
Optimizing Machine Learning Workflows with Google Cloud Dataflow and
TensorFlow Extended (TFX)

Tulasiram Yadavalli*

Citation: Yadavalli T. Optimizing Machine Learning Workflows with Google Cloud Dataflow and TensorFlow Extended (TFX).
J Artif Intell Mach Learn & Data Sci 2021, 1(1), 2436-2441. DOI: doi.org/10.51219/JAIMLD/tulasiram-yadavalli/524

Received: 03 July, 2021; Accepted: 28 July, 2021; Published: 30 July, 2021

*Corresponding author: Tulasiram Yadavalli, USA, E-mail: ytr.hdp@gmail.com

Copyright: © 2021 Yadavalli T., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/tulasiram-yadavalli/524

 A B S T R A C T
Modern machine learning workflows often involve complex pipelines with numerous stages, from data ingestion and

preprocessing to model training, evaluation and deployment. This paper explores how Google Cloud Dataflow and TensorFlow
Extended (TFX) can be leveraged to optimize these workflows for scalability, efficiency and maintainability. We demonstrate how
Dataflow's distributed processing capabilities can accelerate data preprocessing and transformation tasks while TFX provides
a robust framework for building and managing reproducible ML pipelines. Through practical examples and case studies, we
illustrate the benefits of this combined approach, including reduced training times, improved model accuracy and simplified
deployment processes. The paper also discusses best practices for integrating Dataflow and TFX with other Google Cloud
services to create end-to-end ML solutions.

Keywords: Machine learning workflows, Google Cloud Dataflow, TensorFlow Extended (TFX), distributed processing, data
preprocessing, model training, scalability, efficiency, maintainability, ML pipelines, Google Cloud Platform (GCP)

1. Introduction
The rapid advancement of machine learning (ML) has led to

its widespread adoption across diverse domains, from healthcare
and finance to retail and manufacturing. However, building and
deploying robust ML systems involves complex workflows with
numerous interconnected stages1. These workflows encompass
tasks such as data ingestion, preprocessing, feature engineering,
model training, evaluation and deployment, each posing unique
challenges in terms of scalability, efficiency and maintainability2.

Traditional approaches to ML workflow management often
rely on ad-hoc scripting and manual interventions, leading to
bottlenecks, reproducibility issues and difficulties in scaling
to large datasets or complex models. This necessitates the
exploration of robust and scalable solutions that can streamline
these workflows and enable efficient development and
deployment of ML models.

Google Cloud Platform (GCP) offers a compelling suite of
tools and services for building and deploying ML solutions. In
particular, Google Cloud Dataflow and TensorFlow Extended
(TFX) provide a powerful combination for optimizing ML
workflows3. Dataflow, a fully managed service for batch and
stream data processing, excels at handling large-scale data
transformations with high efficiency and fault tolerance4. TFX,
on the other hand, offers a robust framework for building
reproducible and production-ready ML pipelines5.

This paper explores the synergistic integration of Dataflow
and TFX to optimize ML workflows on GCP. We demonstrate
how Dataflow’s distributed processing capabilities can accelerate
data preprocessing and transformation tasks while TFX provides
a structured and scalable approach to managing the end-to-end
ML pipeline. Through practical examples and case studies, we
illustrate the benefits of this combined approach, including
reduced training times, improved model accuracy and simplified
deployment processes.

https://doi.org/10.51219/JAIMLD/tulasiram-yadavalli/524
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/tulasiram-yadavalli/524

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Yadavalli T.,

2

This fragmented approach creates inefficiencies and limits the
effectiveness of ML systems in real-world applications. Below
are some of the critical challenges in scaling ML systems and
their implications:

3.1. Scalability

Modern ML systems must handle exponentially growing
datasets and increasingly complex models. Traditional methods
often falter under these demands. For instance, data preprocessing
may require processing terabytes of data, while model training
can involve billions of parameters. Without robust infrastructure,
tasks become computationally intensive, leading to delays and
bottlenecks. Distributed computing solutions like Apache Spark
or cloud-based ML platforms help address scalability issues but
require significant expertise to implement effectively.

