In distributed and microservices
architectures, this often involves combining ACID-compliant
relational systems with NoSQL stores that provide horizontal
scalability, flexible schemas and high-throughput operations.
Document and column stores support semi-structured data at
scale, key-value stores offer sub-millisecond lookup, while

graph databases efficiently traverse complex relationships®.

1. Introduction

Modern data-intensive and cloud-native systems manage
heterogeneous datasets that cannot be efficiently supported by
a single database model. Traditional monolithic architectures
struggle to accommodate varied data types, formats and access
patterns-for example, an e-commerce platform may require a
relational database for transactions, a document store for product

catalogs and a graph database for recommendations. A single
model cannot optimally serve such diverse workloads.

Polyglot persistence, introduced by Fowler?, addresses this
limitation by enabling multiple database technologies within the
same system, selecting each according to its strengths for specific

However, adopting polyglot persistence introduces new
challenges. Distributed systems frequently rely on eventual
consistency, requiring explicit synchronization and coordination
across heterogeneous databases®. Designers must navigate
CAP-theorem trade-offs between consistency, availability and

https://orcid.org/0000-0003-4645-7375
https://doi.org/10.51219/JAIMLD/utpal-barma/633
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/utpal-barma/633

Barman U, et al.,

partition tolerance®*!”. Furthermore, each additional database
engine increases operational overhead and demands specialized
expertise to deploy, secure and maintain®.

The objective of this paper is to analyze the principles
of polyglot persistence, identify its practical applications
and examine the challenges associated with consistency,
synchronization and operational complexity. The paper also
highlights the gaps in current practice, motivating the need
for structured architectural guidance and improved tooling for
managing heterogeneous data systems.

In summary, while polyglot persistence leverages the
strengths of diverse data models to optimize varied workloads?,
it introduces nontrivial trade-offs in consistency and system
complexity that must be carefully governed***.

1.1. Structure of this paper

This section examines several use cases that demonstrate the
implementation of polyglot persistence. Before discussing the
implementation, it first outlines the following topics:

* Abrief history of database systems to illustrate the evolution
of data models.

* The relationship between polyglot persistence, Aggregate-
Oriented Databases and Domain-Driven Design (DDD).

e The features of SQL, NoSQL and their respective data
models to determine which features are suitable for specific
business scenarios.

* The continuing significance of SQL and the reasons it
remains indispensable.

* A precise definition of polyglot persistence.

* The key challenges associated with polyglot persistence and
corresponding mitigation strategies.

Subsequently, the paper presents selected business cases that
implement different data models and demonstrates methods for
enabling communication across heterogeneous databases.

1.2. A brief history

Ever since Charles W. Bachman designed the first integrated
database system in 1960, database management system went
through many reconstructions to keep up with the demands and
expectations of various periods of technology evolution.

In the 80s we had a rise of relational database management
system. It owes its popularity to the universal, simple, but
very powerful SQL language. It was simple enough for
non-programmers to easily interact with data, yet, powerful
enough to execute complex queries to create reports joining
multiple tables.

The 90s saw the rise of object data model. It primarily got
elevated to solve the impedance mismatch problem which is
quite a cohesive problem with relational data models. Impedance
mismatch problem is the conflict in which a user interface tries
to display data versus the way they are stored in database tables
and columns. We thought that relational data model might
fade away and object data model will be prevalent. Object
data model has an architecture to take application in-memory
structures and store them directly into disk without having to
map the object attributes to database since this approach hides
the actual implementation of mapping data into columns. It was
a good approach however; it could not fulfil the potential since

2

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

relational data model along with its simple SQL query language
had become an integration mechanism. Many applications were
integrated deeply through SQL database which prevented any
other technology to dominate data world. RDBMS remains
necessary today for highly structured, shared data and for
supporting workloads like financial transactions where high
integrity is non-negotiable.

Through year 2000 we saw a surge in development of
Internet applications like ecommerce, social platforms which
demanded huge amount of data processing from multiple users
simultaneously. This led to a tremendous data traffic, forcing us
to scale up (vertical scaling). However, scaling up had restriction
on how much we can scale and it costs a lot.

1.3. Rush of data

Rush of data steered the development of scaling out or
horizontal scaling. Many big organizations, most famously
Google took this approach of scaling out by creating massive
grids of many small boxes, where each box hosted SQL database.
However, this approach had an issue with data storage since
SQL was designed to run on a single data node and does not
work efficiently with large cluster of multiple boxes. Spreading
relational databases across clusters does not work well due to the
ACID property of relational data model. This rose the need for
a completely new model of database called as NoSQL (not only
SQL). The striking features of this data model are that they do
not require a fixed schema, does not have complex joins, can be
distributed easily which could leverage scaling out (horizontal
scaling).

2. Theoretical Foundation
2.1. Aggregate oriented databases

Aggregate-oriented databases group related data into
aggregates—self-contained clusters of entities treated as single
transactional units. Unlike normalized relational schemas,
aggregates reduce the need for complex joins and allow atomic
updates within defined boundaries. This model aligns naturally
with key-value, document and column-family databases, where
each aggregate can be retrieved or stored as a single record.
Such designs enhance horizontal scalability and simplify data
partitioning in distributed systems.

Each aggregate represents a meaningful business concept-
such as an “Order,” “Customer,” or “Shopping Cart”-that the
application typically reads or writes. This design naturally
supports horizontal scalability because aggregates can be
distributed independently across nodes, minimizing cross-node
dependencies.

In NoSQL systems, key-value, document and column-
family stores are aggregate-oriented by design, as they allow
retrieval and persistence of entire aggregates in one operation.
This contrasts with graph databases, which are non-aggregate-
oriented and optimized instead for traversing relationships.

2.2. Domain-Driven Design (DDD)

Domain-Driven Design, formulated by Eric Evans, structures
software around domain concepts using bounded contexts and
aggregates. Each bounded context encapsulates a distinct part
of the business domain, with its own rules and data consistency
needs. Aggregates within these contexts define clear transactional
boundaries. DDD’s emphasis on aligning software with real-
world domains provides the theoretical rationale for selecting

Barman U, et al.,

different persistence models. Each bounded context may use the
data store that best matches its performance, consistency and
scalability requirements.

