
Optimize Memory Usage of Go Applications by Setting the Memory Limit

Pallavi Priya Patharlagadda

Citation: Patharlagadda PP. Optimize Memory Usage of Go Applications by Setting the Memory Limit. J Artif Intell Mach Learn
& Data Sci 2024, 2(2), 881-886. DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/213

Received: 03 June, 2024; Accepted: 28 June, 2024; Published: 30 June, 2024

*Corresponding author: Pallavi Priya Patharlagadda, Engineering, USA

Copyright: © 2024 Sahni BPS., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 2 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/213

 A B S T R A C T
Go is one of the most efficient programming languages, and it mainly contains two components: the Go compiler, which

transforms the code into an executable binary, and the runtime, which is piece of software that performs functions like the
garbage collector, the scheduler, goroutines, maps, channels, etc.

Golang runtime is quite lean on compute resource usage. This is perfect on its own, as it allows the majority of developers
to stay concentrated on coding tasks. But when the Golang application is deployed as a containerized service, It needs to share
available compute resources with many other containers. Go binaries are not inherently container-aware; specifically, they do
not account for memory and CPU limits. In the high-load scenario, When the Golang application needs more memory, the
application would request the memory from the Operating System. When the Operating system (Linux) runs out of the available
physical memory, the OOM Killer will intervene and kill the process that is taking more memory. To prevent this from happening,
Go provided the SetMemoryLimit option in Golang 1.19. This helps in making the application aware of the maximum memory
limit. When the application reaches its memory limit, the Go Runtime will trigger the Garbage collector to sweep up the unused
memory so the application can start reusing it instead of requesting the Operating system for more memory. This Paper describes
the usage and the performance impact of setting this memory limit.

1. Introduction
Go is a statically typed, concurrent, and garbage-collected

programming language created at Google in 2009. It is designed
to be simple, efficient, and easy to learn, making it a popular
choice for building scalable network services, web applications,
and command-line tools.

Go is known for its support for concurrency, which is the
ability to run multiple tasks simultaneously. Concurrency is
achieved in Go through the use of Goroutines and Channels,
which allow you to write code that can run multiple operations
at the same time. This makes Go an ideal choice for building
high-performance and scalable network services, as well as for
solving complex computational problems.

Another important feature of Go is its garbage collection,
which automatically manages memory for you. This eliminates
the need for manual memory management, reducing the
likelihood of memory leaks and other bugs that can arise from
manual memory management.

2. Problem Statement
When the golang application gets more requests from

clients, It uses the allocated application memory and then starts
requesting more and more memory from the Operating System.
Initially, the Operating System would allocate memory to the
application. But when the host memory is close to exhaustion,
the Linux operating system would respond with an Out Of
Memory (OOM) exception and kill the application so that other

https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/213
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/pallavi-priya-patharlagadda/213

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Patharlagadda PP.,

2

applications on the system could run seamlessly. I have seen this
situation happening in production, and it has a significant impact
on the users as the application needs to start again.

3. Memory Management and Garbage Collection
Any application contains variables, objects, and instructions

to be executed on the variables and objects. These are usually
stored in two main memory stores: the stack and the heap.
Typically, the stack stores data whose size and usage time can
be predicted by the Go compiler. This includes local function
variables, function arguments, return values, etc.

The stack is managed automatically and follows the Last-
In-First-Out (LIFO) principle. When a function is called, all
associated data is placed on top of the stack, and when the
function finishes, this data is removed from the stack. The stack
does not require a complex garbage collection mechanism and
incurs minimal overhead for memory management. Retrieving
and storing data in the stack happens very quickly.

Data that changes dynamically during execution or requires
access beyond the scope of a function cannot be placed on the
stack because the compiler cannot predict its usage. Such data is
stored on the heap. Retrieving data from the heap and managing
it is a costly process. If an allocated memory space is no longer
needed, then that memory needs to be deallocated so that further
allocation can be done on the same space. This mechanism of
reusing memory is called Garbage Collection. The term garbage
essentially means unused or objects that are created in memory
and are no longer needed. These are nothing more than garbage.
Memory is a costly space and must be cleaned periodically
to make space for other programs to execute (or for the same
program to work efficiently). Hence, we need garbage collection
to wipe out that memory. If this process of Garbage collection
is done automatically, without any manual intervention, it is
called Automatic garbage collection. The Garbage Collector is
a system designed specifically to identify and free dynamically
allocated memory. Automatic garbage collection is always an
overhead over the efficiency of the executing program.

