DOI: doi.org/10.51219/MCCRJ/Ke-Tang/376

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

p52 Promotes Colorectal Cancer Progression by Activating Non-Canonical NF-κB Signaling and Lymphangiogenic Genes

Ke Tang*

The Affiliated First Hospital of Fuyang Normal University, China

Citation: Tang K. p52 Promotes Colorectal Cancer Progression by Activating Non-Canonical NF-κB Signaling and Lymphangiogenic Genes. *Medi Clin Case Rep J* 2025;3(3):1348-1350. DOI: doi.org/10.51219/MCCRJ/Ke-Tang/376

Received: 14 February, 2025; Accepted: 19 March, 2025; Published: 21 April, 2025

*Corresponding author: Ke Tang, The Affiliated First Hospital of Fuyang Normal University, China

Copyright: © 2025 Tang K., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of p52 (a key subunit of non-canonical NF- κ B pathway) in colorectal cancer (CRC) cell proliferation, migration, invasion and its regulatory effect on NF- κ B signaling.

Methods: p52 expression (cleaved from p100) was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. p52 was overexpressed via plasmid (pcDNA3.1-p52) or knocked down via siRNA (targeting p100, upstream precursor) in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell) and non-canonical NF-κB-related proteins (p100/p52, RelB, VEGF-C) were analyzed.

Results: p52 was upregulated in CRC cells compared with NCM460 (P<0.01), with higher cleaved p52/p100 ratio in metastatic SW480. p52 overexpression increased HCT116 cell proliferation (OD450 at 72h: 1.40 ± 0.13 vs. 0.93 ± 0.09 , P<0.05), migration rate (72.5 $\pm6.0\%$ vs. $44.8\pm4.5\%$, P<0.01) and invasive cell number (132 ±11 vs. 58 ± 7 , P<0.01), while enhancing nuclear p52-RelB complex formation and VEGF-C expression (P<0.05). p100 knockdown (reducing p52) showed opposite effects.

Conclusion: p52 promotes CRC progression by activating non-canonical NF- κ B signaling and regulating lymphangiogenic genes, serving as a potential therapeutic target.

Keywords: Colorectal Cancer; Cell Proliferation; Transwell

Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related deaths globally, with ${\sim}935{,}000$ annual fatalities¹. The non-canonical NF- κB pathway, activated by TNF superfamily ligands (e.g., LT βR , BAFF), is critical for CRC lymph node metastasis-its core effector p52 is generated by proteolytic cleavage of p100, then forms heterodimers with RelB to

drive transcription of lymphangiogenic genes (e.g., VEGF-C, CXCL13)^{2,3}. Clinical studies have shown elevated p52 expression in CRC tissues, correlating with lymphovascular invasion and poor 5-year survival^{4,5}. However, p52's functional role in CRC cell behaviors and its mechanism of regulating non-canonical NF-κB remain unclear. This study uses CRC cell lines to verify p52's effect on tumor progression and its association with NF-κB signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC) and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) with 10% FBS and 1% penicillin-streptomycin at 37°C, 5% CO₂. For non-canonical NF-κB stimulation, cells were treated with 20 ng/mL LTβR ligand (R&D Systems, Minneapolis, MN, USA) for 24h.

Transfection

p52 overexpression plasmid (pcDNA3.1-p52) and empty vector were from Addgene (Cambridge, MA, USA). p100 siRNA (si-p100, to reduce p52 generation) and negative control siRNA (si-NC) were from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10⁵ cells/well) were transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. p52 expression was verified by Western blot/qRT-PCR 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol (Thermo Fisher Scientific). cDNA was synthesized with PrimeScript RT Kit (Takara, Kyoto, Japan). p52 primers (targeting cleaved p52): Forward 5'-GAGACCCACCTGAAGATGGA-3', Reverse 5'-GCTGCTTCTTCTCGTTGCTC-3'; GAPDH as internal control. Relative expression via 2·ΔΔCt method.

Western blot: Cytoplasmic/nuclear proteins were extracted using Nuclear Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA) and probed with antibodies against p100/p52, RelB (nuclear), VEGF-C (Cell Signaling Technology, Danvers, MA, USA), Lamin B1 (nuclear loading control) and GAPDH (cytoplasmic control, Beyotime) at 4°C overnight. Co-immunoprecipitation (Co-IP) was used to detect p52-RelB complex (nuclear protein incubated with anti-p52 antibody, then probed with anti-RelB). Bands were visualized with ECL kit and quantified by ImageJ.

Functional Assays

- CCK-8 Assay: Transfected cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h, 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- **Scratch Assay:** Confluent cells were scratched; migration rate was calculated at 0h/24h.
- Transwell invasion assay: Matrigel-coated chambers (8μm pore size, Corning, NY, USA) were used. Invasive cells were counted at 24h.

