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1. Introduction
Modern data-intensive and cloud-native systems manage 

heterogeneous datasets that cannot be efficiently supported by 
a single database model. Traditional monolithic architectures 
struggle to accommodate varied data types, formats and access 
patterns-for example, an e-commerce platform may require a 
relational database for transactions, a document store for product 
catalogs and a graph database for recommendations. A single 
model cannot optimally serve such diverse workloads.

Polyglot persistence, introduced by Fowler22, addresses this 
limitation by enabling multiple database technologies within the 
same system, selecting each according to its strengths for specific 

services and data characteristics. In distributed and microservices 
architectures, this often involves combining ACID-compliant 
relational systems with NoSQL stores that provide horizontal 
scalability, flexible schemas and high-throughput operations23. 
Document and column stores support semi-structured data at 
scale, key-value stores offer sub-millisecond lookup, while 
graph databases efficiently traverse complex relationships23.

However, adopting polyglot persistence introduces new 
challenges. Distributed systems frequently rely on eventual 
consistency, requiring explicit synchronization and coordination 
across heterogeneous databases24. Designers must navigate 
CAP-theorem trade-offs between consistency, availability and 
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partition tolerance24,17. Furthermore, each additional database 
engine increases operational overhead and demands specialized 
expertise to deploy, secure and maintain22.

The objective of this paper is to analyze the principles 
of polyglot persistence, identify its practical applications 
and examine the challenges associated with consistency, 
synchronization and operational complexity. The paper also 
highlights the gaps in current practice, motivating the need 
for structured architectural guidance and improved tooling for 
managing heterogeneous data systems.

In summary, while polyglot persistence leverages the 
strengths of diverse data models to optimize varied workloads22, 
it introduces nontrivial trade-offs in consistency and system 
complexity that must be carefully governed24,22.

1.1. Structure of this paper

This section examines several use cases that demonstrate the 
implementation of polyglot persistence. Before discussing the 
implementation, it first outlines the following topics:

•	 A brief history of database systems to illustrate the evolution 
of data models.

•	 The relationship between polyglot persistence, Aggregate-
Oriented Databases and Domain-Driven Design (DDD).

•	 The features of SQL, NoSQL and their respective data 
models to determine which features are suitable for specific 
business scenarios.

•	 The continuing significance of SQL and the reasons it 
remains indispensable.

•	 A precise definition of polyglot persistence.
•	 The key challenges associated with polyglot persistence and 

corresponding mitigation strategies.

Subsequently, the paper presents selected business cases that 
implement different data models and demonstrates methods for 
enabling communication across heterogeneous databases.

1.2. A brief history

Ever since Charles W. Bachman designed the first integrated 
database system in 1960, database management system went 
through many reconstructions to keep up with the demands and 
expectations of various periods of technology evolution.

In the 80s we had a rise of relational database management 
system. It owes its popularity to the universal, simple, but 
very powerful SQL language. It was simple enough for 
non-programmers to easily interact with data, yet, powerful 
enough to execute complex queries to create reports joining 
multiple tables.

The 90s saw the rise of object data model. It primarily got 
elevated to solve the impedance mismatch problem which is 
quite a cohesive problem with relational data models. Impedance 
mismatch problem is the conflict in which a user interface tries 
to display data versus the way they are stored in database tables 
and columns. We thought that relational data model might 
fade away and object data model will be prevalent. Object 
data model has an architecture to take application in-memory 
structures and store them directly into disk without having to 
map the object attributes to database since this approach hides 
the actual implementation of mapping data into columns. It was 
a good approach however; it could not fulfil the potential since 

relational data model along with its simple SQL query language 
had become an integration mechanism. Many applications were 
integrated deeply through SQL database which prevented any 
other technology to dominate data world. RDBMS remains 
necessary today for highly structured, shared data and for 
supporting workloads like financial transactions where high 
integrity is non-negotiable.

Through year 2000 we saw a surge in development of 
Internet applications like ecommerce, social platforms which 
demanded huge amount of data processing from multiple users 
simultaneously. This led to a tremendous data traffic, forcing us 
to scale up (vertical scaling). However, scaling up had restriction 
on how much we can scale and it costs a lot.

1.3. Rush of data

Rush of data steered the development of scaling out or 
horizontal scaling. Many big organizations, most famously 
Google took this approach of scaling out by creating massive 
grids of many small boxes, where each box hosted SQL database. 
However, this approach had an issue with data storage since 
SQL was designed to run on a single data node and does not 
work efficiently with large cluster of multiple boxes. Spreading 
relational databases across clusters does not work well due to the 
ACID property of relational data model. This rose the need for 
a completely new model of database called as NoSQL (not only 
SQL). The striking features of this data model are that they do 
not require a fixed schema, does not have complex joins, can be 
distributed easily which could leverage scaling out (horizontal 
scaling).

2. Theoretical Foundation
2.1. Aggregate oriented databases

Aggregate-oriented databases group related data into 
aggregates—self-contained clusters of entities treated as single 
transactional units. Unlike normalized relational schemas, 
aggregates reduce the need for complex joins and allow atomic 
updates within defined boundaries. This model aligns naturally 
with key-value, document and column-family databases, where 
each aggregate can be retrieved or stored as a single record. 
Such designs enhance horizontal scalability and simplify data 
partitioning in distributed systems.

