
Optimizing HDFS Storage and Managing TTL for Unused Hive Tables: Strategies 
for Improved Data Efficiency

Arjun Mantri*

Arjun Mantri, Independent Researcher Seattle, USA

Citation: Mantri A. Optimizing HDFS Storage and Managing TTL for Unused Hive Tables: Strategies for Improved Data 
Efficiency. J Artif Intell Mach Learn & Data Sci 2023, 1(4), 680-683. DOI: doi.org/10.51219/JAIMLD/Arjun-mantri/173

Received: 02 December, 2023; Accepted: 18 December, 2023; Published: 20 December, 2023

*Corresponding author: Arjun Mantri, Independent Researcher Seattle, USA, E-mail: mantri.arjun@gmail.com

Copyright: © 2023 Mantri A., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 4

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Arjun-mantri/173

1. Introduction
The Hadoop Distributed File System (HDFS) is an integral 

part of the Apache Hadoop ecosystem, engineered to store 
and manage extensive datasets across distributed computing 
environments. Known for its scalability, fault tolerance, and 
optimization for high-throughput access to large datasets, HDFS 
is pivotal in big data applications. The architecture of HDFS 
follows a master-slave model, with the NameNode acting as the 
master, managing the filesystem namespace and regulating file 
access, while DataNodes serve as slaves, responsible for storing 
the actual data blocks1. This division of roles enables HDFS to 
efficiently manage large-scale data storage.

HDFS operates by splitting files into large blocks, typically 
128 MB or 256 MB, and distributing these blocks across 
multiple DataNodes. This strategy facilitates parallel processing 
and ensures fault tolerance through data replication. Typically, 
HDFS replicates each data block three times across different 
DataNodes. This replication ensures data availability and 

reliability even in the event of node failures, maintaining high 
accessibility2. HDFS’s design prioritizes high throughput, 
making it ideal for batch processing rather than low-latency, 
interactive applications.

A significant challenge in HDFS is the efficient management 
of storage, particularly as data volumes increase rapidly. 
Several strategies are utilized to optimize HDFS storage. One 
fundamental technique is data compression, which reduces 
the size of stored data, saving disk space and improving data 
transfer speeds. Commonly used compression algorithms in 
Hadoop environments include Snappy, Gzip, and Bzip2, which 
help in enhancing overall system performance by reducing 
bandwidth consumption during data transfers3,4. Another 
essential optimization strategy is data deduplication, which 
removes redundant copies of data, ensuring that only unique 
data is stored. This reduces the overall storage footprint, with 
hash-based deduplication methods being particularly effective in 
identifying and eliminating duplicate data blocks5.

 A B S T R A C T 
This research investigates methods to optimize Hadoop Distributed File System (HDFS) storage and manage Time To 

Live (TTL) policies for inactive Hive tables, aiming to boost data efficiency in big data ecosystems. It delves into various data 
compression techniques, file format enhancements, and partitioning strategies, underscoring the significance of choosing 
suitable storage solutions for better performance. Practical insights are drawn from case studies of LinkedIn, Spotify, and Netflix, 
demonstrating the implementation of automated TTL policies within data governance frameworks. The study emphasizes the 
need for regular audits, continuous monitoring, and robust data lifecycle management to ensure optimal storage utilization and 
regulatory compliance.

Keywords: HDFS optimization, Hive TTL policies, data compression, partitioning strategies, data governance

https://orcid.org/0009-0005-7715-0108
https://doi.org/10.51219/JAIMLD/Arjun-mantri/173
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/Arjun-mantri/173


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Mantri A.,

2

Figure 1: The overview of the Hadoop Distributed File System 
(HDFS)4.