3.2. Reproducibility

Reproducibility is vital for ensuring consistent performance
and fostering collaboration. However, ad-hoc scripts, manual
data handling and a lack of standardized practices can make
experiments difficult to replicate.

Without proper versioning of data, code and model
configurations, tracking the lineage of changes becomes nearly
impossible. This not only impairs debugging but also slows
down the innovation cycle, as valuable insights may be lost due
to inconsistent practices.

3.3. Maintainability

The absence of a systematic approach to ML workflows
often results in tangled dependencies and technical debt. Over
time, updating models or integrating new features becomes
increasingly cumbersome, particularly when key contributors
leave or when legacy systems need upgrades. Poorly maintained
workflows can also fail to meet new business requirements or
take advantage of advancements in ML techniques, leaving
organizations at a competitive disadvantage.

3.4. Deployment complexity

The leap from a trained model to a production-ready system is
fraught with challenges. Integrating ML models into production
involves ensuring compatibility with operational systems,
managing dependencies and establishing robust monitoring for
model performance. This process requires seamless collaboration
between data scientists, software engineers and DevOps teams.

Errors in deployment pipelines can result in system outages,
degraded model performance or incorrect predictions, leading to
significant business impacts.

4. Solution: Towards Scalable ML Workflows
The challenges associated with deploying and scaling

machine learning (ML) workflows have spurred the development
of numerous tools and frameworks aimed at automating,
standardizing and optimizing the ML process. These solutions
address critical aspects such as scalability, reproducibility,
maintainability and deployment complexity. This section
explores some of the prominent approaches and best practices
for achieving scalable ML workflows.

4.1. Workflow orchestration and management

Traditional ML workflows often rely on manual processes
and ad-hoc scripts, leading to inefficiencies and difficulties

2. Literature Review
The increasing complexity and scale of machine learning

(ML) workflows demand robust and efficient tools for
managing the end-to-end process, from data ingestion to model
deployment. This literature review examines key research areas
relevant to optimizing ML workflows, focusing on distributed
data processing, ML pipelines and the specific technologies
employed in this paper: Google Cloud Dataflow and TensorFlow
Extended (TFX).

2.1. Distributed data processing for machine learning

Large-scale ML workflows often involve massive datasets
that require distributed processing for efficient preprocessing,
transformation and feature engineering. Dean and Ghemawat
introduced the MapReduce programming model, a foundational
approach for processing large datasets in a distributed manner6,8.
This model has been widely adopted and forms the basis for
many distributed data processing frameworks.

More recently, Akidau et al. presented the Dataflow model,
which extends MapReduce with features like windowing and
out-of-order processing, enabling more expressive and efficient
data pipelines4. This model underlies Google Cloud Dataflow,
providing a powerful platform for scaling ML data preprocessing
tasks.

2.2. Machine learning pipelines and workflow management

Sculley et al. highlighted the challenges of “hidden technical
debt” in ML systems, emphasizing the need for robust workflow
management to ensure reproducibility, maintainability and
scalability4. They advocate for a more systematic approach to
building and managing ML pipelines.

Various frameworks have emerged to address these
challenges. Polyzotis et al. discussed the data management
challenges in production ML, including data versioning, lineage
tracking and model monitoring7. They propose a system for
managing ML pipelines with a focus on data-centric aspects.

TFX, a production-scale ML platform built on TensorFlow,
provides a comprehensive solution for building and deploying
ML pipelines1. Baylor et al. described TFX’s core components,
including data validation, transformation, training and model
analysis, enabling the creation of reproducible and scalable ML
workflows5.

2.3. Google cloud dataflow and TensorFlow Extended (TFX)

While research on Dataflow and TFX individually is
extensive, there is limited literature specifically addressing their
combined use for optimizing ML workflows. We draw upon
the foundational work on distributed data processing and ML
pipeline management to showcase how Dataflow and TFX can
be leveraged to address the challenges of building and deploying
robust, scalable and efficient ML systems.

3. Problem Statement: Building and Deploying
Machine Learning (ML)

Building and deploying machine learning (ML) systems at
scale requires addressing several foundational challenges.