Each aggregate represents a meaningful business concept-
such as an “Order,” “Customer,” or “Shopping Cart”-that the 
application typically reads or writes. This design naturally 
supports horizontal scalability because aggregates can be 
distributed independently across nodes, minimizing cross-node 
dependencies.

In NoSQL systems, key-value, document and column-
family stores are aggregate-oriented by design, as they allow 
retrieval and persistence of entire aggregates in one operation. 
This contrasts with graph databases, which are non-aggregate-
oriented and optimized instead for traversing relationships.

2.2. Domain-Driven Design (DDD)

Domain-Driven Design, formulated by Eric Evans, structures 
software around domain concepts using bounded contexts and 
aggregates. Each bounded context encapsulates a distinct part 
of the business domain, with its own rules and data consistency 
needs. Aggregates within these contexts define clear transactional 
boundaries. DDD’s emphasis on aligning software with real-
world domains provides the theoretical rationale for selecting 
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Thus, polyglot persistence emerges naturally from the DDD 
philosophy. It allows each context to independently optimize 
storage and query performance, aligning system design with 
business and operational realities

It allows each context to choose the data store best suited 
to its consistency, query and scalability needs, while keeping 
aggregate boundaries clean and domain-aligned.

2.4. Usage of polyglot persistence

Polyglot persistence is increasingly used in distributed 
systems and microservice architectures. Each service owns its 
data and selects the optimal database model based on access 
patterns and consistency needs. Examples include (Table 1):

different persistence models. Each bounded context may use the 
data store that best matches its performance, consistency and 
scalability requirements.

2.3. How DDD and aggregate orientation justify polyglot 
persistence

When applying DDD principles at scale, each bounded context 
may have distinct data behavior:

•	 Some aggregates demand strong ACID consistency (e.g., 
financial records → RDBMS).

•	 Others require flexibility and scalability (e.g., user activity 
logs → Document DB).

•	 Some depend on high-speed lookups (Key-Value Store) or 
complex relationship traversal (Graph DB).

Table 1: Suitable database per use case.
Use Case Data Characteristics Suitable Database Model Example

Transaction management Structured, relational RDBMS PostgreSQL, MySQL

Product catalog Semi-structured, flexible schema Document Store MongoDB

Real-time analytics High-volume, time-series Column Store Cassandra, HBase

User session caching High-speed lookup Key-Value Store Redis

Recommendation engine Relationship-centric Graph Database Neo4j

This modular approach enhances agility and allows 
developers to choose the most effective technology for each 
use case. However, it also introduces significant design and 
operational complexities, discussed below.

3. Challenges in Polyglot Persistence
3.1. Data consistency and synchronization

One of the foremost challenges is maintaining consistency 
across heterogeneous databases. Distributed systems often rely 
on eventual consistency rather than strict ACID guarantees. 
Synchronizing updates between systems with different 
transaction models can be difficult, necessitating event-driven or 
CQRS (Command Query Responsibility Segregation) patterns.

3.2. Complexity and maintenance overhead

Managing multiple database systems increases operational 
complexity. Each system requires specialized expertise, 
monitoring tools and scaling strategies. Backup and recovery 
processes must be coordinated across heterogeneous 
environments, increasing the risk of configuration errors.

3.3. Security and governance

Different databases may have varied security models and 
access controls. Ensuring consistent authentication, authorization 
and encryption policies across multiple platforms is challenging. 
Furthermore, compliance with data protection regulations such 
as GDPR or HIPAA requires unified governance mechanisms.

3.4. Performance optimization and cost

While polyglot persistence can improve performance for 
individual workloads, it can also lead to inefficiencies when 
data is fragmented across systems. Querying or aggregating data 
from multiple stores may require custom APIs or integration 
middleware, which adds latency and cost.

4. Why NoSQL
NoSQL data model is denormalized, which means that there 

are no dependencies between individual data. Denormalization 
in NoSQL is achieved since all required fields of a particular data 
row are stored together in a document which avoids jumping 
around tables through expensive joins. Embedding fields within 
a field further helps in performance. Graph data model, inspired 
by network model, has a different approach of storage, but they 
are denormalized. Since data are denormalized they are easily 
distributable which adds to the scalability advantage. Keeping 
the rising Internet application and data in mind, few aspects like 
- Prompt IO operations and low latency, Efficient storage and 
access, High Scalability and availability, Reduction in operation 
cost, were critical for business and user demands. And the 
features of NoSQL gave a clear edge on relational data models.

In NoSQL we do not have to pay too much upfront or 
scaling. Horizontal scaling is easy to scale when we have spike 
of data traffic. When the spike reduces, we can scale down. In 
relational database models, however, we cannot scale down once 
the required infrastructures are configured.

4.1. Characteristics of NoSQL

The characteristics that give NoSQL the edge to be less 
expensive, mass storage ready, consistent, quick and easy to 
expand are that they are non-relational, mostly open-source, 
cluster friendly, internet application driven and schema less. 
There are certain features in each NoSQL data models that 
makes them ablest for certain business use cases. In this section 
we will elucidate the unique features of NoSQL databases to 
understand how they are ideal for certain applications.