2.3. How DDD and aggregate orientation justify polyglot
persistence

When applying DDD principles at scale, each bounded context
may have distinct data behavior:

* Some aggregates demand strong ACID consistency (e.g.,
financial records — RDBMS).

* Others require flexibility and scalability (e.g., user activity
logs — Document DB).

* Some depend on high-speed lookups (Key-Value Store) or
complex relationship traversal (Graph DB).

Table 1: Suitable database per use case.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

Thus, polyglot persistence emerges naturally from the DDD
philosophy. It allows each context to independently optimize
storage and query performance, aligning system design with
business and operational realities

It allows each context to choose the data store best suited
to its consistency, query and scalability needs, while keeping
aggregate boundaries clean and domain-aligned.

2.4. Usage of polyglot persistence

Polyglot persistence is increasingly used in distributed
systems and microservice architectures. Each service owns its
data and selects the optimal database model based on access
patterns and consistency needs. Examples include (Table 1):

Use Case Data Characteristics Suitable Database Model Example
Transaction management Structured, relational RDBMS PostgreSQL, MySQL
Product catalog Semi-structured, flexible schema Document Store MongoDB

Real-time analytics High-volume, time-series

Column Store Cassandra, HBase

User session caching High-speed lookup

Key-Value Store Redis

Recommendation engine Relationship-centric

Graph Database Neo4j

This modular approach enhances agility and allows
developers to choose the most effective technology for each
use case. However, it also introduces significant design and
operational complexities, discussed below.

3. Challenges in Polyglot Persistence
3.1. Data consistency and synchronization

One of the foremost challenges is maintaining consistency
across heterogeneous databases. Distributed systems often rely
on eventual consistency rather than strict ACID guarantees.
Synchronizing updates between systems with different
transaction models can be difficult, necessitating event-driven or
CQRS (Command Query Responsibility Segregation) patterns.

3.2. Complexity and maintenance overhead

Managing multiple database systems increases operational
complexity. Each system requires specialized expertise,
monitoring tools and scaling strategies. Backup and recovery
processes must be coordinated across heterogeneous
environments, increasing the risk of configuration errors.

3.3. Security and governance

Different databases may have varied security models and
access controls. Ensuring consistent authentication, authorization
and encryption policies across multiple platforms is challenging.
Furthermore, compliance with data protection regulations such
as GDPR or HIPAA requires unified governance mechanisms.

3.4. Performance optimization and cost

While polyglot persistence can improve performance for
individual workloads, it can also lead to inefficiencies when
data is fragmented across systems. Querying or aggregating data
from multiple stores may require custom APIs or integration
middleware, which adds latency and cost.

4. Why NoSQL

NoSQL data model is denormalized, which means that there

are no dependencies between individual data. Denormalization
in NoSQL is achieved since all required fields of a particular data
row are stored together in a document which avoids jumping
around tables through expensive joins. Embedding fields within
a field further helps in performance. Graph data model, inspired
by network model, has a different approach of storage, but they
are denormalized. Since data are denormalized they are easily
distributable which adds to the scalability advantage. Keeping
the rising Internet application and data in mind, few aspects like
- Prompt 10 operations and low latency, Efficient storage and
access, High Scalability and availability, Reduction in operation
cost, were critical for business and user demands. And the
features of NoSQL gave a clear edge on relational data models.

In NoSQL we do not have to pay too much upfront or
scaling. Horizontal scaling is easy to scale when we have spike
of data traffic. When the spike reduces, we can scale down. In
relational database models, however, we cannot scale down once
the required infrastructures are configured.

4.1. Characteristics of NoSQL

The characteristics that give NoSQL the edge to be less
expensive, mass storage ready, consistent, quick and easy to
expand are that they are non-relational, mostly open-source,
cluster friendly, internet application driven and schema less.
There are certain features in each NoSQL data models that
makes them ablest for certain business use cases. In this section
we will elucidate the unique features of NoSQL databases to
understand how they are ideal for certain applications.

4.1.1. Aggregate oriented database: Key-value databases store
metadata identified by a key and this metadata may itself be a
document. Likewise, document databases often retrieve an entire
document by its ID, effectively treating the ID as a key and the
document as the value. This shared pattern-storing complex
structures as single units-leads to the concept of Aggregate-
Oriented Databases. By keeping an aggregate in one place and

Barman U, et al.,

retrieving it in a single operation, systems reduce I/O and simplify
application-level data access. The idea of aggregates comes
from Domain-Driven Design (DDD)?, introduced by Eric Evans
in Domain-Driven Design: Tackling Complexity in the Heart
of Software (2004). DDD emphasizes shaping software around
business or domain needs. An aggregate is a cluster of related
objects treated as one transactional unit, directly influencing data
modeling in NoSQL systems such as key-value, document and
column-family stores. For example, a course catalog may include
programs and courses stored in separate relational tables. But
in a domain view, a program-with its courses, schedule, trainer
and other details-is best treated as a single whole. Aggregate-
oriented databases allow this entire structure to be stored and
retrieved together. Thus, in a key-value store the value is an
aggregate; in a document store the document is an aggregate;
in a column store the column family is an aggregate (Figure 1).

Course Catalog
Arts Language (v)] Date ﬁf Search |:|Q
Business
Social Introduction to Neo4) | | Recommended
Science Cloud Computing
Mat.h & Cassandra
Logic Discrete Math
Data
Giframee Graph Theory
Computer PrObabl'lt\/
Science

Figure 1: A typical course catalog.

Aggregates also guide data distribution: because data
accessed together is stored together, each aggregate can be
placed on a single node, improving lookup efficiency in
distributed systems. This principle underpins the distributed
nature of many NoSQL databases. In contrast, graph databases
are not aggregate-oriented and therefore distribute less naturally,
since they decompose data into smaller, highly connected units.