Traditional ML workflows, consisting of data ingestion,
preprocessing, feature engineering, model training, evaluation
and deployment, often rely on fragmented, manual processes.

3

Yadavalli T., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

•	 Automation: Automating repetitive tasks such as data
preprocessing, model training and evaluation frees up data
scientists to focus on more strategic initiatives. This improves
productivity and allows data scientists to concentrate on
higher-value activities, such as feature engineering, model
architecture design and hyperparameter tuning.

•	 Standardization: Standardized workflows ensure
consistency and reproducibility across different projects
and teams. This reduces the risk of errors, facilitates
collaboration and enables knowledge sharing across the
organization.

•	 Scalability: These tools enable the scaling of ML
workflows to handle larger datasets and more complex
models by leveraging distributed computing resources. This
allows organizations to adapt to growing data volumes and
increasingly sophisticated ML models without sacrificing
performance or efficiency.

•	 Maintainability: Modular components and version control
capabilities improve the maintainability of ML pipelines,
making it easier to update and modify workflows over time.
This reduces technical debt and ensures that ML systems
can be easily adapted to evolving business requirements.

4.2. Cloud-based ML platforms

Cloud providers offer comprehensive ML platforms that
further simplify the development, deployment and scaling of
ML systems. These platforms provide a range of services and
tools that address various aspects of the ML lifecycle, from data
preparation and model training to deployment and monitoring.

•	 AWS Sage Maker: This fully managed service provides
tools for building, training and deploying ML models at
scale. Sage Maker offers a variety of pre-built algorithms
and frameworks, as well as the flexibility to use custom
code. Its integration with other AWS services, such as
S3 for storage and EC2 for computing, enables seamless
scalability and resource management.

For example, Sage Maker’s hyperparameter tuning
feature can automatically explore different hyperparameter
configurations, leveraging distributed training on EC2 instances
to accelerate the optimization process. This helps data scientists
find the optimal settings for their models, improving accuracy
and performance.

•	 Google vertex AI: Vertex AI is a unified ML platform that
brings together Auto ML, custom model training and MLOps
capabilities. It offers a user-friendly interface for building
and deploying ML models while also providing advanced
features for experienced users. Vertex AI’s integration with
other Google Cloud services, such as Dataflow for data
processing and Cloud Storage for data storage, enables
seamless scalability and efficient resource utilization.

For instance, Vertex AI Pipelines can orchestrate complex
ML workflows, including data preprocessing with Dataflow
and model training with custom containers. This allows for the
creation of end-to-end ML pipelines that can be easily managed
and monitored.

•	 Azure machine learning: This cloud-based service provides
a comprehensive environment for building, training and
deploying ML models. Azure Machine Learning offers a
variety of tools and services, including automated ML, drag-

in scaling. These manual interventions introduce several
challenges:

•	 Inconsistency: Different team members might use varying
scripts and configurations, leading to inconsistencies and
difficulties in reproducing results.

•	 Error prone: Manual processes are more susceptible
to human error, potentially impacting the accuracy and
reliability of ML models.

•	 Lack of scalability: As data volumes and model complexity
increase, manual approaches become increasingly time-
consuming and inefficient.

•	 Limited collaboration: Sharing and collaborating on
ML workflows becomes challenging due to the lack of a
centralized platform for managing code, data and models.

•	 To overcome these limitations organizations are increasingly
adopting workflow orchestration tools that automate and
standardize ML pipelines.

•	 ML flow: This open-source platform provides a
comprehensive solution for managing the ML lifecycle,
including experiment tracking, model packaging and
deployment. MLflow’s ability to track experiments and
reproduce results facilitates collaboration and ensures
consistency across different stages of the ML workflow.

For example, data scientists can use ML flow to track
different model versions, hyperparameters and evaluation
metrics, enabling them to compare performance and select the
best model for deployment. ML flow also provides tools for
packaging models into reproducible formats and deploying
them to various environments, such as cloud platforms or edge
devices.

•	 Kubeflow: Built on Kubernetes, Kubeflow offers a cloud-
native platform for deploying and managing ML workflows
at scale. It provides a collection of tools and components
for various ML tasks, including data preprocessing, model
training and serving.