4. Garbage Collection in GO
The garbage collection is expensive as it consumes two

important system resources: CPU time and physical memory.
The memory in the garbage collector consists of the following:

•	 Live heap memory (memory marked as “live” in the
previous garbage collection cycle)

•	 New heap memory (heap memory not yet analyzed by the
garbage collector)

•	 Memory is used to store some metadata, which is usually
insignificant compared to the first two entities.

Go uses a garbage collection algorithm based on tracing
and the Mark and Sweep algorithm. It’s not possible to release
memory to be allocated until all memory has been traced,
because there may still be an unscanned pointer keeping an
object alive. As a result, the act of sweeping must be entirely
separated from the act of marking. During the marking phase,
the garbage collector marks data actively used by the application
as a live heap. Then, during the sweeping phase, the GC traverses
all the memory not marked as live and reuses it.

4.1. GOGC

GOGC is one of the oldest environment variables supported

by the Go runtime. At a high level, GOGC determines the trade-
off between GC CPU and memory. It controls the aggressiveness
of the garbage collector. By default, this value is assumed to
be 100, which means garbage collection will not be triggered
until the heap has grown by 100% since the previous collection.
Effectively, GOGC=100 (the default) means the garbage
collector will run each time the live heap doubles.

Setting this value higher, say GOGC=200, will delay
the start of a garbage collection cycle until the live heap has
grown to 200% of the previous size. Setting the value lower,
say GOGC=20 will cause the garbage collector to be triggered
more often as less new data can be allocated on the heap before
triggering a collection. The key takeaway is that doubling GOGC
will double heap memory overheads and roughly halve GC CPU
cost Setting GOGC=off will disable garbage collection entirely.

The below graph depicts the execution of some programs
whose non-GC work takes 10 seconds of CPU time to complete.
In the first second, it performs some initialization steps (growing
its live heap) before settling into a steady state. The application
allocates runs in a container that has little over 60 MB available.
At steady state, the application uses 20 MB live memory, but
in transient spike, the application can use up to 40 MB of peak
live memory. It assumes that the only relevant GC work to
complete comes from the live heap and that the application uses
no additional memory.

Each GC cycle ends while the new heap drops to zero. The
time taken while the new heap drops to zero is the combined
time for the mark phase for cycle N and the sweep phase for
cycle N+1. Note that this visualization (and all the visualizations
in this guide) assume the application is paused while the GC
executes, so GC CPU costs are fully represented by the time
it takes for new heap memory to drop to zero. This is only to
make visualization simpler; the same intuition still applies.
The X axis shows the full CPU-time duration of the program,
and Y axis denotes the memory. Notice that additional CPU
time used by the GC increases the overall duration. As GOGC
increases, CPU overhead decreases, but peak memory increases
proportionally to the live heap size. As GOGC decreases, the
peak memory requirement decreases at the expense of additional
CPU overhead. below graphs represent application behavior
when GOGC is set to different values

GoGC = 50, GC CPU = 11.9%, Peak Memory = 45.0 MiB, Total
CPU time = 11.35s

GoGC = 100, GC CPU = 6.3%, Peak Mem = 60.0 MiB, Total:
10.67s

3

Patharlagadda PP., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

GoGC = 200, GC CPU = 3.3%, Peak Mem = 90.4 MiB, Total:
10.34 s

Consider a situation where the application memory is close
to the total memory. In that scenario, If the application requests
more memory and the OS doesn’t have that much memory to
allocate then, the OS would respond with an OOM Exception
and kill the application.

4.2. Gomemlimit

Until Go 1.19, GOGC was the sole parameter that could be
used to modify the GC’s behavior. But this doesn’t take into
account that available memory is finite. Consider a scenario
where there’s a transient spike in the live heap size. Because
the GC will pick a total heap size proportional to that live heap
size, the GOGC must be configured to match the peak live heap
size, even if, in the usual case, a higher GOGC value provides a
better trade-off.

Consider an application running in a container with a bit
over 60 MB of memory available; then the application cannot go
beyond 60 MB. In some applications, these transient peaks can
be rare and hard to predict, leading to occasional, unavoidable,
and potentially costly out-of-memory conditions. So, in the
1.19 release, Go added support for setting a runtime memory
limit. The memory limit may be configured either via the
GOMEMLIMIT environment variable, which all Go programs
recognize, or through the SetMemoryLimit function available in
the runtime/debug package.

This memory limit sets a maximum on the total amount
of memory that the Go runtime can use. The specific set of
memory included is defined in terms of runtime. MemStats as
the expression.

