
Overview of Microservices Design Patterns’ Problems, Solutions

AzraJabeen Mohamed Ali*

Citation: Ali AJM. Overview of Microservices Design Patterns’ Problems, Solutions. J Artif Intell Mach Learn & Data Sci 2024, 
2(3), 1745-1748. DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/379

Received: 02 August, 2024; Accepted: 18 August, 2024; Published: 20 August, 2024

*Corresponding author: AzraJabeen Mohamed Ali, Independent researcher, California, USA, E-mail: Azra.jbn@gmail.com

Copyright: © 2024 Ali AJM., Postman for API Testing: A Comprehensive Guide for QA Testers., This is an open-access article 
distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

1

Research ArticleVol: 2 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/379

 A B S T R A C T 
This paper discusses the thorough examination of the challenges and solutions associated with the Microservices design patterns. 

Microservices have transformed the software development sector by encouraging modularity, scalability and maintainability, 
which enables businesses to react to shifting consumer needs and technology breakthroughs faster. The study's main research 
question explores the major implementation challenges, including inter-service communication, data consistency and security 
and provides possible solutions to address these challenges. It also provides a thorough analysis of several microservices patterns, 
including Decomposition design patterns, Integration patterns and Database patterns. This paper is therefore meant to be more 
development-environment centered and infrastructure agnostic. Developers and architects who wish to concentrate on code, 
patterns and implementation specifics will find this part most interesting. 

Keywords: Micro Services, Design patterns, API Gateway, Decomposition pattern, Integration pattern, Database patten, 
monolithic

1. Introduction
1.1. Microservice Architecture:

Microservices architecture, as the name suggests, is a method 
of developing a server application as a collection of discrete 
services. Thus, while the front end can also use a microservices 
design, the back end is the primary focus of this strategy. 
Every service operates in a separate process and engages in 
communication with other processes via protocols including 
AMQP, WebSocket’s and HTTP/HTTPS.

To succeed in today’s unstable, uncertain, complex and 
ambiguous world, business-critical enterprise applications must 
offer changes quickly, often and consistently. Consequently 
organizations are split up into small, loosely connected, cross-
functional teams. Every team delivers software using DevOps 
techniques. It uses continuous deployment specifically. Before 
being deployed into production, the team’s stream of frequent, 

minor changes is tested by an automated deployment pipeline. 
By enabling teams to deploy each microservice as needed, the 
goal is to enable developers to use microservices to accelerate 
application releases.

2. What Makes Businesses Use Microservices 
Architecture?

The majority of businesses begin by building their 
infrastructures as either a single monolith or a number of closely 
related monolithic applications. The monolith performs a variety 
of tasks. A single, coherent piece of application code contains 
all of the programming for those features. It’s challenging to 
decipher the code for these functions because it’s all tangled 
together. A single feature addition or modification in a monolith 
can cause the entire application’s code to break. This turns any 
upgrade-no matter how basic-into a costly and time-consuming 
procedure. Programming gets increasingly complex as upgrades 
are made, until scaling and upgrades are nearly impossible.

https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/379
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/azrajabeen-mohamed-ali/379


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Ali AJM.,

2

3.8. Observability Patterns: Purpose: To continuously observe 
in real time in order to spot mistakes and improve performance. 
This pattern includes “Log Aggregation”, “Performance 
Metrics”, “Distributed Tracing”, “Health Checks”.

3.9. Integration Patterns: Purpose: To integrate the systems 
and applications to exchange information through API and 
their protocols. This pattern includes “API Gateway pattern”, 
Aggregator pattern”, “Proxy pattern”, Gateway Routing pattern”, 
“Chained Microservice pattern”, “Branch pattern”, “Client-Side 
Ui Composition pattern”.

3.10. Database Patterns:

Purpose: To manage data effectively from one or many 
different services. This pattern includes “Database Per services”, 
“Shared Database per Service”, “CQRS”, “Event Sourcing”, 
“Saga pattern”.

3.11. Cross-Cutting Concern Patterns:

Purpose: To uniformly handle specific capabilities 
throughout the system, such as logging, tracing and monitoring 
across several microservices. This pattern includes “External 
Configuration”, “Service Discovery Pattern”, “Circuit Breaker 
Pattern”, “Blue-Green deployment Pattern”.

3.12. Problems and fixes when choosing a design pattern:

Problem #1: An application must be divided into smaller 
components in order to transition to micro services. Which 
design pattern facilitates the division of an application into 
smaller services?

Fix: One method is to decompose by business capability. Using 
the business capability pattern to break down an application 
into smaller services can be advantageous. Because business 
capabilities are often stable, this pattern leads to stability. 
However, the capability to recognize each unique company’s 
skill is essential to its success.

Sample: For instance, HealthCare company’s business 
capabilities are mainly classified as Healthcare Clinical delivery, 
Patient Driven Management, HealthCare Research, Strategy, 
Finance & Accounting, Human Resources, Marketing & Sales, 
Enterprise Support and Governance & Compliance.