•	 Kubeflow’s integration with Kubernetes enables efficient
resource management and scalability, allowing organizations
to handle increasing data volumes and model complexity.
For instance, Kubeflow can automatically scale the number
of pods used for model training based on the workload
demands. This ensures optimal resource utilization and
efficient execution of ML workflows.

•	 TFX (TensorFlow Extended): TFX is a powerful framework
specifically designed for building and deploying production-
scale ML pipelines. It offers a collection of components for
data validation, preprocessing, model training, analysis and
serving. TFX emphasizes reproducibility, maintainability
and scalability, making it well-suited for complex ML
workflows.

For example, TFX’s data validation component can
automatically detect and alert data anomalies, ensuring data
quality throughout the ML pipeline. This helps prevent costly
errors and ensures the reliability of ML models. TFX also
provides tools for model analysis and explainability, enabling
data scientists to understand model behavior and make informed
decisions.

The above-mentioned workflow orchestration tools provide
several benefits:

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Yadavalli T.,

4

and-drop designer and MLOps capabilities. Its integration
with other Azure services, such as Azure Databricks for data
processing and Azure Kubernetes Service for deployment,
provides scalability and flexibility.

For example, Azure Machine Learning’s model registry
allows for versioning and managing deployed models,
simplifying the process of updating and monitoring models in
production. This helps ensure that models are always up-to-date
and performing optimally.

These cloud-based ML platforms offer several advantages:

•	 Scalable infrastructure: Cloud providers offer on-demand
access to scalable computing and storage resources, allowing
organizations to handle the growing demands of ML
workloads. This eliminates the need for upfront investments
in hardware and infrastructure, enabling organizations to
scale their ML resources as needed.

•	 Integrated tooling: These platforms provide a
comprehensive suite of tools and services for various ML
tasks, reducing the need to integrate disparate tools and
manage complex dependencies. This simplifies the ML
workflow and allows data scientists to focus on model
development rather than infrastructure management.

•	 Simplified deployment: Integrated deployment pipelines
and model management capabilities simplify the process
of deploying and monitoring ML models in production.
This reduces the time and effort required to deploy models
and ensures that they are running smoothly in a production
environment.

•	 Cost-effectiveness: Cloud-based platforms offer pay-as-
you-go pricing models, allowing organizations to optimize
costs based on their usage patterns. This eliminates the need
for large upfront investments and allows organizations to
pay only for the resources they consume.

4.3. Best practices for scalable ML workflows

In addition to leveraging workflow orchestration tools and
cloud-based platforms organizations should adopt best practices
to further optimize their ML workflows for scalability.

•	 Modular design: Breaking down ML workflows into
modular components promotes reusability, maintainability
and scalability. Each component can be independently
developed, tested and scaled as needed. This allows for
greater flexibility and adaptability in the ML workflow.

•	 Version control: Tracking changes to code, data and
models using version control systems like Git ensures
reproducibility and facilitates collaboration. This allows
for easy rollback to previous versions, simplifies debugging
and promotes collaboration among team members.

•	 Continuous Integration and Continuous Delivery (CI/
CD): Implementing CI/CD pipelines automates the testing
and deployment of ML models, enabling rapid iteration
and reducing the risk of errors. This ensures that models
are continuously tested and deployed, allowing for faster
development cycles and improved model quality.

•	 Monitoring and logging: Monitoring ML models in
production and logging relevant metrics helps identify
performance issues, data drift and other potential problems.

This allows for proactive identification and resolution of
issues, ensuring the ongoing accuracy and reliability of ML
models.

•	 Infrastructure as code (IaC): Defining infrastructure
using code, such as Terraform or CloudFormation
templates, enables reproducible and scalable infrastructure
deployments. This allows for consistent and automated
infrastructure provisioning, reducing the risk of errors and
simplifying infrastructure management.

By combining the right tools, platforms and best practices
organizations can build and deploy robust, scalable and efficient
ML systems that can adapt to evolving business needs and data
volumes. This approach empowers data scientists and engineers
to focus on developing innovative ML solutions while ensuring
the reliable and efficient operation of their ML workflows.