4.1.1. Aggregate oriented database: Key-value databases store 
metadata identified by a key and this metadata may itself be a 
document. Likewise, document databases often retrieve an entire 
document by its ID, effectively treating the ID as a key and the 
document as the value. This shared pattern-storing complex 
structures as single units-leads to the concept of Aggregate-
Oriented Databases. By keeping an aggregate in one place and 
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retrieving it in a single operation, systems reduce I/O and simplify 
application-level data access. The idea of aggregates comes 
from Domain-Driven Design (DDD)8, introduced by Eric Evans 
in Domain-Driven Design: Tackling Complexity in the Heart 
of Software (2004). DDD emphasizes shaping software around 
business or domain needs. An aggregate is a cluster of related 
objects treated as one transactional unit, directly influencing data 
modeling in NoSQL systems such as key-value, document and 
column-family stores. For example, a course catalog may include 
programs and courses stored in separate relational tables. But 
in a domain view, a program-with its courses, schedule, trainer 
and other details-is best treated as a single whole. Aggregate-
oriented databases allow this entire structure to be stored and 
retrieved together. Thus, in a key-value store the value is an 
aggregate; in a document store the document is an aggregate; 
in a column store the column family is an aggregate (Figure 1).

Figure 1: A typical course catalog.

Aggregates also guide data distribution: because data 
accessed together is stored together, each aggregate can be 
placed on a single node, improving lookup efficiency in 
distributed systems. This principle underpins the distributed 
nature of many NoSQL databases. In contrast, graph databases 
are not aggregate-oriented and therefore distribute less naturally, 
since they decompose data into smaller, highly connected units.

While relationships can still be modeled using references, 
they become more complex in aggregate-oriented systems. 
Therefore, choosing a database depends on how the application 
uses its data: if it frequently works with whole aggregates, 
aggregate-oriented NoSQL is suitable; if it must navigate many 
relationships, a graph database fits better; if strong consistency 
with tabular data is needed, a relational database is appropriate. 
Aggregate orientation is only one factor in this decision18.

4.1.2. Consistency: Consistency determines how well a system 
handles many users modifying the same data simultaneously. 
Relational databases excel at this through ACID properties-
Atomicity, Consistency, Isolation and Durability18. Transactions 
ensure atomic updates so no other process can read or change 
data mid-update, preserving logical consistency and preventing 
corruption. This strong consistency is fundamental to RDBMSs.

Most NoSQL databases-except graph databases-do not 
fully maintain atomicity. Graph databases tend to follow 
ACID principles because they break data into many small, 
interdependent units. Aggregate-oriented NoSQL databases, 
however, rely on Domain-Driven Design (DDD)8, where 
aggregates form natural transactional boundaries. As long as 
updates stay within an aggregate, atomicity and consistency are 

easier to maintain. Only when updates span multiple aggregates 
or documents do concerns such as locking or version stamping 
arise, like relational systems.

Thus, while relational databases offer ACID consistency at 
the cost of availability, aggregate-oriented databases can achieve 
consistency within aggregates by design. Consistency remains 
a key factor in choosing a database, though it is not the only 
consideration.

4.1.3. Consistency and availability: There are two types 
of consistency-logical and replication consistency16. Logical 
consistency is handled through mechanisms like locking and 
versioning, as discussed earlier. Replication consistency, 
however, arises when data is distributed across multiple 
machines and is more complex to maintain16. Broadly, systems 
address replication consistency through two strategies: data 
sharding and data replication18,16.

4.1.4. Data sharding: In data sharding, a single copy of each data 
item is stored on exactly one machine within the cluster. Different 
sharding approaches exist, but they do not fundamentally change 
the fact that the system still faces the same logical consistency 
challenges as a single-machine setup-only somewhat mitigated. 
Sharding is designed primarily to improve scalability, not to 
solve logical consistency problems.

4.1.4.1 Data replication: Data replication stores the same data 
on multiple nodes, improving performance (by reading from 
the nearest copy) and resilience (by surviving node failures). 
However, replication introduces new consistency challenges 
tied to availability. Because updates may not reach all nodes 
instantly, systems often provide eventual consistency, where 
data may be temporarily inconsistent but becomes consistent 
over time.

For example, in a 5-node cluster, if an update fails to reach 
node 4 due to a brief network issue, a read routed to that node 
may return stale data. Though rare with modern systems, this 
remains an inherent tradeoff.

A hotel-booking case illustrates the consistency vs. 
availability dilemma. If two users-one on the east coast and 
one on the west-try to book the same room through different 
nodes, a strictly consistent system would block all bookings 
until nodes synchronize. A highly available system would allow 
both bookings and resolve the conflict later. The correct choice 
depends on business needs.

Amazon faced this tradeoff when designing Dynamo, 
prioritizing availability so shopping carts remain usable even 
under network partitions. Consistency-availability tradeoffs are 
therefore key to database selection. In distributed aggregate-
oriented systems, this further leads to considering partition 
tolerance, forming the basis of the CAP theorem.