While relationships can still be modeled using references,
they become more complex in aggregate-oriented systems.
Therefore, choosing a database depends on how the application
uses its data: if it frequently works with whole aggregates,
aggregate-oriented NoSQL is suitable; if it must navigate many
relationships, a graph database fits better; if strong consistency
with tabular data is needed, a relational database is appropriate.
Aggregate orientation is only one factor in this decision'®.

4.1.2. Consistency: Consistency determines how well a system
handles many users modifying the same data simultaneously.
Relational databases excel at this through ACID properties-
Atomicity, Consistency, Isolation and Durability'®. Transactions
ensure atomic updates so no other process can read or change
data mid-update, preserving logical consistency and preventing
corruption. This strong consistency is fundamental to RDBMSs.

Most NoSQL databases-except graph databases-do not
fully maintain atomicity. Graph databases tend to follow
ACID principles because they break data into many small,
interdependent units. Aggregate-oriented NoSQL databases,
however, rely on Domain-Driven Design (DDD)?, where
aggregates form natural transactional boundaries. As long as
updates stay within an aggregate, atomicity and consistency are

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

easier to maintain. Only when updates span multiple aggregates
or documents do concerns such as locking or version stamping
arise, like relational systems.

Thus, while relational databases offer ACID consistency at
the cost of availability, aggregate-oriented databases can achieve
consistency within aggregates by design. Consistency remains
a key factor in choosing a database, though it is not the only
consideration.

4.1.3. Consistency and availability: There are two types
of consistency-logical and replication consistency'®. Logical
consistency is handled through mechanisms like locking and
versioning, as discussed earlier. Replication consistency,
however, arises when data is distributed across multiple
machines and is more complex to maintain'®. Broadly, systems
address replication consistency through two strategies: data
sharding and data replication'®!¢.

4.1.4. Data sharding: In data sharding, a single copy of each data
item is stored on exactly one machine within the cluster. Different
sharding approaches exist, but they do not fundamentally change
the fact that the system still faces the same logical consistency
challenges as a single-machine setup-only somewhat mitigated.
Sharding is designed primarily to improve scalability, not to
solve logical consistency problems.

4.1.4.1 Data replication: Data replication stores the same data
on multiple nodes, improving performance (by reading from
the nearest copy) and resilience (by surviving node failures).
However, replication introduces new consistency challenges
tied to availability. Because updates may not reach all nodes
instantly, systems often provide eventual consistency, where
data may be temporarily inconsistent but becomes consistent
over time.

For example, in a 5-node cluster, if an update fails to reach
node 4 due to a brief network issue, a read routed to that node
may return stale data. Though rare with modern systems, this
remains an inherent tradeoff.

A hotel-booking case illustrates the consistency vs.
availability dilemma. If two users-one on the east coast and
one on the west-try to book the same room through different
nodes, a strictly consistent system would block all bookings
until nodes synchronize. A highly available system would allow
both bookings and resolve the conflict later. The correct choice
depends on business needs.

Amazon faced this tradeoff when designing Dynamo,
prioritizing availability so shopping carts remain usable even
under network partitions. Consistency-availability tradeoffs are
therefore key to database selection. In distributed aggregate-
oriented systems, this further leads to considering partition
tolerance, forming the basis of the CAP theorem.

4.1.5. CAP theorem — Consistency, Availability, Partition
tolerance: The CAP theorem states that a distributed system
cannot guarantee all three properties-Consistency (C),
Availability (A) and Partition Tolerance (P)-at the same
time'®. Because partition tolerance is unavoidable in any real
distributed network'’, systems must choose between consistency
and availability during a network partition, leading to either
CP or AP designs. Traditional RDBMS deployments typically
prioritize CP, favoring consistency over availability.

Barman U, et al.,

In distributed NoSQL systems, partition tolerance is inherent,
so the practical choice becomes how much consistency or
availability to trade off. Single-node databases can provide both,
but once replicated across nodes, maintaining strict consistency
means every node must return the newest data immediately
after a write. In real applications, this is rarely a strict either-or
decision: different operations may lean more toward consistency
or availability depending on business needs.

4.1.6. Consistency directly proportional to response time:
Higher consistency generally increases response time'®. Ensuring
consistency across more nodes requires additional coordination,
which slows down reads and writes. In the hotel-booking
example, if the east and west nodes must communicate before
confirming a room, the response is slower. Some businesses may
instead prioritize speed, allowing each node to act independently
and reconciling conflicts later. Amazon follows a similar
approach, favoring quick responses even if not all nodes return
perfectly consistent results immediately.

Thus, factors like aggregate orientation, Domain-Driven
Design®, distribution, replication and the tradeoffs between
consistency, availability, response time and computational
complexity must be balanced according to business needs.

4.2. Why we still need relational database?

Relational databases have matured through decades of
widespread use and reliability. They serve as core integration
platforms for many applications and provide strong data
integrity through ACID properties-atomicity, consistency,
isolation and durability-making them ideal for workloads like
financial transactions. Another major advantage is SQL, whose
standardized, expressive and easy-to-learn syntax has a vast
support community. SQL enables efficient querying and joining
across structured data, making relational databases highly
effective for complex and ad hoc queries.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

4.3. What is polyglot persistence?

Different applications store and use data in different ways,
so each should choose the database best suited to its use case.
Polyglot persistence is the design philosophy of selecting the
right storage model for each application within a system'®. This
requires understanding how each application accesses data,
evaluating the strengths and weaknesses of different data models
and ensuring smooth data flow between applications (Figures 2
and 3).

The term comes from polyglot programming, where multiple
programming languages are used within a single system, each
chosen for its strengths. The goal is not only to use different
technologies but also to ensure they interoperate cleanly through
well-defined inputs and outputs (Table 2).

In practice, new database models will continue to emerge,
while relational databases will remain important. Relying on a
single model often leads to compensating for its limitations, so
choosing the appropriate database for each problem is essential.

