
Navigating the Transition: Best Practices for Migrating from Salesforce Classic to 
Lightning Experience

Alpesh Kanubhai Patel*

Alpesh Kanubhai Patel, Information Technology, Abingdon, Harford

Citation: Patel AK. Navigating the Transition: Best Practices for Migrating from Salesforce Classic to Lightning Experience. J 
Artif Intell Mach Learn & Data Sci 2023, 1(2), 1265-1267. DOI: doi.org/10.51219/JAIMLD/alpesh-kanubhai-patel/289

Received: 02 April, 2023; Accepted: 18 April, 2023; Published: 20 April, 2023

*Corresponding author: Alpesh Kanubhai Patel, Information Technology, Abingdon, Harford, E-mail: Alpeshkpatel24@gmail.
com

Copyright: © 2023 Patel AK., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 1 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/alpesh-kanubhai-patel/289

 A B S T R A C T 
The transition from Salesforce Classic to Lightning Experience marks a pivotal shift in the Salesforce ecosystem, offering 

more than just a refreshed user interface. This transformation introduces a modernized architectural framework, enhanced 
customization capabilities, and advanced integration options that fundamentally change how developers, administrators, and 
end-users interact with the platform. This article delves into the technical aspects of this migration, comparing the key differences 
between Salesforce Classic and Lightning Experience, and highlighting the benefits of adopting the component-based framework 
central to Lightning. It also outlines the critical steps necessary for a successful migration, including re-engineering legacy systems, 
optimizing performance, and implementing effective change management strategies. By addressing the challenges inherent in 
this transition and providing best practices, this article aims to guide organizations in fully harnessing the power of Salesforce 
Lightning Experience, ensuring a smooth migration and unlocking new opportunities for innovation and growth.

Keywords: Salesforce Classic, Salesforce Lightning Experience, Lightning Web Components (LWC), Aura Framework, 
Component-Based Framework, Data Security, Integration, Migration Process, Customization, Performance Optimization, 
MuleSoft, Lightning Data Service (LDS), Change Management

1. Introduction
While this is more than just moving to a new version of the 

Salesforce user interface, this move from Salesforce Classic 
is a really enormous technological change in many ways. In 
addition to the refreshed UI and enhanced aesthetics, Lightning 
Experience introduces a very different framework and set of 
tools that greatly revolutionize how developers, admins, and 
end-users will leverage this platform. This paper gives an 
in-depth, technical analysis of the migration process, discussing 
architectural differences, customization, and best practices 
around handling challenges that are inherent in this transition.

2. Architectural and Technological Differences
Component-Based Framework

Component-based and framework-centric-this is the crux of 

the experience. At the very bottom, it has a component-based 
framework. In contrast to the page-centric model in Salesforce 
Classic, it’s powered by a more contemporary architecture that 
was centric to reusable components. Those were either developed 
with the older Aura framework or the newer LWC, both of 
which allow modular, efficient, and scalable development. 
LWC itself is based on modern web standards: ES6, Custom 
Elements, Shadow DOM, and modules, providing an improved 
performance and security experience.

Key Advantages

•	 Reusability: Components can be reused across different 
applications, reducing redundancy.

•	 Isolation: The use of Shadow DOM ensures that component 
styles and scripts do not interfere with the rest of the page, 

https://doi.org/10.51219/JAIMLD/alpesh-kanubhai-patel/289
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/alpesh-kanubhai-patel/289


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2Patel AK.,

2

enhancing security and maintainability.
•	 Performance: Native browser capabilities leveraged by 

LWC offer improved load times and responsiveness.

3. Data Access and Security
Data access and security are both managed through a 

combination of normal Salesforce security features, such as 
profiles, roles, and sharing rules, and new features embedded 
as part of the Lightning framework. For example, LDS provides 
an accessibility standard to access, cache, and handle records 
within any given Lightning component. It eliminates the need 
for Apex controllers, thereby making data retrieval easier and 
with fewer chances of security vulnerabilities.