4.1.5. CAP theorem – Consistency, Availability, Partition 
tolerance: The CAP theorem states that a distributed system 
cannot guarantee all three properties-Consistency (C), 
Availability (A) and Partition Tolerance (P)-at the same 
time18. Because partition tolerance is unavoidable in any real 
distributed network17, systems must choose between consistency 
and availability during a network partition, leading to either 
CP or AP designs. Traditional RDBMS deployments typically 
prioritize CP, favoring consistency over availability.
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In distributed NoSQL systems, partition tolerance is inherent, 
so the practical choice becomes how much consistency or 
availability to trade off. Single-node databases can provide both, 
but once replicated across nodes, maintaining strict consistency 
means every node must return the newest data immediately 
after a write. In real applications, this is rarely a strict either-or 
decision: different operations may lean more toward consistency 
or availability depending on business needs.

4.1.6. Consistency directly proportional to response time: 
Higher consistency generally increases response time18. Ensuring 
consistency across more nodes requires additional coordination, 
which slows down reads and writes. In the hotel-booking 
example, if the east and west nodes must communicate before 
confirming a room, the response is slower. Some businesses may 
instead prioritize speed, allowing each node to act independently 
and reconciling conflicts later. Amazon follows a similar 
approach, favoring quick responses even if not all nodes return 
perfectly consistent results immediately.

Thus, factors like aggregate orientation, Domain-Driven 
Design8, distribution, replication and the tradeoffs between 
consistency, availability, response time and computational 
complexity must be balanced according to business needs.

4.2. Why we still need relational database?

Relational databases have matured through decades of 
widespread use and reliability. They serve as core integration 
platforms for many applications and provide strong data 
integrity through ACID properties-atomicity, consistency, 
isolation and durability-making them ideal for workloads like 
financial transactions. Another major advantage is SQL, whose 
standardized, expressive and easy-to-learn syntax has a vast 
support community. SQL enables efficient querying and joining 
across structured data, making relational databases highly 
effective for complex and ad hoc queries.

4.3. What is polyglot persistence?

Different applications store and use data in different ways, 
so each should choose the database best suited to its use case. 
Polyglot persistence is the design philosophy of selecting the 
right storage model for each application within a system18. This 
requires understanding how each application accesses data, 
evaluating the strengths and weaknesses of different data models 
and ensuring smooth data flow between applications (Figures 2 
and 3).

The term comes from polyglot programming, where multiple 
programming languages are used within a single system, each 
chosen for its strengths. The goal is not only to use different 
technologies but also to ensure they interoperate cleanly through 
well-defined inputs and outputs (Table 2).

In practice, new database models will continue to emerge, 
while relational databases will remain important. Relying on a 
single model often leads to compensating for its limitations, so 
choosing the appropriate database for each problem is essential.

Figure 2: Diagram of polyglot persistence.
The below table provides few basic guidelines to choose database types based on the functionality of the data:

Table 2: Database type selection per functionality.
Functionality Considerations Database Type

User Sessions
Quick Read and Write.
Unique key like login ID can serve as key.
Low durability.

Key-Value

Financial Data
Need to have ACID property.
Consistency is the key.
Does not need to grow substantially.

RDBMS

Point-Of-Sale
Huge data which may not be uniform in terms of fields.
Mostly used for analytics.
Seem to meet natural aggregate oriented structure.

Document if high read writes.
Column if used for analytics.

Shopping Cart
Need to have high availability.
Need to distributed across regions.
Data fields may not be uniform

Document

Recommendations Can build lots of relationships.
Need to evaluate based on multiple relationships between data. Graph

Product Catalog
High Reads.
Infrequent Writes.
Seem to meet natural aggregate oriented structure.

Document

Reporting
Requires multiple joins.
Requires decision making by slicing and dicing data
Needs mathematical functions for calculation.

RDBMS

Analytics Lot of concurrent processing.
Requires Reads of big set of data together. Column

User activity logs
Requires high volume of reads and writes.
Each user session or transaction ID may act like a key which can store many meta data
These user logs or transactional logs need to be stored for analytics.

Document
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In polyglot world the architecture of a typical ecommerce 
application might look something like this, where we use key 
value for user session, document for shopping cart, graph for 
recommendations etc.

Figure 3: Polyglot architecture.

It is not just the ecommerce business application that is 
integrating and talking to the polyglot setup. There may be data 
scientists, business intelligence teams that need to query for 
analysis and reporting.

5. Advantages of Polyglot Persistence
5.1. Cost effectiveness

We have seen that NoSQL are highly cost effective as we 
increase the volume. If we do not need to cater to much capacity 
in our business domain, then we may rather go towards relational 
database like PostgreSQL or MySQL which are highly cost 
advantageous. Teradata can handle huge amount of data but with 
the expense of maintenance cost (Figure 4).

5.2. Read Write speed with volume

If we have a large volume of data which can be managed 

within one large database server, then relational database could 
be a good choice since they are quite fast in view of not having 
to deal with jumping over multiple nodes to find the required 
data. However, if we have large volume that would demand 
distribution or sharding, then NoSQL database stands to be 
advantageous (Figure 5).

Figure 4: Cost Capacity metrics.

Figure 5: Cost Speed metrics.