E-commerce
platform

* Financial Data ||* User Session + Point-of-Sale * Analytics |<—
* Reporting * Shopping Cart
* Product Catalog || Recommendation}(—‘

£ B SR __FJE__F & _3
NoSQL NosQL NoSQL

RDBMS

- Key Value Document Graph m

Figure 2: Diagram of polyglot persistence.

The below table provides few basic guidelines to choose database types based on the functionality of the data:

Table 2: Database type selection per functionality.

Does not need to grow substantially.

Functionality Considerations Database Type
Quick Read and Write.

User Sessions Unique key like login ID can serve as key. Key-Value
Low durability.
Need to have ACID property.

Financial Data Consistency is the key. RDBMS

Point-Of-Sale Mostly used for analytics.

Huge data which may not be uniform in terms of fields.

Seem to meet natural aggregate oriented structure.

Document if high read writes.
Column if used for analytics.

Need to have high availability.
Need to distributed across regions.
Data fields may not be uniform

Shopping Cart

Document

Recommendations Can build lots of relationships.

Need to evaluate based on multiple relationships between data.

Graph

High Reads.

Product Catalog Infrequent Writes.

Seem to meet natural aggregate oriented structure.

Document

Requires multiple joins.
Reporting
Needs mathematical functions for calculation.

Requires decision making by slicing and dicing data

RDBMS

Lot of concurrent processing.

Analytics Requires Reads of big set of data together.

Column

Requires high volume of reads and writes.
User activity logs

Each user session or transaction ID may act like a key which can store many meta data
These user logs or transactional logs need to be stored for analytics.

Document

Barman U, et al.,

In polyglot world the architecture of a typical ecommerce
application might look something like this, where we use key
value for user session, document for shopping cart, graph for
recommendations etc.

=
>
° Application _{—Financial Data RDBMS
* Reportin ’,. -
'
+ Point-of-Sale %
*\ Shopping Cart o
+ Product Catalog S

Bulk Analytic
Infrastructure
Hadoop, EDW

* Recommendation

ata Mining and aggregation Ad hoc analysis

Data Scientists
Bl Users

Figure 3: Polyglot architecture.

It is not just the ecommerce business application that is
integrating and talking to the polyglot setup. There may be data
scientists, business intelligence teams that need to query for
analysis and reporting.

5. Advantages of Polyglot Persistence
5.1. Cost effectiveness

We have seen that NoSQL are highly cost effective as we
increase the volume. If we do not need to cater to much capacity
in our business domain, then we may rather go towards relational
database like PostgreSQL or MySQL which are highly cost
advantageous. Teradata can handle huge amount of data but with
the expense of maintenance cost (Figure 4).

5.2. Read Write speed with volume

If we have a large volume of data which can be managed

5.3. Review of SQL model summaries
A consolidated view of the data models (Table 3):

Table 3: Database type selection per functionality.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

within one large database server, then relational database could
be a good choice since they are quite fast in view of not having
to deal with jumping over multiple nodes to find the required
data. However, if we have large volume that would demand
distribution or sharding, then NoSQL database stands to be
advantageous (Figure 5).

COST

CAPACITY

Figure 4: Cost Capacity metrics.

(e, \°J

Teradata |

COST

Speed in Read Write with volume

Figure 5: Cost Speed metrics.

Data Model Type

Example Use Case

Core Strength

Consistency Profile

Relational (RDBMS)

Financial
Reporting

Transactions,

Complex

ACID Compliance, Complex Joins, Data
Integrity

Strong Consistency — Partition Tolerance

Key-Value Store (NoSQL)

User Sessions, Shopping Cart

Speed, Simplicity, High Availability, Easy
Distribution

Eventual Availability — Partition Tolerance

Document Database

Product Catalog,

Content

Rich JSON/BSON Structure, Schema-less

Scoped/Eventual Availability — Partition

(NoSQL)

Management Systems

Flexibility, Aggregate Retrieval

Tolerance

Wide-Column/Column
Family (NoSQL)

Operational Logs, Time Series Data

Massively
Performance, Fast Retrieval of Columns

Scalable Write/Read | Eventual Availability — Partition Tolerance

Graph Database (NoSQL) | Recommendation Engine, Fraud | Relationship Traversal Speed, Intuitiveness, | Highly Specific/ACID-like

Detection, MDM Index-Free Adjacency
Analytical Columnar | Data Warehousing, OLAP Compression, Fast Analytical Query | Strong/Managed (RDBMS derivative)
(SQL/DW) Scanning on Big Data

6. Challenges of Polyglot Persistence
6.1. Evolving business requirements

As services change with new business needs, maintaining
different data models per service can become complex. New

logic, evolving features and shifting access patterns all increase
the burden of managing multiple database systems. While a single
data model also faces change, it is generally easier to control.
The added complexity introduced by polyglot persistence can
be managed through proper training and disciplined design
processes

Barman U, et al.,

6.1.1. Data sync: Using multiple databases requires keeping
data consistent across systems. Suppose we maintain an existing
SQL infrastructure and introduce a NoSQL store such as Neo4J.
We must ensure the right data types go to the right database.

We may adopt one of the three options (Figure 6).

MIGRATE

ALL DATA ALL QUERIES

NoSQL QUERIES

DUPLICATE
SUBSET

NoSQL QUERIES

Figure 6: Data sync options.

e Migrate all data: Move all data and queries to Neo4J
(or another NoSQL system). This removes the benefits of
polyglot persistence because relational-friendly data may
no longer fit well.

* Migrate a subset: Move only graph-appropriate data to
Neo4] while leaving relational data in SQL. The application
must query each database based on the data type, but both
systems must be synchronized.

* Duplicate subset: Keep SQL as the single Source of Truth
(SoT) and copy only graph-oriented data to Neo4J as a read-
optimized replica. This reduces synchronization effort, as
only one-way syncing is needed. Tools like Neo4J’s APOC
procedures support such batch syncing.