File format optimization is another critical aspect of 
managing HDFS storage. The selection of appropriate file 
formats can greatly influence both storage efficiency and query 
performance. Columnar storage formats like Parquet and ORC 
(Optimized Row Columnar) are specifically designed to enhance 
data storage and retrieval within Hadoop environments. These 
formats offer advanced features such as column pruning and 
predicate pushdown, which improve query performance by 
accessing only the required columns rather than entire rows5-7. 
Furthermore, these formats are highly compressible, thereby 
further reducing storage needs. In summary, HDFS is a powerful 
and scalable storage system that is fundamental for managing 
large-scale data in distributed environments. Its architecture 
is optimized for high throughput and fault tolerance, making 
it well-suited for big data applications. However, efficient 
storage management remains crucial to accommodate the 
exponential growth of data volumes. Employing techniques 
like data compression, deduplication, file format optimization, 
consolidation of small files, and tiered storage are essential 
for optimizing HDFS storage. These strategies not only lower 
storage costs but also boost system performance, ensuring that 
HDFS continues to meet the requirements of contemporary big 
data applications7,8.

2. Strategies to Optimize HDFS Storage
Optimizing storage within the Hadoop Distributed File 

System (HDFS) is crucial for maximizing resource utilization, 
minimizing costs, and improving overall performance. This 
section explores several strategies to enhance HDFS storage 
efficiency:

2.1. Data compression techniques

Data compression plays a vital role in reducing storage 
footprint and improving I/O performance in HDFS. Various 
compression algorithms such as Snappy, Gzip, and LZO 
offer different trade-offs between compression ratio and CP 
overhead. Gzip has a higher compression ratio but uses more 
disk space, while Snappy has lower compression ratio but 
superior performance. LZO falls in between with a balanced 
compression ratio and disk space usage. For instance, Snappy 
provides fast compression and decompression with minimal 
CPU usage, making it suitable for scenarios where low latency 
is critical. On the other hand, Gzip offers higher compression 
ratios but at the expense of higher CPU utilization. Choosing the 
appropriate compression algorithm depends on factors like data 
characteristics, workload patterns, and hardware capabilities9.

2.2. Block size optimization: HDFS divides large files into 
fixed-size blocks, and optimizing

The block size can significantly impact storage efficiency and 

I/O performance. Larger block sizes reduce metadata overhead 
but may lead to increased storage wastage for small files, while 
smaller block sizes minimize wastage but incur higher metadata 
overhead. Adjusting the block size based on file characteristics 
and workload patterns can help strike a balance between storage 
efficiency and performance6,9.

Table 1: Block size workload chart.
Input size/(# nodes × #cores per node)

Application class < 64 MB < 512 MB < 4 GB > 4 GB

CPU intensive 32 MB 64 MB 128 MB 256 MB

I/O intensive 64 MB 256 MB 512 MB 1 GB

Iterative tasks 64 MB 128 MB 256 MB 512 MB

Figure 2: Data blocks in hadoop HDFS.

2.3. Storage tiering

Storage tiering allows organizations to leverage different 
storage media based on data access patterns and requirements, 
thereby optimizing storage costs and performance. HDFS 
federation enables the creation of multiple namespaces, each 
with its own block pools, allowing administrators to allocate 
storage resources based on workload priorities. Additionally, 
techniques like Heterogeneous Storage Management enable 
the integration of high-performance storage (e.g., SSDs) with 
traditional spinning disks, offering a cost-effective solution for 
balancing performance and capacity requirements9,10.

2.4. Erasure coding

Erasure coding is a data protection technique that enhances 
storage efficiency by distributing data across multiple nodes with 
redundancy. Unlike traditional replication, which creates exact 
copies of data blocks, erasure coding generates parity blocks to 
reconstruct lost or corrupted data. By reducing the replication 
factor while maintaining data durability, erasure coding 
significantly reduces storage overhead in HDFS, particularly for 
large-scale deployments10,11.

2.5. Data lifecycle management

Implementing effective data lifecycle management practices 
help organizations optimize storage resources by identifying 
and managing data based on its value and usage patterns. This 
includes archiving infrequently accessed data to lower-cost 
storage tiers, deleting obsolete or redundant data, and enforcing 
retention policies to comply with regulatory requirements. By 
automating data lifecycle management processes, organizations 
can reduce storage costs and streamline data management 
operations9,12.