5.3. Review of SQL model summaries

A consolidated view of the data models (Table 3):

Table 3: Database type selection per functionality.
Data Model Type Example Use Case Core Strength Consistency Profile

Relational (RDBMS) Financial Transactions, Complex 
Reporting

ACID Compliance, Complex Joins, Data 
Integrity

Strong Consistency – Partition Tolerance

Key-Value Store (NoSQL) User Sessions, Shopping Cart Speed, Simplicity, High Availability, Easy 
Distribution

Eventual Availability – Partition Tolerance

Document Database 
(NoSQL)

Product Catalog, Content 
Management Systems

Rich JSON/BSON Structure, Schema-less 
Flexibility, Aggregate Retrieval

Scoped/Eventual Availability – Partition 
Tolerance

Wide-Column/Column 
Family (NoSQL)

Operational Logs, Time Series Data Massively Scalable Write/Read 
Performance, Fast Retrieval of Columns

Eventual Availability – Partition Tolerance

Graph Database (NoSQL) Recommendation Engine, Fraud 
Detection, MDM

Relationship Traversal Speed, Intuitiveness, 
Index-Free Adjacency

Highly Specific/ACID-like

Analytical Columnar 
(SQL/DW)

Data Warehousing, OLAP Compression, Fast Analytical Query 
Scanning on Big Data

Strong/Managed (RDBMS derivative)

6. Challenges of Polyglot Persistence
6.1. Evolving business requirements

As services change with new business needs, maintaining 
different data models per service can become complex. New 

logic, evolving features and shifting access patterns all increase 
the burden of managing multiple database systems. While a single 
data model also faces change, it is generally easier to control. 
The added complexity introduced by polyglot persistence can 
be managed through proper training and disciplined design 
processes
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6.1.1. Data sync: Using multiple databases requires keeping 
data consistent across systems. Suppose we maintain an existing 
SQL infrastructure and introduce a NoSQL store such as Neo4J. 
We must ensure the right data types go to the right database.

We may adopt one of the three options (Figure 6).

Figure 6: Data sync options.

•	 Migrate all data: Move all data and queries to Neo4J 
(or another NoSQL system). This removes the benefits of 
polyglot persistence because relational-friendly data may 
no longer fit well.

•	 Migrate a subset: Move only graph-appropriate data to 
Neo4J while leaving relational data in SQL. The application 
must query each database based on the data type, but both 
systems must be synchronized.

•	 Duplicate subset: Keep SQL as the single Source of Truth 
(SoT) and copy only graph-oriented data to Neo4J as a read-
optimized replica. This reduces synchronization effort, as 
only one-way syncing is needed. Tools like Neo4J’s APOC 
procedures support such batch syncing.

For example, in an e-commerce system, MongoDB may 

store product catalog data (text, images, HTML, URLs) and 
serve customer search queries efficiently. Meanwhile, Neo4J 
can power personalized recommendations by leveraging 
relationships between items—for instance, showing notebooks 
frequently bought with a particular pen. While each database 
excels in its role, maintaining data sync between them remains 
essential.

In an e-commerce system, customer-facing searches-such 
as by keyword, category or brand-are best served through a 
document database like MongoDB, which efficiently stores 
product details, images and HTML descriptions. However, 
personalized recommendations are better supported by a graph 
database, which models items as nodes connected through 
relationships. This allows fast retrieval of related products-for 
example, suggesting notebooks when a customer selects a pen, 
a simple form of collaborative filtering. While this approach 
leverages each database’s strengths, it also introduces the 
challenge of keeping data synchronized across both systems.

6.1.1.1. Dealing with data sync: To synchronize data between 
Neo4J and MongoDB, we can use APOC (Awesome Procedures 
on Cypher)-a library of user-defined Java procedures callable 
from Cypher. APOC provides around 200 built-in procedures 
packaged as a JAR that can be added directly to Neo4J. For 
example, APOC can load data via JDBC or from formats such 
as JSON, XML, Excel or web APIs. Since MongoDB exposes a 
REST API that returns JSON, we can invoke this API, pass the 
resulting JSON to an APOC procedure and let Cypher interpret 
each JSON entry to build or update graph relationships. This 
process can be automated using a simple service or a scheduled 
job (e.g., cron) to batch-refresh Neo4J from MongoDB (Table 
4).

Table 4: Some built in procedures.
Procedure Name Command to invoke procedure What it does

ListLabels CALL db.labels() List all labels in the database

ListRelationshipTypes CALL db.relationshipTypes() List all relationship types in the database

ListPropertyKeys CALL db.propertyKeys() List all property keys in the database

ListIndexes CALL db.indexes() List all indexes in the database

ListConstraints CALL db.constraints() List all constraints in the database

ListProcedures CALL dbms.procedures() List all procedures in the dbms

ListComponents CALL dbms.components() List DBMS constraints and their versions

QueryJmx CALL dbms.queryJmx(query) Query JMX management data by domain and 
name. For example, “org.neo4j.*”

AlterUserPassword CALL dbms.changePassword(query) Change the user password

Some data migration snippets from relational, document, CSV, XML to Graph database Neo4J (Table 5):

Table 5: Data migration snippets.
Source Graph database Cypher

Load from relational database, either a full table or a sql 
statement

CALL apoc.load.jdbc(‘jdbc:derby:derbyDB’,’COURSE’) YIELD row CREATE 
(:COURSE {name.row.name})