For example, in an e-commerce system, MongoDB may

Table 4: Some built in procedures.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

store product catalog data (text, images, HTML, URLs) and
serve customer search queries efficiently. Meanwhile, Neo4J
can power personalized recommendations by leveraging
relationships between items—for instance, showing notebooks
frequently bought with a particular pen. While each database
excels in its role, maintaining data sync between them remains
essential.

In an e-commerce system, customer-facing searches-such
as by keyword, category or brand-are best served through a
document database like MongoDB, which efficiently stores
product details, images and HTML descriptions. However,
personalized recommendations are better supported by a graph
database, which models items as nodes connected through
relationships. This allows fast retrieval of related products-for
example, suggesting notebooks when a customer selects a pen,
a simple form of collaborative filtering. While this approach
leverages each database’s strengths, it also introduces the
challenge of keeping data synchronized across both systems.

6.1.1.1. Dealing with data sync: To synchronize data between
Neo4J and MongoDB, we can use APOC (Awesome Procedures
on Cypher)-a library of user-defined Java procedures callable
from Cypher. APOC provides around 200 built-in procedures
packaged as a JAR that can be added directly to Neo4J. For
example, APOC can load data via JDBC or from formats such
as JSON, XML, Excel or web APIs. Since MongoDB exposes a
REST API that returns JSON, we can invoke this API, pass the
resulting JSON to an APOC procedure and let Cypher interpret
each JSON entry to build or update graph relationships. This
process can be automated using a simple service or a scheduled
job (e.g., cron) to batch-refresh Neo4J from MongoDB (Table
4).

Procedure Name Command to invoke procedure What it does

ListLabels CALL db.labels() List all labels in the database
ListRelationshipTypes | CALL db.relationshipTypes() List all relationship types in the database
ListPropertyKeys CALL db.propertyKeys() List all property keys in the database

ListIndexes CALL db.indexes() List all indexes in the database

ListConstraints CALL db.constraints() List all constraints in the database

ListProcedures CALL dbms.procedures() List all procedures in the dbms

ListComponents CALL dbms.components() List DBMS constraints and their versions
QueryJmx CALL dbms.queryJmx(query) r?; ;21 Fjol:dé a;l;ﬁgf(ilgite oi?i” by domain and
AlterUserPassword CALL dbms.changePassword(query) | Change the user password

Some data migration snippets from relational, document, CSV, XML to Graph database Neo4J (Table 5):

Table 5: Data migration snippets.

Source

Graph database Cypher

Load from relational database, either a full table or a sql
statement

CALL apoc.load.jdbc(‘jdbc:derby:derbyDB’,”"COURSE’) YIELD row CREATE
(:COURSE {name.row.name})

Load from relational database, either a full table or a sql
statement

CALL apoc.load.jdbe(‘jdbc:derby:derbyDB’,’SELECT * FROM COURSE

WHERE PROGRAM = ‘MATH”)

register jdbc driver of source database

CALL apoc.load.driver(‘org.apache.derby.jdbc. EmbeddedDriver’)

Load from JSON URL (e.g. web-api) to import JSON
as stream of values if the JSON was an array or a single
value it was a map

CALL apoc.load.json(‘http://example.com/map.json’) YIELD value as COURSE
CREATE (c:Course) set ¢ = course

Load from XML URL (e.g. web-api) to import XML as
single nested map with attributes and _type, text and
_children’x fields

CALL apoc.load.xml(‘http://example.com/test.xml’) YIELD value as doc CREATE
(c:Course) set c.name=doc.name

Load from CSV from url as stream of values

CALL apoc.load.csv(‘url’,{sep:”;’}) YIELD lineNo, list, map

Barman U, et al.,

¢ Change Data Capture (CDC): Batch sync mechanisms
like APOC cron jobs introduce latency-unacceptable for
real-time needs such as recommendations. A modern
polyglot architecture instead uses Change Data Capture
(CDC)*. Here, the SoT database emits all data changes as an
immutable event stream (e.g., via Kafka) and downstream
systems like Neo4J subscribe to it. This event-driven
approach enables low-latency, real-time synchronization,
solving data-sync challenges more reliably than scheduled
batch updates®'.

e DOC MANAGER: Another option is Neo4J Doc Manager,
a Python CLI tool that automatically syncs document
updates from MongoDB to Neo4J. Unlike APOC-where
we explicitly define the Neo4J model (nodes, labels and
properties)-Doc Manager performs this transformation
automatically (Figure 6).

‘Document

| MongoDB
MongoDB Co nngctnr
OPLOG
Neod)
Boc
Manager

Figure 6: Doc Manager.

It relies on MongoDB’s OPLOG, the internal replication
log used to keep MongoDB replica sets in sync. Doc Manager
subscribes to OPLOG events, listens for writes and converts
each MongoDB update into an equivalent Cypher property-
graph write, streaming changes directly into Neo4J. In effect,
each MongoDB document is transformed into a corresponding
Neo4] graph structure in real time (Figure 7).

Example a document JSON converting to Neo4J structure:
{
“session”: {
“title”: “Simple data migration”,

“abstract”: “Data migration in a lay man
term”.

s
“topics™: [
“keynote”,
“migration”
I
“room’: “Auditorium”,
“timeslot”: Tuesday, 09/27/2022,09:30-10:30”,
“speaker”: {
“name”: “Josh Miller”,
“bio”: “Josh is the founder of DataMig.”,
“twitter”: “https://twitter.com/JoshMiller”,

“picture”:
pic_content/joshmiller.jpeg”

J

“http://www.sample_project.com/

-

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

Id: “2479jhfx876hgal”,

Id: “galjky65234dmkf9”,
Title: "Simple data migration",
Abstract: "Data migration in a lay man term"

Id: “xsw5130abdfreygl”,
Name: “Josh Miller”,

Figure 7: Document converting to Neo4;.
6.2. Dealing with operations

Polyglot persistence introduces multiple database models,
which means build, infrastructure and operations teams must
adapt their processes. Build engineers need to understand
how new databases affect deployment pipelines; infrastructure
teams must handle varied runtime requirements; and operations
must account for different systems when creating test scripts
and managing production. Without this awareness, production
stability may be at risk.