3. Challenges in Optimizing HDFS Storage and 
Managing TTL for Unused Hive Tables

Optimizing HDFS storage and managing TTL for unused 
Hive tables present several challenges that organizations 



3

Mantri A., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4

need to address to ensure effective data management. One of 
the primary challenges is data volume and velocity. As data 
continues to grow exponentially, managing and storing vast 
amounts of data efficiently becomes increasing complex. The 
continuous influx of data demands scalable storage solutions 
and real-time processing capabilities to maintain performance 
and cost-effectiveness10. Moreover, data variety and complexity 
add another layer of difficulty. Different data types, including 
structured, semi-structured, and unstructured data, require diverse 
storage and processing approaches. Ensuring compatibility and 
optimal performance across these data types complicates the 
optimization process11. 

Figure 3: Main components of data lifecycle management.

3.1. Implementing effective data compression techniques 

It is essential for storage optimization but selecting the right 
compression algorithm involves trade-offs between compression 
ratio and processing speed. For example, Gzip offers a high 
compression ratio but is slower compared to Snappy, which 
is faster but provides a lower compression ratio. Choosing 
the appropriate algorithm based on specific use cases can be 
challenging and requires careful consideration (Apache Hive, 
n.d.). Additionally, partitioning and data skew management are 
crucial for enhancing query performance. However, identifying 
the optimal partitioning strategy that balances performance and 
storage efficiency without causing data skew is often a complex 
task12.

3.2. TTL policy implementation 

It introduces its own set of challenges. Automating the 
deletion of unused data while ensuring data integrity and 
compliance with regulatory requirements demands robust 
and reliable systems. Setting up automated scripts or using 
tools like Apache Oozie requires continuous monitoring and 
maintenance to prevent data loss or breaches (Oozie: Workflow 
Scheduler for Hadoop, n.d.). Furthermore, integrating TTL 
policies with broader data governance frameworks involves 
maintaining audit trails, ensuring data security, and adhering 
to privacy regulations. This integration is essential to prevent 
unauthorized data access and ensure that expired data is deleted 
in a compliant manner12,13. Overall, addressing these challenges 
requires a comprehensive approach that encompasses regular 
audits, continuous performance tuning, and a well-defined data 
lifecycle management strategy. Organizations must remain 
agile and adaptable to evolving data management requirements, 
leveraging advanced tools and best practices to overcome these 
hurdles and achieve optimal data efficiency.

4. Case Study
4.1. Case Study: Optimizing HDFS storage at linkedin

LinkedIn, a leading professional networking platform, 
faced significant challenges in managing its massive data 
volumes efficiently. To address these challenges, LinkedIn 
adopted several optimization strategies for HDFS storage. 
The organization implemented data compression using 
Snappy, balancing compression speed and storage savings. By 
converting data storage formats to Apache Parquet, LinkedIn 
achieved significant storage efficiencies and improved query 
performance due to Parquet’s columnar storage and efficient 
encoding schemes14.

Additionally, LinkedIn utilized data partitioning and 
bucketing to handle large datasets effectively. This approach 
reduced the amount of data scanned during queries, enhancing 
performance, and reducing I/O operations. LinkedIn’s efforts 
in optimizing HDFS storage resulted in considerable cost 
savings and improved system responsiveness, showcasing the 
importance of selecting appropriate file formats and partitioning 
strategies for large-scale data environments.

4.2. Case Study: Implementing TTL policies at spotify

Spotify, a global music streaming service, needed to manage 
the lifecycle of vast amounts of data stored in its data warehouse. 
The primary challenge was to efficiently handle unused and stale 
data without compromising performance or compliance. Spotify 
implemented TTL policies to automate the deletion of unused 
data, ensuring that storage costs were kept under control and 
only relevant data was retained. 

Using Apache Airflow, Spotify scheduled regular clean-up 
tasks that adhered to predefined TTL policies. This automation 
allowed Spotify to systematically delete old and unused data 
from Hive tables, preventing the accumulation of stale data. 
Moreover, Spotify integrated these TTL policies with its data 
governance framework using Apache Atlas. This integration 
ensured compliance with data privacy regulations and maintained 
data lineage and audit trails15.