The phrase “code smell” refers to imperfections in design and 
coding techniques. “God class” is a type of code smell occurs 
when functionalities are distributed unevenly throughout large 
classes. A number of services will share these classes. To break 
down further small pieces, “Decompose by Subdomains” will 
be very helpful. By dividing the primary domain into smaller 
domains, Domain Driven Design helps achieve this “decompose 
by subdomains.” 

Sample: For instance, above in Health Care company’s one of 
the business capabilities is “Patient Driven” which can be broken 
into further as “Patient Management”, “Payer Management”, 
“Partner Management”, “Service Level Management”,” Medical 
Billing Management”, “Patient Lead Management”. Each micro 
service would be bound independently with its own logic.

Problem #2: The current live legacy application follows the 
traditional monolithic design and it is expected to be divided 
into smaller components in order to transition to micro services. 
Which design pattern facilitates the division of an application 
into smaller services?

As time goes on, businesses are unable to modify their 
coding further without beginning anew. The procedure quickly 
becomes too much to handle and businesses may end up stuck 
with outdated practices for a long time after they ought to have 
upgraded.

3. What are the fundamental ideas of Microservices 
architecture?

Autonomous: By operating independently, each service 
removes the issues brought on by interdependence. Increased 
deployment flexibility is also made possible by this.

3.1. Resilience: The other services remain unaffected in the 
event that one goes down. The capacity of a system to bounce 
back quickly from malfunctions and keep working.

3.2. Scalability: The ability of services to immediately increase 
or decrease in response to demand maximizes cost and resource 
allocation.

3.3. Decentralization: Independent development teams can 
increase productivity and speed time to market.

Fault tolerance: To maintain a consistent user experience, the 
system keeps running even if one or more services go down.

3.4. Monitoring: High performance, security and availability of 
the infrastructure and services are guaranteed through ongoing 
monitoring and health checks. Several levels of security are 
designed and implemented, including secure communication, 
authorization, authentication and secret management.

3.5. DevOps integration: Quick delivery of high-caliber services 
is guaranteed by incorporating DevOps into microservices 
architecture.

3.6. Lazy Loading: Incoming traffic can be split equally among 
servers by the design. This enhances performance and avoids 
overloads.

The optimal pattern (or patterns) to apply will depend 
on business goals and other relevant criteria. There are many 
different design patterns for microservices, each with unique 
benefits and cons. The design patterns are categorized based on 
their purpose.

3.7. Decompose Patterns: Purpose: To assist in breaking down 
applications into smaller, easier-to-manage services. This pattern 
includes “Decompose by Business capability”, “Decompose 
by Subdomain”, “Decompose by Transactions”, “Strangler 
pattern”, “Bulkhead pattern”, “Sidecar pattern”.



3

Ali AJM., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3

Fix: The best approach is Strangler Pattern alias Vine pattern as 
the name mentions, vine strangles around the tree, micro service 
wrapped around the existing application. Strangler Pattern allows 
to create a new service and functions along with the existing 
monolith application service next to each other. A microservice 
application expands whereas a monolith application shrinks with 
time. With the help of this design, it is possible to move features 
and data from the monolith to the new microservices without 
affecting user experience.

Problem #3: What kind of design pattern will work best for a 
company that deals with a large volume of customers at once?

Fix: To deal large volume of customers at once, Bulkhead 
pattern works best. Because it resembles the sectioned partitions 
of a ship’s hull, the bulkhead design got its name. It functions by 
dividing an application’s components into distinct sections. The 
others can still work even if one fails. A significant level of traffic 
from one service may use up all database connections, making 
it impossible for other services to access the database. Limiting 
the number of connections accessible to each service through 
the implementation of a bulkhead pattern ensures that no single 
service may create a bottleneck. This entails segmenting the 
system into distinct resource pools, such as database connections 
or network connections, in microservice architecture. By doing 
this, we can lessen the effect of any one failure, which makes it 
simpler to isolate and recover from disasters.

Problem #4: How can we manage failures graciously and 
prevent cascade service failures?

Fix: Additionally, for improved fault isolation, it can be used 
with the circuit breaker pattern. Circuit breaker pattern exactly 
works same as circuit breaker switch. A circuit breaker switch 
works by interrupting the electrical current flow when it exceeds 
a predetermined limit causing the contacts to separate and break 
the circuit, thus protecting the system from damage due to 
overload or short circuit. Likewise, the link to failed services 
is disconnected by this pattern. In order to keep protected calls 
from being made and left “hanging,” any calls to the breaker are 
either redirected to another service or result in an error default 
message. For a predetermined “timeout” period, this occurs. 
This prevents service failures from cascading and allows for 
gentle handling of failures.