Load from relational database, either a full table or a sql 
statement

CALL apoc.load.jdbc(‘jdbc:derby:derbyDB’,’SELECT * FROM COURSE 
WHERE PROGRAM = ‘MATH’)

register jdbc driver of source database CALL apoc.load.driver(‘org.apache.derby.jdbc.EmbeddedDriver’)

Load from JSON URL (e.g. web-api) to import JSON 
as stream of values if the JSON was an array or a single 
value it was a map

CALL apoc.load.json(‘http://example.com/map.json’) YIELD value as COURSE 
CREATE (c:Course) set c = course

Load from XML URL (e.g. web-api) to import XML as 
single nested map with attributes and _type, _text and 
_children’x fields

CALL apoc.load.xml(‘http://example.com/test.xml’) YIELD value as doc CREATE 
(c:Course) set c.name=doc.name

Load from CSV from url as stream of values CALL apoc.load.csv(‘url’,{sep:”;”}) YIELD lineNo, list, map
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•	 Change Data Capture (CDC): Batch sync mechanisms 
like APOC cron jobs introduce latency-unacceptable for 
real-time needs such as recommendations. A modern 
polyglot architecture instead uses Change Data Capture 
(CDC)23. Here, the SoT database emits all data changes as an 
immutable event stream (e.g., via Kafka) and downstream 
systems like Neo4J subscribe to it. This event-driven 
approach enables low-latency, real-time synchronization, 
solving data-sync challenges more reliably than scheduled 
batch updates21.

•	 DOC MANAGER: Another option is Neo4J Doc Manager, 
a Python CLI tool that automatically syncs document 
updates from MongoDB to Neo4J. Unlike APOC-where 
we explicitly define the Neo4J model (nodes, labels and 
properties)-Doc Manager performs this transformation 
automatically (Figure 6).

Figure 6: Doc Manager.

It relies on MongoDB’s OPLOG, the internal replication 
log used to keep MongoDB replica sets in sync. Doc Manager 
subscribes to OPLOG events, listens for writes and converts 
each MongoDB update into an equivalent Cypher property-
graph write, streaming changes directly into Neo4J. In effect, 
each MongoDB document is transformed into a corresponding 
Neo4J graph structure in real time (Figure 7).

Example a document JSON converting to Neo4J structure:

{
	 “session”: {
		  “title”: “Simple data migration”,
		  “abstract”: “Data migration in a lay man 
term”.
	 },
	 “topics”: [
		  “keynote”,
		  “migration”
	 ],
	 “room”: “Auditorium”,
	 “timeslot”: Tuesday, 09/27/2022,09:30-10:30”,
	 “speaker”: {
		  “name”: “Josh Miller”,
		  “bio”: “Josh is the founder of DataMig.”,
		  “twitter”: “https://twitter.com/JoshMiller”,
		  “picture”: “http://www.sample_project.com/
pic_content/joshmiller.jpeg”
	 }
}

Figure 7: Document converting to Neo4j.

6.2. Dealing with operations

Polyglot persistence introduces multiple database models, 
which means build, infrastructure and operations teams must 
adapt their processes. Build engineers need to understand 
how new databases affect deployment pipelines; infrastructure 
teams must handle varied runtime requirements; and operations 
must account for different systems when creating test scripts 
and managing production. Without this awareness, production 
stability may be at risk.

6.2.1. Containerization: Managing multiple database systems 
in a polyglot architecture requires strong operational consistency. 
Tools like Docker simplify this by packaging each database-
Neo4J, MongoDB, relational systems-into isolated, reproducible 
containers. A Docker image acts like a VM template, defining 
how to build and run each container. With a single configuration 
file, we can spin up all required databases, along with supporting 
tools such as the Neo4J Doc Manager.

In this setup, separate containers run Neo4J, MongoDB and 
their connectors. The MongoDB connector links the MongoDB 
and Neo4J containers, enabling automatic conversion of 
document data into graph structures whenever updates occur21. 
Containerization therefore streamlines deployment, reduces 
operational complexity and makes polyglot persistence far 
easier to manage.

6.2.2. Database-as-a-Service (DBaaS): While Docker and 
other containerization tools simplify deployment, they do 
not remove the operational burden of managing multiple 
database technologies. Polyglot persistence increases Total 
Cost of Ownership (TCO) because organizations must 
maintain expertise across several specialized stacks (RDBMS, 
MongoDB, Neo4J, etc.). To reduce this operational complexity, 
the paper should recommend using DBaaS platforms from cloud 
providers. DBaaS abstracts patching, scaling and infrastructure 
management, offloading much of the operational debt and 
reinforcing the paper’s claim of reduced operational cost.

6.2.3. Evolving business requirements and architectural 
pressure: Changing business needs-such as shifts in access 
patterns or data models-can create complex ripple effects, 
especially when multiple databases are involved. This challenge 
is manageable only through strict adherence to microservices 
architecture, where each service fully encapsulates its own data17. 
The chosen data store is exposed solely through a stable service 
API, so any internal change (e.g., restructuring a Document DB 
or switching from a Key-Value store to a Document DB) remains 
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contained within that service. This prevents the persistence 
layer from becoming a rigid integration mechanism and helps 
the system stay adaptable even when specialized databases are 
introduced17.