5. Example
5.1. Data lifecycle management at Netflix

Netflix, a global streaming service, employs comprehensive 
data lifecycle management strategies to handle its vast 
data ecosystem. To optimize HDFS storage, Netflix uses a 
combination of data compression, file format optimization, and 
data partitioning. Netflix stores data in Apache Parquet format, 
benefiting from its efficient storage and query performance. 
Additionally, data compression with Snappy reduces storage 
requirements without significantly impacting performance. 
Netflix also manages TTL for unused Hive tables by implementing 
automated scripts that regularly purge stale data. These scripts are 
integrated with Netflix’s data governance framework, ensuring 
that data deletions are compliant with regulatory standards and 
do not compromise data security. Netflix’s approach to data 
lifecycle management includes regular audits and continuous 
performance tuning to maintain optimal storage efficiency and 
system performance16.

6. Conclusion
Optimizing HDFS storage and managing TTL for unused Hive 

tables are essential strategies for enhancing data efficiency in 
big data environments. Through the implementation of effective 
data compression, file format optimization, and automated TTL 
policies, organizations can significantly reduce storage costs 



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 4Mantri A.,

4

and improve query performance. Integrating these strategies 
with robust data governance frameworks ensures compliance 
and maintains data integrity. The case studies of LinkedIn, 
Spotify, and Netflix demonstrate the tangible benefits of these 
approaches, providing valuable insights and best practices for 
achieving optimal data management and performance.

7. References
1. Liu J, Wan X, Zhu Q, Peng T, Hu X. Research on adaptive cache 

mechanism based on TTL. 2022 2nd International Conference 
on Networking, Communications and Information Technology 
(NetCIT) 2022; 507-511. 

2. Saenko I, Kotenko I. Towards resilient and efficient big data 
storage: Evaluating a SIEM repository based on HDFS. 2022 
30th Euromicro International Conference on Parallel, Distributed 
and Network-based Processing 2022; 290-297.

3. Elsayed K, Rizk A. On the impact of network delays on Time-to-
Live caching. ArXiv 2022. 

4. Zhang J, Ye Z, Zheng K. A parallel computing approach to 
spatial neighboring analysis of large amounts of terrain data 
using spark. Sensors 2021;21: 365.

5. Elsayed K, Rizk A. Time-to-Live caching with network delays: 
Exact analysis and computable approximations. IEEE/ACM 
Transactions on Networking 2023;31: 1087-1100.

6. Marichamy V,  Natarajan V. Efficient big data security analysis on 
HDFS based on combination of clustering and data perturbation 
algorithm using health care database. J Intelligent & Fuzzy 
Systems 2022;43: 3355-3372. 

7. Cho C, Shin S, Jeon H, Yoon S. Elastic network cache control 
using deep reinforcement learning. 2022 13th International 
Conference on Information and Communication Technology 
Convergence 2022; 1006-1008. 

8. Yan B, Yang Y, Guo W-Z, et al. Big data storage index mechanism 
based on hierarchical indexing and concurrent updating. 
2022 6th International Symposium on Computer Science and 
Intelligent Control 2022; 363-367.

9. Tian L, Sun Y, Yang L. Overview of storage architecture and 
strategy of HDFS. Advan Transdisciplinary Engineering  
2022;20.

10. Bian H, Ailamaki A. Pixels: An efficient column store for cloud 
data lakes. 2022 IEEE 38th International Conference on Data 
Engineering 2022; 3078-3090.

11. Zhang T, Hellander A, Toor S. Efficient hierarchical storage 
management empowered by reinforcement learning. IEEE 
Transactions on Knowledge and Data Engineering  2023;35: 
5780-5793.

12. Zhang H, Chen Y. Multi-modal campus one-stop data 
storage optimization method for massive small files. 2023 8th 
International Conference on Information Systems Engineering 
2023; 338-341.