Three states are handled in circuit pattern like Open, closed, 
Half open. When the number of failures surpasses the threshold, 
a circuit breaker pattern is in open state. In this state, the 
microservice does not execute the intended function but instead 
returns errors for the calls. A circuit breaker is in its default 
condition when it is in closed state and all calls are handled 
normally. A very ideal state to be expected by the users. A circuit 
breaker stays in a half-open position as it looks for underlying 
issues. While some calls might receive a regular response, others 
might not. The reason for the circuit breaker’s initial flip to this 
state will determine this.

Problem #5: What kind of design pattern should be used to call 
several microservices and manage numerous protocols?

Fix: In order to solve the aforementioned problem, the API 
gateway pattern acts as a reverse proxy between client apps and 
the services, offering a single-entry point for many microservice 
calls. The pattern also shields the client from having to 
understand how services have been divided, which is another 
benefit. This design pattern allows developers to separate 

client apps from internal microservices, allowing for the use of 
a partially unsuccessful request. This guarantees that a single 
unresponsive microservice won’t cause an entire request to fail. 
The encoded API gateway does this by using the cache to either 
deliver a correct error code or an empty response. Furthermore, 
API gateway patterns can handle important functions like SSL 
termination, authentication and caching, which improves the 
security and usability of application. It may also convert one 
protocol request to another protocol and vice versa.

Problem #6: Which design pattern aids in formatting the data 
and responses from reusable microservices that can change 
based on the client?

Fix: Aggregator pattern helps in the process of combining data 
from several providers and sending the final response to the 
customer. Before returning the data, a composite microservice 
will call all necessary microservices, combine the data and 
change it. Additionally, an API gateway can aggregate the data 
and divide the request among several microservices before 
delivering it to the customer. Selecting a composite microservice 
is advised if any business logic is to be used. Otherwise, the 
tried-and-true method is the API gateway.

Problem #7: Which design pattern can be used to create a 
user interface (UI) page or screen that shows data from several 
services?

Fix: Client-Side UI composition type helps to resolve above 
mentioned issue. Every UI team has the ability to create a 
client-side UI element, that implements or correlates to a certain 
microservice. The UI team is in charge of creating page skeletons 
or skeleton user interfaces for different services by constructing 
pages that are made up of various service-specific UI elements. 
Many JS frameworks help to do the same. It becomes simpler 
and easier to maintain UI development.

Problem #8: When an organization handles different clients like 
Web application, mobile application and third-party applications. 
How are the individual services accessed by the different clients 
of a microservices-based application?

Fix: Design patterns like API gateway / Backend for frontends 
can be considered. When we choose API gateway, it will act as 
a single-entry point for all clients. The Backends for Frontends 
pattern is a variant of this design. For every type of client, a 
distinct API gateway is defined.

4. Conclusion
The key takeaway is that no specific technology, architecture 

pattern or style is appropriate in every circumstance. The 
majority of major websites are switching from monolithic to 
microservice architectures. It has a distinct set of problems that 
need to be solved, just like any other software. A successful 
microservice workflow can be achieved by putting in place the 
right architecture, process tools and design patterns.

5. References

1. https://microservices.io/patterns/decomposition/decompose-
by-business-capability.html?source=post_page-----649cfec42
dc5--------------------------------

2. https://microservices.io/patterns/decomposition/decompose-by-
subdomain.html 

3. https://microservices.io/patterns/refactoring/strangler-
application.html

https://microservices.io/patterns/decomposition/decompose-by-business-capability.html?source=post_page-----649cfec42dc5--------------------------------
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html?source=post_page-----649cfec42dc5--------------------------------
https://microservices.io/patterns/decomposition/decompose-by-business-capability.html?source=post_page-----649cfec42dc5--------------------------------
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://microservices.io/patterns/refactoring/strangler-application.html
https://microservices.io/patterns/refactoring/strangler-application.html


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Ali AJM.,

4

4. https://www.openlegacy.com/blog/microservices-architecture-
patterns/

5. https:/ /medium.com/geekculture/design-patterns-for-
microservices-circuit-breaker-pattern-276249ffab33

6. https://medium.com/@parserdigital/resilience-in-microservices-
bulkhead-vs-circuit-breaker-54364c1f9d53

7. https://microservices.io/patterns/microservices.html

8. https://dzone.com/articles/design-patterns-for-microservices

https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://www.openlegacy.com/blog/microservices-architecture-patterns/
https://medium.com/geekculture/design-patterns-for-microservices-circuit-breaker-pattern-276249ffab33
https://medium.com/geekculture/design-patterns-for-microservices-circuit-breaker-pattern-276249ffab33
https://medium.com/@parserdigital/resilience-in-microservices-bulkhead-vs-circuit-breaker-54364c1f9d53
https://medium.com/@parserdigital/resilience-in-microservices-bulkhead-vs-circuit-breaker-54364c1f9d53
https://microservices.io/patterns/microservices.html
https://dzone.com/articles/design-patterns-for-microservices

	_GoBack