Notice that peak memory use stops at whatever the memory
limit is, but the rest of the program’s execution still obeys
the total heap size rule set by GOGC. So, Even when GOGC
is turned off, the memory limit is still respected. In fact, this
particular configuration represents a maximization of resource
economy because it sets the minimum GC frequency required to
maintain some memory limit. In this case, all of the program’s
execution has the heap size rise to meet the memory limit. The
use of a memory limit does come with a cost and certainly
doesn’t invalidate the utility of GOGC.

Consider what happens when the live heap grows large
enough to bring total memory use close to the memory limit.
With GOGC off and lower memory limit, we notice that the total
time the application takes will start to grow in an unbounded
manner as the GC is constantly executing to maintain an
impossible memory limit.

This situation, where the program fails to make reasonable
progress due to constant GC cycles, is called thrashing. It’s
particularly dangerous because it effectively stalls the program.
In many cases, an indefinite stall is worse than an out-of-memory
condition, which tends to result in a much faster failure.

GOGC = off, GC CPU = 68.5%, Peak Memory = 30.1 MiB,
Total CPU time = 31.76s, Memory Limit = 25 MB

For this reason, the memory limit is defined as soft. The Go
runtime makes no guarantees that it will maintain this memory
limit under all circumstances; it only promises some reasonable
amount of effort. This relaxation of the memory limit is critical
to avoiding thrashing behavior because it gives the GC a way
out: let memory use surpass the limit to avoid spending too
much time in the GC.

How this works internally is that the GC sets an upper limit on
the amount of CPU time it can use over some time window. This
limit is currently set at roughly 50%, with a 2 * GOMAXPROCS
CPU-second window. The consequence of limiting GC CPU
time is that the GC’s work is delayed, while the Go program
may continue allocating new heap memory, even beyond the
memory limit.

The intuition behind the 50% GC CPU limit is based on the
worst-case impact on a program with ample available memory.
In the case of a misconfiguration of the memory limit, where it
is set too low mistakenly, the program will slow down at most
by 2x because the GC can’t take more than 50% of its CPU time
away.

5. Set the Memory Limit for a Golang Application
While Running the Docker Container

For testing purposes, I am using an 8-GB Linux-based VM.
I have written a sample Golang program where I initialize a
sample structure of data in a loop and print it on the console.
The main purpose of this program is to take a huge heap size
so that out-of-memory situation can be created. With the values
mentioned in the program, I am able to see out-of-memory issue.

Also, to measure the memory allocation strategies and
related performance issues, I am using Go Runtime Memory
Stats. Go runtime package exposes runtime. ReadMemStats(m
*MemStats) that fills a MemStats object. There are a number of
fields in that structure but I am using the below fields.

•	 Alloc: the currently allocated number of bytes on the heap.
•	 TotalAlloc: cumulative maximum bytes allocated on the

heap (will not decrease).
•	 Sys: total memory obtained from the OS,
•	 NumGC: number of completed GC cycles

Below is the main. go file
package main
import (
 “encoding/json”
 “fmt”
 “runtime”
 “strconv”
)
type Person struct {
 Name string `json:”name,omitempty”`

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Patharlagadda PP.,

4

 Id int `json:”id”`
 Sal int `json:”sal”`
 Address string `json:”address”`
 AccNumber string `json:”accNumber”`
}

type Persons struct {
 People []string
}

func main() {
 var ps Persons
 printMemUsage()
 for i := 1; i <= 7000; i++ {
 for j := 1; j <= 7000; j++ {
 name := “kakha_” + strconv.Itoa(i) + strconv.Itoa(j)
 s := Person{Name: name, Id: i, Sal: j*10, Address:
“123 station Drive,california,12345”, AccNumber:”ABC12345”
}
 js, error := json.Marshal(s)
 if error == nil {
 ps.People = append(ps.People, string(js))
 }
 }
 }
 printMemUsage()
 fmt.Println(ps.People)
 printMemUsage()
}

func printMemUsage() {
 var mem runtime.MemStats
 runtime.ReadMemStats(&mem)
 fmt.Printf(“Alloc = %v MiB”, bToMb(mem.Alloc))
	 fmt.Printf(“\tTotalAlloc = %v MiB”, bToMb(mem.
TotalAlloc))
 fmt.Printf(“\tSys = %v MiB”, bToMb(mem.Sys))
 fmt.Printf(“\tNumGC = %v\n”, mem.NumGC)
}
func bToMb(b uint64) uint64 {
 return b / 1024 / 1024
}

To verify if the variables are using heap or stack, try compiling
the go file using below command. From the output, we could see
the variable is stored in Heap memory.