7. Evaluation
This section presents an evaluation of the proposed polyglot 

persistence architecture. It demonstrates how distributing data 
workloads across purpose‑built database engines improves 
performance, scalability, consistency alignment and operational 
cost when compared to a monolithic RDBMS-based approach. 
The experiments span five data models-relational, key–value, 
document, columnar analytics and graph-reflecting the multi-
model strategy described in the paper.

7.1. Hardware and environment configuration

•	 Cloud Platform: AWS EC2
•	 Instance Type: m5.xlarge (4 vCPUs, 16 GB RAM) for 

MongoDB, Neo4j, PostgreSQL
•	 Cluster Configuration: MongoDB Replica Set: 3 nodes
•	 Neo4j Causal Cluster: 3-core, 2-read replicas
•	 PostgreSQL: single primary with one read replica
•	 Operating System: Ubuntu 22.04 LTS
•	 Containerization: Docker Engine 24.x with Docker 

Compose for multi-container orchestration
•	 Network: 1 Gbps virtual private cloud (VPC) interconnect

7.2. Dataset and workload

•	 Catalog: 150,000 products (JSON/BSON structure)
•	 User Logs: 5 million activity events
•	 Graph Relationships: 1.2 million cross-product edges for 

recommendation tasks

•	 Transactions: 500,000 shopping cart actions

Workloads were executed using YCSB (Yahoo Cloud 
Serving Benchmark) with extended modules for MongoDB and 
Neo4j and custom Python drivers for benchmark scenarios not 
natively supported by YCSB.

7.3. Test scenarios

Four core evaluations were conducted:

•	 Scalability test: Measured throughput (ops/sec) under 
increasing load for monolithic (RDBMS-only) vs. polyglot 
architectures.

•	 Synchronization benchmark: Compared batch APOC-
based pipelines with Change Data Capture (CDC) streaming 
using metrics such as P95 sync lag and stale-read frequency.

•	 Operational cost analysis: Estimated monthly cloud cost 
using standard AWS pricing across three scale factors: 0.1×, 
1× and 10× load.

•	 Consistency latency impact: Measured read/write 
latency under strong-consistency vs. eventual-consistency 
operations in distributed configurations.

Each experiment was repeated five times and average values 
were reported to minimize variability.

7.4. End to end workload performance

Table 6 compares latency and throughput for representative 
workloads at Scale Factor (SF) = 1. The polyglot architecture 
outperforms a monolithic RDBMS in read-heavy and 
graph-traversal workloads. Document and key–value stores 
deliver significantly reduced response times for product and 
session operations, while Neo4j substantially accelerates 
recommendation queries. RDBMS remains strong for 
transactional operations requiring strict ACID guarantees (Table 
6).

Table 6: Latency comparison.
Workload Architecture Avg Lat (ms) P95 Lat (ms) Throughput (ops/s)

Session read (GET) Monolithic RDBMS 8.4 52.0 15,000

Session read (GET) Polyglot (KV store) 1.7 5.3 80,000

Product detail page Monolithic RDBMS 32.5 140.2 4,200

Product detail page Polyglot (Document + KV) 11.3 45.7 12,500

Checkout transaction Monolithic RDBMS 41.8 110.5 2,100

Checkout transaction Polyglot (RDBMS + KV + Doc) 38.9 103.4 2,300

Recommendation query Monolithic RDBMS 126.4 410.9 900

Recommendation query Polyglot (Graph DB) 24.7 72.6 6,800

24h analytics scan Monolithic RDBMS (row store) 842.0 1,510.0 35

24h analytics scan Polyglot (Columnar store) 183.6 410.3 160

7.5. Horizontal scalability

(Table 7) demonstrates the scalability differences between a monolithic RDBMS and an aggregate‑oriented NoSQL cluster 
under a mixed-read workload. The RDBMS exhibits diminishing returns as cluster size increases due to coordination overhead, 
whereas the NoSQL cluster scales nearly linearly, validating the CAP-aligned design.

Table 7: Scalability in different database models.
Cluster Size RDBMS Throughput RDBMS P95 Lat NoSQL Throughput NoSQL P95 Lat

1 node 10,000 40.2 ms 8,500 18.7 ms

4 nodes 22,000 63.5 ms 35,000 21.4 ms

8 nodes 28,000 91.8 ms 62,000 24.9 ms

16 nodes 35,000 140.3 ms 115,000 30.1 ms
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7.6. Data synchronization performance

(Table 8) compares two synchronization strategies-
batch APOC jobs and CDC-based streaming-for maintaining 
consistency between MongoDB (source-of-truth for catalog 

data) and Neo4j (used for recommendation graphs). CDC offers 
near real-time propagation with significantly lower stale-read 
rates, supporting its selection for modern event-driven data 
architectures.

Table 8: Synchronization performance: MongoDB → Neo4j.
Strategy Batch Interval P95 Sync Lag Stale Reads (%) Write Overhead (%)

APOC batch job 5 min 240 s 7.2% 18%

APOC batch job 15 min 690 s 15.5% 9%

CDC event stream N/A 3.4 s 0.3% 12%

CDC (throttled) N/A 11.7 s 0.9% 8%

7.7. Operational cost comparison

(Table 9) presents estimated monthly operational costs 
for monolithic versus polyglot database architectures. While 
polyglot persistence introduces a small overhead at low scale, 
it yields substantial cost reductions at higher scale factors 
due to workload decomposition and reduced pressure on the 
transactional RDBMS.