5. Recommendations
Based on the analysis and findings presented in this paper, we

offer the following recommendations for organizations seeking
to optimize their machine learning (ML) workflows with Google
Cloud Dataflow and TensorFlow Extended (TFX):

5.1. Embrace cloud-native ML development

Leverage the scalability, flexibility and cost-effectiveness of
cloud platforms like Google Cloud Platform (GCP) for building
and deploying ML systems. GCP offers a rich ecosystem of
tools and services, including Dataflow, TFX and Vertex AI,
which can significantly streamline ML workflows and accelerate
innovation.

5.2. Prioritize workflow orchestration

Adopt workflow orchestration tools like TFX to automate
and standardize ML pipelines. TFX provides a robust framework
for managing the entire ML lifecycle, from data ingestion and
preprocessing to model training, evaluation and deployment.
This ensures reproducibility, maintainability and scalability of
ML workflows.

5.3. Optimize data preprocessing with dataflow

Data preprocessing often constitutes a significant portion
of the ML workflow. Utilize Dataflow’s distributed processing
capabilities to accelerate data cleaning, transformation and
feature engineering tasks. This improves the overall efficiency
and scalability of the ML pipeline.

Example: Using Dataflow for data transformation

Python
import apache_beam as beam
with beam.Pipeline() as pipeline:
 # Read data from a source
lines = pipeline | ‘ReadFromText’ >> beam.io.ReadFromText(‘gs://
my_bucket/input.txt’)
 # Transform the data
 counts = (
 lines
 | ‘Split’ >> beam.FlatMap(lambda x: x.split(‘ ‘))
 | ‘PairWithOne’ >> beam.Map(lambda x: (x, 1))
 | ‘GroupAndSum’ >> beam.CombinePerKey(sum))

 # Write the output to a sink
counts | ‘WriteToText’ >> beam.io.WriteToText(‘gs://my_
bucket/output.txt’)

5

Yadavalli T., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

This code snippet demonstrates a simple Dataflow pipeline
that reads text data from a file, splits it into words, counts the
occurrences of each word and writes the results to another
file. Dataflow automatically distributes the processing across
multiple workers, enabling efficient handling of large datasets.

5.4. Implement Continuous Integration and Continuous
Delivery (CI/CD)

Automate the building, testing and deployment of ML models
using CI/CD pipelines. This ensures rapid iteration, reduces
errors and facilitates collaboration among team members.

Example: Using Cloud Build to trigger a TFX pipeline
YAML
steps:
- name: ‘gcr.io/cloud-builders/gcloud’
 args: [‘beta’, ‘ai-platform’, ‘pipelines’, ‘run’, ‘--pipeline-
name=my_pipeline’]
Use code with caution.

This Cloud Build configuration defines a step that triggers
the execution of a TFX pipeline named “my_pipeline” on
Vertex AI Pipelines. By integrating Cloud Build with your Git
repository, you can automatically trigger pipeline runs upon
code changes, ensuring continuous integration and delivery of
your ML models.

5.5. Monitor model performance and data drift

Continuously monitor the performance of deployed ML
models and track data drift. This helps identify potential issues
and ensure the ongoing accuracy and reliability of ML systems.

Example: Using Vertex AI Model Monitoring.
Metric Threshold Action

Prediction Skew 0.1 Retrain model with new data

Feature Distribution 0.2 Investigate potential data drift

Accuracy 0.9 Alert if accuracy drops below the
threshold

This table illustrates how Vertex AI Model Monitoring can be
used to track key metrics and trigger actions based on predefined
thresholds. By setting up alerts and automated responses, you
can proactively address performance degradation and maintain
the quality of your ML models in production.

5.6. Invest in Infrastructure as Code (IaC)

Define and manage your infrastructure using code, such
as Terraform or CloudFormation templates. This ensures
reproducibility, simplifies infrastructure management and
facilitates scalability.