go build -gcflags=”-m” main.go
Command Output:
command-line-arguments
./main.go:47:6: can inline bToMb
./main.go:41:36: inlining call to bToMb
./main.go:41:12: inlining call to fmt.Printf
./main.go:42:43: inlining call to bToMb
./main.go:42:12: inlining call to fmt.Printf
./main.go:43:36: inlining call to bToMb
./main.go:43:12: inlining call to fmt.Printf
./main.go:44:12: inlining call to fmt.Printf
./main.go:25:35: inlining call to strconv.Itoa
./main.go:25:53: inlining call to strconv.Itoa
./main.go:35:13: inlining call to fmt.Println
./main.go:41:12: ... argument does not escape

./main.go:41:36: ~r0 escapes to heap

./main.go:42:12: ... argument does not escape

./main.go:42:43: ~r0 escapes to heap

./main.go:43:12: ... argument does not escape

./main.go:43:36: ~r0 escapes to heap

./main.go:44:12: ... argument does not escape

./main.go:44:32: m.NumGC escapes to heap

./main.go:25:39: “kakha_” + ~r0 + ~r0 escapes to heap

./main.go:28:26: s escapes to heap

./main.go:30:41: string(js) escapes to heap

./main.go:35:13: ... argument does not escape

./main.go:35:16: ps.People escapes to heap

Once the build is successful, the application can be run using
the command: ./main.exe

Caution: If you are running on a host machine with 8 GB of
RAM, the system may hang, and you may lose control over your
laptop for some time.

6. Run the Golang Application as a Docker Container:
To deploy the Golang application as a Docker container,

Below is the Dockerfile used.

syntax=docker/dockerfile:1
FROM golang:1.22
WORKDIR /src
COPY main.go .
RUN go build -o /test ./main.go
CMD [“/test”]

Command to Build Docker Image:
	 docker build -t setmemlimit .

7. Start the Container without Gomemlimit
Let’s start the container without gomemlimit and see the

behavior. I am using journald as the log-driver so that my logs
are stored in journald.

Command to start the container without gomemlimit.
		 docker run --log-driver=journald -d
setmemlimit:latest

This would start a new container without any memorylimit.
The Go Application would run for some time, and later Linux
OS would be unable to allocate more memory, thus killing the
process. The below log is observed in the journal.

Application kernel: Out of memory: Killed process 570771
(test) total-vm:22604780kB, anon-rss:7505364kB, file-rss:0kB,
shmem-rss:0kB, UID:0 pgtables:39212kB oom_score_adj:0

Also, the exit status of the Docker container is 137, indicating
that container was immediately terminated by the operating
system via SIGKILL signal. Below is the docker inspect
command output.

“State”: {
 “Status”: “exited”,
 “Running”: false,
 “Paused”: false,
 “Restarting”: false,
 “OOMKilled”: true,
 “Dead”: false,
 “Pid”: 0,
 “ExitCode”: 137,

5

Patharlagadda PP., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

 “Error”: “”,
 },

8. Start the Container with Gomemlimit
Command to start the container with gomemlimit.
docker run -e “GOMEMLIMIT=6000MiB” --log-driver=journald
-d setmemlimit:latest

This would start a new container with a memory limit
specified as 6 MB. As soon as the Go Application memory usage
reaches around 6 MB, the garbage collector will run and try to
free the heap memory. So, the application didn’t crash and exited
with 0 status.

docker inspect 75cdf3703e46
 “State”: {
 “Status”: “exited”,
 “Running”: false,
 “Paused”: false,
 “Restarting”: false,
 “OOMKilled”: false,
 “Dead”: false,
 “Pid”: 0,
 “ExitCode”: 0,
 “Error”: “”,
 },

 So, setting the memory limit prevented the application from
being terminated with out-of-memory issues.

9. Performance Evaluation
Let’s check the Application performance under normal load

without and with the Memory Limit and with default GOGC

Consider the same go file which I used earlier but this time
taking loop value as 5k instead of 7k so that the heap usage of
the application is reduced.

Without GOMEMLIMIT:
 docker run --log-driver=journald -d lowmemory:latest

 application 845d28b610b0[1034]: Alloc = 6789 MiB
TotalAlloc = 27189 MiB Sys = 13318 MiB NumGC = 31

 application systemd [1]: docker-
845d28b610b04efbe91043d3dcdc44ab88bf2138c88d80906223
2435ce278167.scope: Consumed 1 minute, 25.753 seconds of
CPU time.
 After performing the same test multiple times, we could see
the CPU time is always between 1 minute and 2 minutes.