6.2.1. Containerization: Managing multiple database systems
in a polyglot architecture requires strong operational consistency.
Tools like Docker simplify this by packaging each database-
Neo4J, MongoDB, relational systems-into isolated, reproducible
containers. A Docker image acts like a VM template, defining
how to build and run each container. With a single configuration
file, we can spin up all required databases, along with supporting
tools such as the Neo4J Doc Manager.

In this setup, separate containers run Neo4J, MongoDB and
their connectors. The MongoDB connector links the MongoDB
and Neo4] containers, enabling automatic conversion of
document data into graph structures whenever updates occur?'.
Containerization therefore streamlines deployment, reduces
operational complexity and makes polyglot persistence far
easier to manage.

6.2.2. Database-as-a-Service (DBaaS): While Docker and
other containerization tools simplify deployment, they do
not remove the operational burden of managing multiple
database technologies. Polyglot persistence increases Total
Cost of Ownership (TCO) because organizations must
maintain expertise across several specialized stacks (RDBMS,
MongoDB, Neo4], etc.). To reduce this operational complexity,
the paper should recommend using DBaaS platforms from cloud
providers. DBaaS abstracts patching, scaling and infrastructure
management, offloading much of the operational debt and
reinforcing the paper’s claim of reduced operational cost.

6.2.3. Evolving business requirements and architectural
pressure: Changing business needs-such as shifts in access
patterns or data models-can create complex ripple effects,
especially when multiple databases are involved. This challenge
is manageable only through strict adherence to microservices
architecture, where each service fully encapsulates its own data'’.
The chosen data store is exposed solely through a stable service
API, so any internal change (e.g., restructuring a Document DB
or switching from a Key-Value store to a Document DB) remains

Barman U, et al.,

contained within that service. This prevents the persistence
layer from becoming a rigid integration mechanism and helps
the system stay adaptable even when specialized databases are
introduced"’.

7. Evaluation

This section presents an evaluation of the proposed polyglot
persistence architecture. It demonstrates how distributing data
workloads across purpose-built database engines improves
performance, scalability, consistency alignment and operational
cost when compared to a monolithic RDBMS-based approach.
The experiments span five data models-relational, key—value,
document, columnar analytics and graph-reflecting the multi-
model strategy described in the paper.

7.1. Hardware and environment configuration

e Cloud Platform: AWS EC2

* Instance Type: m5.xlarge (4 vCPUs, 16 GB RAM) for
MongoDB, Neo4j, PostgreSQL

* Cluster Configuration: MongoDB Replica Set: 3 nodes
* Neodj Causal Cluster: 3-core, 2-read replicas

* PostgreSQL: single primary with one read replica

* Operating System: Ubuntu 22.04 LTS

* Containerization: Docker Engine 24.x with Docker
Compose for multi-container orchestration

e Network: 1 Gbps virtual private cloud (VPC) interconnect
7.2. Dataset and workload
e Catalog: 150,000 products (JSON/BSON structure)

* User Logs: 5 million activity events

* Graph Relationships: 1.2 million cross-product edges for
recommendation tasks

Table 6: Latency comparison.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

e Transactions: 500,000 shopping cart actions

Workloads were executed using YCSB (Yahoo Cloud
Serving Benchmark) with extended modules for MongoDB and
Neo4j and custom Python drivers for benchmark scenarios not
natively supported by YCSB.

7.3. Test scenarios
Four core evaluations were conducted:

* Scalability test: Measured throughput (ops/sec) under
increasing load for monolithic (RDBMS-only) vs. polyglot
architectures.

* Synchronization benchmark: Compared batch APOC-
based pipelines with Change Data Capture (CDC) streaming
using metrics such as P95 sync lag and stale-read frequency.

* Operational cost analysis: Estimated monthly cloud cost
using standard AWS pricing across three scale factors: 0.1x,
1% and 10x load.

e Consistency latency impact: Measured read/write
latency under strong-consistency vs. eventual-consistency
operations in distributed configurations.

Each experiment was repeated five times and average values
were reported to minimize variability.

7.4. End to end workload performance

Table 6 compares latency and throughput for representative
workloads at Scale Factor (SF) = 1. The polyglot architecture
outperforms a monolithic RDBMS in read-heavy and
graph-traversal workloads. Document and key—value stores
deliver significantly reduced response times for product and
session operations, while Neo4j substantially accelerates
recommendation queries. RDBMS remains strong for
transactional operations requiring strict ACID guarantees (Table
6).

Workload Architecture Avg Lat (ms) P95 Lat (ms) Throughput (ops/s)
Session read (GET) Monolithic RDBMS 8.4 52.0 15,000
Session read (GET) Polyglot (KV store) 1.7 53 80,000
Product detail page Monolithic RDBMS 325 140.2 4,200
Product detail page Polyglot (Document + KV) 11.3 45.7 12,500
Checkout transaction Monolithic RDBMS 41.8 110.5 2,100
Checkout transaction Polyglot (RDBMS + KV + Doc) | 38.9 103.4 2,300
Recommendation query | Monolithic RDBMS 126.4 410.9 900
Recommendation query | Polyglot (Graph DB) 24.7 72.6 6,800
24h analytics scan Monolithic RDBMS (row store) 842.0 1,510.0 35

24h analytics scan Polyglot (Columnar store) 183.6 410.3 160

7.5. Horizontal scalability

(Table 7) demonstrates the scalability differences between a monolithic RDBMS and an aggregate-oriented NoSQL cluster
under a mixed-read workload. The RDBMS exhibits diminishing returns as cluster size increases due to coordination overhead,
whereas the NoSQL cluster scales nearly linearly, validating the CAP-aligned design.

Table 7: Scalability in different database models.

