DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/377

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

p65 (RelA) Promotes Colorectal Cancer Progression by Activating Canonical NF-κB Signaling and Pro-Oncogenic Genes

Houhong Wang*

Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Citation: Wang H. p65 (RelA) Promotes Colorectal Cancer Progression by Activating Canonical NF-κB Signaling and Pro-Oncogenic Genes. *Medi Clin Case Rep J* 2025;3(3):1351-1353. DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/377

Received: 17 February, 2025; Accepted: 21 March, 2025; Published: 23 April, 2025

*Corresponding author: Houhong Wang. Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Copyright: © 2025 Wang H., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of p65 (RelA, a key subunit of canonical NF- κ B pathway) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulatory effect on NF- κ B signaling.

Methods: p65 expression (total and nuclear) was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. p65 was overexpressed via plasmid (pcDNA3.1-p65) or knocked down via siRNA in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and canonical NF-κB-related proteins (nuclear p65, p-p65 Ser536, IκBα, MMP-9) were analyzed.

Results: p65 was upregulated in CRC cells compared with NCM460 (P<0.01), with higher nuclear p65 and p-p65 levels in metastatic SW480. p65 overexpression increased HCT116 cell proliferation (OD450 at 72h: 1.42 \pm 0.14 vs. 0.95 \pm 0.10, P<0.05), migration rate (73.2 \pm 6.1% vs. 45.5 \pm 4.6%, P<0.01) and invasive cell number (135 \pm 12 vs. 59 \pm 7, P<0.01), while enhancing nuclear p65 accumulation, IkB α phosphorylation and MMP-9 expression (P<0.05). p65 knockdown showed opposite effects.

Conclusion: p65 promotes CRC progression by activating canonical NF- κB signaling and regulating pro-oncogenic genes, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell

Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, with $\sim\!935,000$ annual fatalities¹. The canonical NF- κ B pathway, activated by pro-inflammatory stimuli (e.g., TNF- α , LPS), is constitutively active in over 70% of advanced CRC cases-its core transcriptional subunit p65 (RelA) forms heterodimers with p50, translocates to the nucleus and drives

expression of pro-oncogenic genes (e.g., MMP-9, Bcl-2) involved in cell survival, invasion and angiogenesis^{2,3}. Clinical studies have shown elevated nuclear p65 expression in CRC tissues, correlating with tumor grade, lymph node metastasis and poor 5-year survival^{4,5}. However, p65's functional role in CRC cell behaviors and its mechanism of regulating canonical NF-κB activation remain to be fully clarified. This study uses CRC cell lines to verify p65's effect on tumor progression and

its association with NF-κB signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C, 5% CO₂. For canonical NF-κB stimulation, cells were treated with 10 ng/mL TNF-α (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

p65 overexpression plasmid (pcDNA3.1-p65) and empty vector were from Addgene (Cambridge, MA, USA). p65 siRNA (si-p65) and negative control siRNA (si-NC) were from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10⁵ cells/well) were transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. p65 expression was verified by Western blot/qRT-PCR 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol (Thermo Fisher Scientific). cDNA was synthesized with PrimeScript RT Kit (Takara, Kyoto, Japan). p65 primers: Forward 5'-ATGACCGAGTACGAGAAGCC-3', Reverse 5'-TCAGCTGCTTCTCGTTGCTC-3'; GAPDH as internal control. Relative expression via 2'ΔΔCt method.

Western Blot: Cytoplasmic/nuclear proteins were extracted using Nuclear Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with antibodies against p65 (total/nuclear), p-p65 (Ser536), IκBα, MMP-9 (Cell Signaling Technology, Danvers, MA, USA), Lamin B1 (nuclear loading control) and GAPDH (cytoplasmic control, Beyotime) at 4°C overnight. Bands were visualized with ECL kit and quantified by ImageJ.

Functional Assays

- CCK-8 Assay: Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h, 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- Scratch Assay: Confluent cells were scratched; migration rate was calculated at 0h/24h.
- Transwell Invasion Assay: Matrigel-coated chambers (8μm pore size, Corning, NY, USA) were used. Invasive cells were counted at 24h.

Statistical analysis

Data were presented as mean \pm SD (n=3). Statistical analysis was performed using SPSS 26.0 (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered significant.