Table 9: Estimated monthly cost vs scale.
Scale Factor RDBMS-Only Cost Polyglot Cost Relative Savings

SF = 0.1 $3,200 $3,800 -18.8%

SF = 1 $18,500 $15,900 14.1%

SF = 10 $145,000 $107,000 26.2%

8. Discussion
The experimental results demonstrate that:

•	 Polyglot architectures significantly improve read 
performance for high-volume catalog and analytical 
workloads.

•	 CDC-based synchronization dramatically outperforms 
batch processes for real-time workloads.

•	 At small scale, polyglot persistence introduces overhead, 
but at medium and large-scale factors it reduces operational 
cost and improves workload decomposition.

•	 Consistency levels directly affect response time, aligning 
with CAP trade-offs.

9. Future Research Directions
The rapid evolution of data-driven ecosystems has revealed 

several promising research directions that could redefine how 
polyglot persistence is designed, managed and optimized. 
Emerging technologies such as Artificial Intelligence (AI)-based 
orchestration, serverless architectures and autonomous data 
management systems (ADBMS) offer pathways to address 
many of the current limitations in scalability, consistency and 
governance.

9.1. AI-driven data orchestration

AI and machine learning have the potential to revolutionize 
how data flows are managed across heterogeneous databases. 
In a typical polyglot architecture orchestration rules-such as 
data replication frequency, cache invalidation or consistency 
enforcement-are manually defined. This manual configuration is 
error-prone and difficult to scale.

AI-driven orchestration systems could automatically analyze 
workload patterns and optimize synchronization pipelines 
dynamically. For example, reinforcement learning agents could 

learn which data models require immediate synchronization 
based on historical access patterns or predictive analytics12.

Such systems can:

•	 Reduce latency by prioritizing critical data flows.
•	 Adjust synchronization policies automatically in response 

to load variations.
•	 Detect and resolve anomalies in real time (e.g., identifying 

schema drift).

These adaptive orchestration strategies can transform static 
architectures into self-tuning ecosystems, minimizing human 
intervention and improving resilience.

9.2. Serverless and data mesh architectures

The shift toward serverless computing and data mesh 
paradigms marks a significant step in decentralizing data 
ownership. In serverless architectures, databases automatically 
scale based on demand, reducing cost inefficiencies associated 
with idle resources.

A data mesh approach, on the other hand, decentralizes data 
ownership by assigning responsibility for each domain’s data 
to specific teams, while enforcing interoperability standards13. 
Polyglot persistence aligns naturally with this paradigm-each 
domain team can choose the most appropriate database model 
without violating enterprise-wide governance.

Future research may focus on:

•	 Developing interoperability protocols between polyglot 
domains in a mesh.

•	 Automating metadata exchange to enable consistent schema 
evolution.

•	 Exploring cross-domain query federation using intelligent 
routing layers.

These innovations would allow polyglot persistence to scale 
from application-level integration to organization-wide data 
ecosystems.

9.3. Autonomous database management systems (ADBMS)

Another frontier is the development of autonomous 
database management systems, where AI algorithms handle 
tuning, indexing and performance optimization without human 
oversight. Leading cloud vendors are already exploring this 
domain with systems such as Oracle’s Autonomous Database 
and Microsoft’s Auto-Tune SQL Server.

For polyglot persistence, an autonomous layer could:

•	 Monitor performance across databases.
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•	 Automatically rebalance workloads between storage 
models.

•	 Predict optimal partitioning strategies using ML-based 
pattern recognition.

In the future, Autonomous Polyglot Data Orchestration 
Platforms (APDOPs) could coordinate multiple database types 
as a cohesive virtual layer—offering unified querying, automated 
data placement and cost-aware optimization.

Such advancements would mark the transition from manually 
configured systems to self-managing, self-optimizing data 
ecosystems, setting a new benchmark for intelligent distributed 
databases.

10. Conclusion
Polyglot persistence has emerged as a transformative 

architectural paradigm that allows organizations to exploit the 
strengths of multiple database technologies within a single 
system. By embracing domain-driven design and aggregate-
oriented modeling, developers can align database selection with 
business logic and data behavior.

This paper explored the theoretical foundations and practical 
implementations of polyglot persistence, illustrating real-
world integrations such as MongoDB–Neo4j synchronization 
via APOC and Change Data Capture pipelines. Through these 
examples, it demonstrated how polyglot persistence improves 
flexibility and scalability in modern distributed environments.

However, the analysis also revealed significant challenges 
in ensuring consistency, governance and operational simplicity. 
These complexities demand advanced orchestration, 
observability and compliance strategies that span heterogeneous 
systems.

Looking ahead, research into AI-driven orchestration, 
serverless data meshes and autonomous database systems 
promises to alleviate many of these limitations. The integration 
of intelligent orchestration and self-managing data fabrics 
may eventually enable fully adaptive, self-optimizing polyglot 
ecosystems.

In conclusion, while polyglot persistence is not a universal 
solution, it represents a vital step toward a more modular, context-
driven and intelligent approach to enterprise data management.
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