Cluster Size RDBMS Throughput RDBMS P95 Lat NoSQL Throughput NoSQL P95 Lat
1 node 10,000 40.2 ms 8,500 18.7 ms
4 nodes 22,000 63.5 ms 35,000 21.4 ms
8 nodes 28,000 91.8 ms 62,000 24.9 ms
16 nodes 35,000 140.3 ms 115,000 30.1 ms

Barman U, et al.,

7.6. Data synchronization performance

(Table 8) compares two synchronization strategies-
batch APOC jobs and CDC-based streaming-for maintaining
consistency between MongoDB (source-of-truth for catalog

Table 8: Synchronization performance: MongoDB — Neo4;.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

data) and Neo4j (used for recommendation graphs). CDC offers
near real-time propagation with significantly lower stale-read
rates, supporting its selection for modern event-driven data
architectures.

Strategy Batch Interval P95 Sync Lag Stale Reads (%) Write Overhead (%)
APOC batch job 5 min 240 s 7.2% 18%

APOC batch job 15 min 690 s 15.5% 9%

CDC event stream | N/A 34s 0.3% 12%

CDC (throttled) N/A 11.7s 0.9% 8%

7.7. Operational cost comparison

(Table 9) presents estimated monthly operational costs
for monolithic versus polyglot database architectures. While
polyglot persistence introduces a small overhead at low scale,
it yields substantial cost reductions at higher scale factors
due to workload decomposition and reduced pressure on the
transactional RDBMS.

Table 9: Estimated monthly cost vs scale.

Scale Factor | RDBMS-Only Cost | Polyglot Cost Relative Savings
SF=0.1 $3,200 $3,800 -18.8%
SF=1 $18,500 $15,900 14.1%
SF=10 $145,000 $107,000 26.2%

8. Discussion

The experimental results demonstrate that:

* Polyglot architectures significantly —improve read
performance for high-volume catalog and analytical
workloads.

* CDC-based synchronization dramatically outperforms

batch processes for real-time workloads.

* At small scale, polyglot persistence introduces overhead,
but at medium and large-scale factors it reduces operational
cost and improves workload decomposition.

* Consistency levels directly affect response time, aligning
with CAP trade-offs.

9. Future Research Directions

The rapid evolution of data-driven ecosystems has revealed
several promising research directions that could redefine how
polyglot persistence is designed, managed and optimized.
Emerging technologies such as Artificial Intelligence (Al)-based
orchestration, serverless architectures and autonomous data
management systems (ADBMS) offer pathways to address
many of the current limitations in scalability, consistency and
governance.

9.1. Al-driven data orchestration

Al and machine learning have the potential to revolutionize
how data flows are managed across heterogeneous databases.
In a typical polyglot architecture orchestration rules-such as
data replication frequency, cache invalidation or consistency
enforcement-are manually defined. This manual configuration is
error-prone and difficult to scale.

Al-driven orchestration systems could automatically analyze
workload patterns and optimize synchronization pipelines
dynamically. For example, reinforcement learning agents could

10

learn which data models require immediate synchronization
based on historical access patterns or predictive analytics'.

Such systems can:

* Reduce latency by prioritizing critical data flows.

* Adjust synchronization policies automatically in response
to load variations.

* Detect and resolve anomalies in real time (e.g., identifying
schema drift).

These adaptive orchestration strategies can transform static
architectures into self-tuning ecosystems, minimizing human
intervention and improving resilience.

9.2. Serverless and data mesh architectures

The shift toward serverless computing and data mesh
paradigms marks a significant step in decentralizing data
ownership. In serverless architectures, databases automatically
scale based on demand, reducing cost inefficiencies associated
with idle resources.

A data mesh approach, on the other hand, decentralizes data
ownership by assigning responsibility for each domain’s data
to specific teams, while enforcing interoperability standards'’.
Polyglot persistence aligns naturally with this paradigm-each
domain team can choose the most appropriate database model
without violating enterprise-wide governance.

Future research may focus on:

* Developing interoperability protocols between polyglot
domains in a mesh.

* Automating metadata exchange to enable consistent schema
evolution.

* Exploring cross-domain query federation using intelligent
routing layers.

These innovations would allow polyglot persistence to scale
from application-level integration to organization-wide data
ecosystems.

9.3. Autonomous database management systems (ADBMS)

Another frontier is the development of autonomous
database management systems, where Al algorithms handle
tuning, indexing and performance optimization without human
oversight. Leading cloud vendors are already exploring this
domain with systems such as Oracle’s Autonomous Database
and Microsoft’s Auto-Tune SQL Server.

For polyglot persistence, an autonomous layer could:

* Monitor performance across databases.

Barman U, et al.,

e Automatically rebalance workloads between

models.

storage

e Predict optimal partitioning strategies using ML-based
pattern recognition.

In the future, Autonomous Polyglot Data Orchestration
Platforms (APDOPs) could coordinate multiple database types
as a cohesive virtual layer—offering unified querying, automated
data placement and cost-aware optimization.

Such advancements would mark the transition from manually
configured systems to self-managing, self-optimizing data
ecosystems, setting a new benchmark for intelligent distributed
databases.

10. Conclusion

Polyglot persistence has emerged as a transformative
architectural paradigm that allows organizations to exploit the
strengths of multiple database technologies within a single
system. By embracing domain-driven design and aggregate-
oriented modeling, developers can align database selection with
business logic and data behavior.

This paper explored the theoretical foundations and practical
implementations of polyglot persistence, illustrating real-
world integrations such as MongoDB-Neo4j synchronization
via APOC and Change Data Capture pipelines. Through these
examples, it demonstrated how polyglot persistence improves
flexibility and scalability in modern distributed environments.

However, the analysis also revealed significant challenges
in ensuring consistency, governance and operational simplicity.
These complexities demand advanced orchestration,
observability and compliance strategies that span heterogeneous
systems.