With GOMEMLIMIT:

	 docker run -e “GOMEMLIMIT=6000MiB”
--log-driver=journald -d lowmemory:latest
	 application 6c215ea93fb5 [1034]: Alloc = 6773 MiB
TotalAlloc = 27189 MiB Sys = 15606 MiB; NumGC =
344.

application systemd[1]: docker-6c215ea93fb59447813c
99ff4d951ba752c2c00bae608f4f3cf15106d01d69fc.scope:
Consumed 6 minutes 24.129 seconds of CPU time.

After performing the same test multiple times, we could
see the CPU time is always between 5 and 7 minutes and never

below that. This is due to the garbage collector running multiple
times. Also, we can see that the number of times the garbage
collector ran was 344, compared to 31 without the memory limit.

So, setting the Memory Limit for a Go Application does
have a performance impact. The below table summarizes the
GC cycles and execution time with different memory limits.
The application is run with the same memory limit at least three
times, and the memory values and CPU execution times are
noted. Less CPU time is observed without the memory limit,
and with the Memory Limit of 6.5 GB, the application has less
execution time compared to memory limits of 5.5 GB, 6 GB,
and 7 GB.

10. Conclusion

Below are some of the recommendations on setting the
memory limit.

1. Set the memory limit only when the execution environment
of your Go program is entirely within your control and the Go
program is the only program with access to some set of resources
(i.e., some kind of memory reservation, like a container memory
limit).

 Example: Deployment of a web service into containers with
a fixed amount of available memory. In this case, a good rule of
thumb is to leave an additional 5–10% of headroom to account
for memory sources the Go runtime is unaware of.

2. Adjust the memory limit in real time to adapt to changing
conditions.

 Example: cgo program, where C libraries temporarily need
to use substantially more memory.

3. Don’t set GOGC to off with a memory limit if the Go
program is sharing some of its limited memory with other
programs, and those programs are generally decoupled from the
Go program. Instead, keep the memory limit as it helps to curb
undesirable transient behavior, but set GOGC to some smaller,
reasonable value for the average case.

Example: If the Go program calls some subprocess and
blocks while its callee executes, the result will be less reliable,
as inevitably both programs will need more memory. Letting

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Patharlagadda PP.,

6

the Go program use less memory when it doesn’t need it will
generate a more reliable result overall. This advice also applies
to overcommit situations, where the sum of memory limits
of containers running on one machine may exceed the actual
physical memory available to the machine.

1.	 Don’t use the memory limit when deploying to an execution
environment you don’t control, especially when your
program’s memory use is proportional to its inputs.

Example: CLI tool or a desktop application. Baking a memory
limit into the program when it’s unclear what kind of inputs it
might be fed or how much memory might be available on the
system can lead to confusing crashes and poor performance.
Plus, an advanced end-user can always set a memory limit if
they wish.

2.	 Don’t set a memory limit to avoid out-of-memory conditions
when a program is already close to its environment’s
memory limits.

This replaces an out-of-memory risk with a risk of severe
application slowdown, which is often not preferable, even with
the efforts Go makes to mitigate thrashing. In such a case, it would
be much more effective to either increase the environment’s
memory limits (and then potentially set a memory limit) or
decrease GOGC (which provides a much cleaner trade-off than
thrashing-mitigation does).

11. References

1.	 A Guide to the Go Garbage collector.

2.	 Fenyuk Y. Golang. Shaping web-service memory consumption.
Medium 2024.

3.	 Cheney D. A whirlwind tour of Go’s runtime environment
variables. Dave.

4.	 https://www.geeksforgeeks.org/go-programming-language-
introduction/

5.	 Debnath M. Understanding garbage colledction in GO.
Developer.com 2022.

https://tip.golang.org/doc/gc-guide
https://fenyuk.medium.com/golang-shaping-web-service-memory-consumption-51902fff7a50
https://fenyuk.medium.com/golang-shaping-web-service-memory-consumption-51902fff7a50
https://dave.cheney.net/tag/gogc
https://dave.cheney.net/tag/gogc
https://www.geeksforgeeks.org/go-programming-language-introduction/
https://www.geeksforgeeks.org/go-programming-language-introduction/
https://www.developer.com/languages/garbage-collection-go/
https://www.developer.com/languages/garbage-collection-go/

	_GoBack
	_GoBack
	_heading=h.fsftqyr6p5c3
	_heading=h.gvxbzojflpjy
	_heading=h.v013lam1ow57