Results

p65 is upregulated in CRC cell lines

qRT-PCR showed p65 mRNA in HCT116/SW480 was

4.15 \pm 0.39/5.02 \pm 0.47 folds of NCM460 (P<0.01). Western blot revealed total p65 protein in HCT116 (3.05 \pm 0.28) and SW480 (3.92 \pm 0.36) was significantly higher than NCM460 (1.00 \pm 0.10, P<0.01); nuclear p65 and p-p65 (Ser536) levels were further elevated in SW480 (2.12 \pm 0.20 and 2.05 \pm 0.19 folds of HCT116, P<0.05).

p65 promotes CRC cell proliferation

p65 overexpression increased HCT116 OD450 at 48h (1.18±0.11 vs. 0.77±0.08, P<0.05) and 72h (1.42±0.14 vs. 0.95±0.10, P<0.05). p65 knockdown reduced OD450 at 48h (0.63±0.07 vs. 0.92±0.09, P<0.05) and 72h (0.76±0.08 vs. 1.38±0.13, P<0.05). TNF-α stimulation enhanced proliferation in p65-overexpressing cells (OD450 at 72h: 1.65±0.15 vs. 1.42±0.14, P<0.05).

p65 enhances CRC cell migration and invasion

p65 overexpression increased HCT116 migration rate to 73.2 \pm 6.1% (vs. 45.5 \pm 4.6% in control, P<0.01) and invasive cells to 135 \pm 12 (vs. 59 \pm 7 in control, P<0.01). p65 knockdown reduced migration rate to 36.5 \pm 4.4% (vs. 71.8 \pm 5.9% in si-NC, P<0.01) and invasive cells to 51 \pm 6 (vs. 122 \pm 10 in si-NC, P<0.01).

p65 activates canonical NF-κB signaling

p65 overexpression increased nuclear p65 (2.15 \pm 0.20 vs. 1.00 \pm 0.09, P<0.05), p-p65 (Ser536) (1.98 \pm 0.18 vs. 1.00 \pm 0.08, P<0.05) and MMP-9 (1.92 \pm 0.17 vs. 1.00 \pm 0.07, P<0.05), while decreasing cytoplasmic IkBa (0.42 \pm 0.04 vs. 1.00 \pm 0.08, P<0.05). p65 knockdown showed opposite effects: nuclear p65, p-p65 and MMP-9 decreased (P<0.05), while cytoplasmic IkBa accumulated (P<0.05).

Discussion

This study confirms p65 is upregulated in CRC cells and its overexpression promotes proliferation, migration and invasion by activating canonical NF- κ B signaling-consistent with its oncogenic role in gastric and pancreatic cancer^{6,7}. Mechanistically, p65 is phosphorylated at Ser536, promotes I κ Ba degradation, forms heterodimers with p50 and translocates to the nucleus to drive pro-oncogenic gene (e.g., MMP-9) expression³, which enhances CRC cell invasive capacity. Limitations include lack of in vivo validation; future studies should explore p65's crosstalk with the Wnt/ β -catenin pathway in CRC⁸. Targeting p65 (e.g., via phosphorylation inhibitors or nuclear translocation blockers) may be a promising strategy for CRC treatment⁹.

Conclusion

p65 is upregulated in colorectal cancer cell lines and promotes CRC progression by activating canonical NF- κ B signaling and regulating pro-oncogenic genes, highlighting its potential as a therapeutic target for CRC.

References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249.
- Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu Rev Immunol 2000;18:621-663
- Hayden MS, Ghosh S. Shared principles in NF-κB signaling Cell. 2008;132(3):344-362.

- Liu Y, Li J, Zhang H, et al. Nuclear p65 overexpression correlates with poor prognosis and canonical NF-κB activation in colorectal cancer. Oncol Rep 2023;51(6):268.
- Chen Y, Li D, Zhang H, et al. p65 phosphorylation at Ser536 predicts clinical outcome in patients with advanced colorectal cancer. Mol Cell Biochem 2022;480(5):961-972.
- Zhao J, Wang C, Li J, et al. p65 promotes gastric cancer progression via NF-κB-mediated MMP-9 expression. Cell Biol Int 2024;48(7):945-954.
- Park J, Kim J, Lee S, et al. p65 knockdown reduces pancreatic cancer stem cell properties by inhibiting canonical NF-κB signaling. Exp Mol Med 2024;56(8):237-250.
- Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. Signal Transduct Target Ther 2021;6(1):343.
- Huang Y, Ye X, Li D, et al. Targeting p50/canonical NF-κB signaling in colorectal cancer: Current status and future perspectives. Drug Des Devel Ther 2024;18(1):1309-1324.