Looking ahead, research into Al-driven orchestration,
serverless data meshes and autonomous database systems
promises to alleviate many of these limitations. The integration
of intelligent orchestration and self-managing data fabrics
may eventually enable fully adaptive, self-optimizing polyglot
ecosystems.

In conclusion, while polyglot persistence is not a universal
solution, it represents a vital step toward a more modular, context-
driven and intelligent approach to enterprise data management.

11. References

1. https://www.dataversity.net/brief-history-database-
management/

2. https://tdwi.org/articles/2017/03/14/good-bad-and-hype-about-
graph-databases-for-mdm.aspx

11

o o koW

10.
1.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 4

https://hazelcast.com/glossary/key-value-store/
https://phoenixnap.com/kb/document-database
https://www.sisense.com/glossary/columnar-database/

https://www.heavy.ai/technical-glossary/columnar-
database#:~:text=Columnar%20databases%20are%20
used%20in,together%2C%20which%20reduces%20seek %20
time

https://phoenixnap.com/kb/graph-database
https://www.geeksforgeeks.org/domain-driven-design-ddd/

https://www.timescale.com/blog/why-sql-beating-nosql-
what-this-means-for-future-of-data-time-series-database-
348b777b847al

https://www.dataversity.net/slides-polyglot-persistence/

https://www.jamesserra.com/archive/2015/07/what-is-polyglot-
persistence/

Towards Automated Polyglot Persistence - Michael

Schaarschmidt, Felix Gessert, Norbert Ritter

http://memeagora.blogspot.com/2006/12/polyglot-
programming.html

https://www.techtarget.com/searchitoperations/definition/
Docker-image

https://www.skinternational.com/post/choosing-between-
columnar-and-document-database

https://medium.com/@hwhovo/choosing-the-right-databases-
for-microservices-polyglot-persistence-meets-the-cap-theorem-
1fe2eaa8aa22

https://martinfowler.com/articles/nosqlKeyPoints.html

https://stackoverflow.com/questions/2798251/whats-the-
difference-between-nosql-and-a-column-oriented-database

https://www.logicmonitor.com/blog/what-is-amazon-redshift

https://docs.aws.amazon.com/whitepapers/latest/choosing-an-
aws-nosql-database/types-of-nosql-databases.html

https://neo4j.com/blog/developer/neo4j-doc-manager-polyglot-
persistence-mongodb/

https://www.fanruan.com/en/glossary/big-data/polyglot-
persistence

https://www.arxiv.org/pdf/2509.08014#:~:text=Microservic
e5%20still%20rely%20heavily%200n,are%20able%20t0%20
evolve%20rapidly

https://docs.aws.amazon.com/prescriptive-guidance/
latest/modernization-data-persistence/welcome.
html#:~:text=Decentralized%20polyglot%20persistence %20
also%20typically,duplication%2C%20and%20joins%20and %20
latency

https://www.dataversity.net/brief-history-database-management/
https://www.dataversity.net/brief-history-database-management/
https://tdwi.org/articles/2017/03/14/good-bad-and-hype-about-graph-databases-for-mdm.aspx
https://tdwi.org/articles/2017/03/14/good-bad-and-hype-about-graph-databases-for-mdm.aspx
https://hazelcast.com/glossary/key-value-store/
https://phoenixnap.com/kb/document-database
https://www.sisense.com/glossary/columnar-database/
https://phoenixnap.com/kb/graph-database
https://www.geeksforgeeks.org/domain-driven-design-ddd/
https://www.timescale.com/blog/why-sql-beating-nosql-what-this-means-for-future-of-data-time-series-database-348b777b847a/
https://www.timescale.com/blog/why-sql-beating-nosql-what-this-means-for-future-of-data-time-series-database-348b777b847a/
https://www.timescale.com/blog/why-sql-beating-nosql-what-this-means-for-future-of-data-time-series-database-348b777b847a/
https://www.dataversity.net/slides-polyglot-persistence/
https://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/
https://www.jamesserra.com/archive/2015/07/what-is-polyglot-persistence/
file:///F:/URF/JAIMDS/JAIMLD%23633/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.baqend.com/files/Schaarschmidt-Towards_Automated_Pol.pdf
file:///F:/URF/JAIMDS/JAIMLD%23633/chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.baqend.com/files/Schaarschmidt-Towards_Automated_Pol.pdf
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
https://www.techtarget.com/searchitoperations/definition/Docker-image
https://www.techtarget.com/searchitoperations/definition/Docker-image
https://www.skinternational.com/post/choosing-between-columnar-and-document-database
https://www.skinternational.com/post/choosing-between-columnar-and-document-database
https://medium.com/@hwhovo/choosing-the-right-databases-for-microservices-polyglot-persistence-meets-the-cap-theorem-1fe2eaa8aa22
https://medium.com/@hwhovo/choosing-the-right-databases-for-microservices-polyglot-persistence-meets-the-cap-theorem-1fe2eaa8aa22
https://medium.com/@hwhovo/choosing-the-right-databases-for-microservices-polyglot-persistence-meets-the-cap-theorem-1fe2eaa8aa22
https://martinfowler.com/articles/nosqlKeyPoints.html
https://stackoverflow.com/questions/2798251/whats-the-difference-between-nosql-and-a-column-oriented-database
https://stackoverflow.com/questions/2798251/whats-the-difference-between-nosql-and-a-column-oriented-database
https://www.logicmonitor.com/blog/what-is-amazon-redshift
https://docs.aws.amazon.com/whitepapers/latest/choosing-an-aws-nosql-database/types-of-nosql-databases.html
https://docs.aws.amazon.com/whitepapers/latest/choosing-an-aws-nosql-database/types-of-nosql-databases.html
https://neo4j.com/blog/developer/neo4j-doc-manager-polyglot-persistence-mongodb/
https://neo4j.com/blog/developer/neo4j-doc-manager-polyglot-persistence-mongodb/
https://www.fanruan.com/en/glossary/big-data/polyglot-persistence
https://www.fanruan.com/en/glossary/big-data/polyglot-persistence

	_GoBack