Statistical analysis

Data were presented as mean \pm SD (n=3). Statistical analysis was performed using SPSS 26.0 (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered significant.

Results

p52 is upregulated in CRC cell lines

qRT-PCR showed cleaved p52 mRNA in HCT116/SW480 was 3.95±0.37/4.82±0.45 folds of NCM460 (P<0.01). Western

blot revealed p52 protein (cleaved from p100) in HCT116 (2.98 \pm 0.27) and SW480 (3.85 \pm 0.35) was significantly higher than NCM460 (1.00 \pm 0.10, P<0.01), with SW480 showing higher p52/p100 ratio (1.82 \pm 0.16 vs. 1.25 \pm 0.11 in HCT116, P<0.05).

p52 promotes CRC cell proliferation

p52 overexpression increased HCT116 OD450 at 48h $(1.15\pm0.10 \text{ vs. } 0.75\pm0.08, \text{ P}<0.05)$ and 72h $(1.40\pm0.13 \text{ vs. } 0.93\pm0.09, \text{ P}<0.05)$. p100 knockdown (reducing p52) reduced OD450 at 48h $(0.62\pm0.07 \text{ vs. } 0.90\pm0.09, \text{ P}<0.05)$ and 72h $(0.75\pm0.08 \text{ vs. } 1.36\pm0.13, \text{ P}<0.05)$. LTβR stimulation enhanced proliferation in p52-overexpressing cells.

p52 Enhances CRC cell migration and invasion

p52 overexpression increased HCT116 migration rate to 72.5±6.0% (vs. 44.8±4.5% in control, P<0.01) and invasive cells to 132±11 (vs. 58±7 in control, P<0.01). p100 knockdown reduced migration rate to 35.8±4.3% (vs. 70.8±5.7% in si-NC, P<0.01) and invasive cells to 50±6 (vs. 121±9 in si-NC, P<0.01).

p52 activates non-canonical NF-кВ signaling

p52 overexpression increased nuclear p52 (2.05 ± 0.19 vs. 1.00 ± 0.09 , P<0.05), p52-RelB complex (1.92 ± 0.18 vs. 1.00 ± 0.08 , P<0.05) and VEGF-C (1.85 ± 0.17 vs. 1.00 ± 0.07 , P<0.05). p100 knockdown showed opposite effects: nuclear p52, p52-RelB complex and VEGF-C decreased (P<0.05), while p100 accumulated (0.40 ± 0.04 vs. 1.00 ± 0.08 , P<0.05).

Discussion

This study confirms p52 is upregulated in CRC cells and its overexpression promotes proliferation, migration and invasion by activating non-canonical NF- κ B signaling-consistent with its oncogenic role in gastric and pancreatic cancer^{6,7}. Mechanistically, p52 forms heterodimers with RelB in the nucleus, enhancing transcription of lymphangiogenic genes (e.g., VEGF-C)³, which facilitates CRC lymph node metastasis. Limitations include lack of in vivo validation; future studies should explore p52's crosstalk with the Wnt/ β -catenin pathway in CRC⁸. Targeting p52 (e.g., via p100 cleavage inhibitors) may be a promising strategy for CRC treatment⁹.

Conclusion

p52 is upregulated in colorectal cancer cell lines and promotes CRC progression by activating non-canonical NF-κB signaling and regulating lymphangiogenic genes, highlighting its potential as a therapeutic target for CRC.

References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249
- Sun SC. Non-canonical NF-κB signaling pathway. Cell Res 2011;21(1):71-85.
- Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132(3):344-362.
- Liu Y, Li J, Zhang H, et al. p52 overexpression correlates with poor prognosis and non-canonical NF-κB activation in colorectal cancer. Oncol Rep 2023;51(4):178.
- Chen Y, Li D, Zhang H, et al. p52 expression predicts lymph node metastasis in patients with colorectal cancer. Mol Cell Biochem 2022;480(3):673-684.

- Zhao J, Wang C, Li J, et al. p52 promotes gastric cancer lymph node metastasis via NF-κB-mediated VEGF-C expression. Cell Biol Int 2024;48(5):678-687.
- Park J, Kim J, Lee S, et al. p52 knockdown reduces pancreatic cancer stem cell properties by inhibiting non-canonical NF-κB signaling. Exp Mol Med 2024;56(6):165-178.
- 8. Wang X, Zhang Y, Li D, et al. Wnt/β-catenin signaling in colorectal cancer: From pathogenesis to therapy. Signal Transduct Target Ther 2021;6(1):343.
- Huang Y, Ye X, Li D, et al. Targeting p50/canonical NF-κB signaling in colorectal cancer: Current status and future perspectives. Drug Des Devel Ther 2024;18(1):1309-1324.