Example: Using Terraform to provision a Dataflow pipeline
Terraform
resource “google_dataflow_job” “default” {
 name = “my-dataflow-job”
 template_gcs_path = “gs://my_bucket/templates/my-template”
 temp_gcs_location = “gs://my_bucket/temp”
 parameters = {
 input = “gs://my_bucket/input.txt”
 output = “gs://my_bucket/output.txt”
 }
}

This Terraform code defines a Dataflow job that uses a
pre-built template stored in Cloud Storage. The parameters

block allows you to customize the job with specific input and
output locations. By managing your Dataflow infrastructure
with Terraform, you can easily provision and modify pipelines
in a reproducible and scalable manner.

By following these recommendations organizations can
effectively leverage Google Cloud Dataflow and TensorFlow
Extended to optimize their ML workflows. This approach
enables the development and deployment of robust, scalable
and efficient ML systems that can drive innovation and business
value.

6. Conclusion
This paper has explored the optimization of machine learning

(ML) workflows using Google Cloud Dataflow and TensorFlow
Extended (TFX). We have examined the challenges associated
with scaling ML pipelines [see Problem Statement] and
discussed how the integration of Dataflow and TFX addresses
these challenges by providing a robust and efficient framework
for building and deploying ML models [see Solution: Towards
Scalable ML Workflows].

Dataflow’s distributed processing capabilities enable the
efficient handling of large datasets and complex transformations,
accelerating crucial stages in the ML workflow, such as data
preprocessing and feature engineering2. TFX, on the other hand,
provides a structured and scalable approach to managing the
end-to-end ML pipeline, ensuring reproducibility, maintainability
and ease of deployment5.

By combining Dataflow with TFX organizations can
achieve significant improvements in the scalability, efficiency
and reliability of their ML workflows. The automation and
standardization provided by TFX, coupled with the distributed
processing power of Dataflow, empower data scientists and
engineers to focus on developing innovative ML solutions while
ensuring the operational efficiency of their ML pipelines.

Furthermore, the integration of these technologies with other
Google Cloud services, such as Vertex AI and Cloud Build,
provides a comprehensive ecosystem for building and deploying
ML models at scale. This enables organizations to leverage the
full potential of cloud-native ML development, accelerating
innovation and driving business value.

Future research could explore more advanced use cases
of Dataflow and TFX, such as real-time ML pipelines and the
integration of automated machine learning (AutoML) techniques.
Additionally, investigating the optimization of specific ML tasks,
such as natural language processing or computer vision, within
the Dataflow and TFX framework could yield further insights.

7. References

1.	 Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D,
Young M. Hidden technical debt in machine learning systems.
In Advances in neural information processing systems, 2015:
2503-2511.

2.	 Polyzotis N, Zinkevich M, Roy S, Breck E, Whaley J. Data
management challenges in production machine learning. ACM
SIGMOD Record, 2018;47: 17-28.

3.	 https://cloud.google.com/dataflow

4.	 Akidau T, Bradshaw R, Chambers C, Chernyak S, Fernández-
Moctezuma R, Lax R, Whaley J. The dataflow model: a practical
approach to balancing correctness, latency and cost in massive-

about:blank
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/86df7dcfd896fcaf2674f757a2463eba-Abstract.html
https://cloud.google.com/dataflow
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43864.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43864.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43864.pdf

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Yadavalli T.,

6

scale, unbounded, out-of-order data processing, Proceedings of
the VLDB Endowment, 2015;8: 1792-1803.

5.	 Baylor D, Breck E, Cheng HT, Fiedel N, Foo CY, Golovin D,
Zhang C. TFX: A TensorFlow-based production-scale machine
learning platform. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2017: 1387-1395.

6.	 Dean J, Ghemawat S. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 2008;51:
107-113.

7.	 Polyzotis N, Zinkevich M, Roy S, Breck E, Whaley J. Data
management challenges in production machine learning. ACM
SIGMOD Record, 2018;47: 17-28.

8.	 https://www.tensorflow.org/tfx

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43864.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43864.pdf
https://dl.acm.org/doi/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
https://dl.acm.org/doi/10.1145/1327452.1327492
https://www.tensorflow.org/tfx

	_heading=h.30j0zll
	_GoBack