13. Zhang X, Wang L, Huang Z, Xie H, Zhang Y, Ngulube M. 
ConeSSD: A novel policy to optimize the performance of 
HDFS heterogeneous storage. 2022 IEEE 24th International 
Conference on High Performance Computing & Communications 
2022; 876-881.

14. LinkedIn Engineering Blog. Optimizing HDFS storage at 
LinkedIn.  2018.

15. Spotify Engineering Blog.  Implementing TTL policies at Spotify. 
2020. 

16. Netflix Technology Blog. Data lifecycle management at Netflix. 
2019. 

https://ieeexplore.ieee.org/document/10079040
https://ieeexplore.ieee.org/document/10079040
https://ieeexplore.ieee.org/document/10079040
https://ieeexplore.ieee.org/document/10079040
https://ieeexplore.ieee.org/document/9756710'
https://ieeexplore.ieee.org/document/9756710'
https://ieeexplore.ieee.org/document/9756710'
https://ieeexplore.ieee.org/document/9756710'
https://arxiv.org/abs/2201.11577
https://arxiv.org/abs/2201.11577
https://www.mdpi.com/1424-8220/21/2/365
https://www.mdpi.com/1424-8220/21/2/365
https://www.mdpi.com/1424-8220/21/2/365
https://ieeexplore.ieee.org/document/9903408
https://ieeexplore.ieee.org/document/9903408
https://ieeexplore.ieee.org/document/9903408
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs213024
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs213024
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs213024
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs213024
https://ieeexplore.ieee.org/document/9952648
https://ieeexplore.ieee.org/document/9952648
https://ieeexplore.ieee.org/document/9952648
https://ieeexplore.ieee.org/document/9952648
https://ieeexplore.ieee.org/document/10063519
https://ieeexplore.ieee.org/document/10063519
https://ieeexplore.ieee.org/document/10063519
https://ieeexplore.ieee.org/document/10063519
https://ebooks.iospress.nl/doi/10.3233/ATDE220098
https://ebooks.iospress.nl/doi/10.3233/ATDE220098
https://ebooks.iospress.nl/doi/10.3233/ATDE220098
https://ieeexplore.ieee.org/document/9835615
https://ieeexplore.ieee.org/document/9835615
https://ieeexplore.ieee.org/document/9835615
https://ieeexplore.ieee.org/document/9779953
https://ieeexplore.ieee.org/document/9779953
https://ieeexplore.ieee.org/document/9779953
https://ieeexplore.ieee.org/document/9779953
https://ieeexplore.ieee.org/document/10314353
https://ieeexplore.ieee.org/document/10314353
https://ieeexplore.ieee.org/document/10314353
https://ieeexplore.ieee.org/document/10314353
https://www.semanticscholar.org/paper/ConeSSD%3A-A-Novel-Policy-to-Optimize-the-Performance-Zhang-Wang/2ee14b46c37f473b0f72c945bf8adf31a73889d3
https://www.semanticscholar.org/paper/ConeSSD%3A-A-Novel-Policy-to-Optimize-the-Performance-Zhang-Wang/2ee14b46c37f473b0f72c945bf8adf31a73889d3
https://www.semanticscholar.org/paper/ConeSSD%3A-A-Novel-Policy-to-Optimize-the-Performance-Zhang-Wang/2ee14b46c37f473b0f72c945bf8adf31a73889d3
https://www.semanticscholar.org/paper/ConeSSD%3A-A-Novel-Policy-to-Optimize-the-Performance-Zhang-Wang/2ee14b46c37f473b0f72c945bf8adf31a73889d3
https://www.semanticscholar.org/paper/ConeSSD%3A-A-Novel-Policy-to-Optimize-the-Performance-Zhang-Wang/2ee14b46c37f473b0f72c945bf8adf31a73889d3
https://www.linkedin.com/blog/engineering
https://www.linkedin.com/blog/engineering
https://engineering.atspotify.com/
https://engineering.atspotify.com/
https://netflixtechblog.com/
https://netflixtechblog.com/

	_GoBack