Security Consideration

•	 Locker Service: This security layer isolates Lightning 
components into their own namespace, preventing cross-
site scripting (XSS) and other common vulnerabilities. It 
enforces strict access controls on DOM manipulation and 
API usage.

•	 Platform Events and Change Data Capture: 
These features provide real-time data integration and 
synchronization, crucial for maintaining data consistency 
across different systems.

4. Advanced Customization and Integration
Salesforce Lightning Experience extends the capability for 

customization and integration far beyond what was possible in 
Salesforce Classic. The Lightning App Builder introduces a user-
friendly, drag-and-drop interface for customizing pages with 
either standard or custom-built components. This empowers 
developers and administrators to tailor the user experience 
precisely to business needs. Additionally, a new suite of Base 
Lightning Components provides out-of-the-box functionality 
that can be extended and customized to fit specific requirements, 
allowing for a more personalized and efficient Salesforce 
environment.

Integration Improvements

Salesforce API Enhancements: In Lightning Experience, 
Salesforce has enhanced its REST, SOAP, and Bulk APIs, 
making them more robust and capable of integrating with any 
external systems. One significant enhancement is the addition 
of composite resources to the REST API. Composite resources 
allow developers to perform atomic transactions, meaning 
multiple related operations can be executed as a single unit. 
This reduces the number of API calls needed and ensures data 
consistency across transactions, improving both performance 
and reliability.
MuleSoft and Other Middleware: The integration landscape in 
Salesforce has been further bolstered by MuleSoft, a powerful 
middleware tool that facilitates seamless connections between 
Salesforce and other enterprise systems. MuleSoft enables 
organizations to integrate disparate systems, ensuring smooth 
data flows and process integrations. This is especially valuable 
in complex enterprise environments where data consistency and 
real-time data access are critical.

Technical Steps to Migrate to Lightning Experience

•	 Assessment and Analysis: The migration to Lightning 
Experience begins with a comprehensive analysis of the 

existing Salesforce Classic implementation. This involves 
several key steps:

•	 Customizations and Code Review: Identify all Visualforce 
pages, Apex classes, triggers, and JavaScript buttons that 
require re-engineering or replacement. This step ensures 
that all customizations are accounted for and evaluated for 
compatibility with Lightning.

•	 Integration Points: Map out all integration points with 
external systems, including APIs, middleware, and 
data flows. Understanding these integrations is crucial 
for ensuring continuity and functionality in the new 
environment.

•	 User Profiles and Permissions: Review existing security 
settings to align them with Lightning’s enhanced security 
model. This includes reassessing permissions and profile 
configurations to ensure they are appropriately restrictive 
and meet organizational security policies.

Re-engineering and Development: Many customizations in 
Salesforce Classic, particularly those involving Visualforce 
pages and JavaScript buttons, require substantial re-engineering:

•	 Visualforce to Lightning Conversion: Visualforce pages 
can be wrapped within Lightning components using 
lightning:container, or they can be entirely rebuilt using 
Lightning Web Components (LWC) or Aura components. 
Rebuilding with LWC is recommended for better 
performance and future scalability.

•	 JavaScript Button Replacement: Since JavaScript buttons 
are not supported in Lightning, they must be replaced with 
alternatives like Quick Actions, Lightning Components, or 
Flows. These replacements provide similar functionality 
while leveraging the modern architecture of Lightning.

LWC Development

•	 Component Life Cycle Management: Understanding 
and effectively utilizing the lifecycle hooks of LWC, such 
as connectedCallback and renderedCallback, is crucial for 
initializing data, handling events, and cleaning up resources 
efficiently.

•	 Integration with Apex: LWC components often need 
to communicate with Apex controllers for server-side 
processing. It is essential to follow best practices, including 
respecting governor limits, bulkifying queries, and using 
asynchronous processing where appropriate, to ensure 
efficient and scalable solutions.

Training Users and Change Management

Effective training and change management are vital to the 
success of the migration:

•	 Training Programs: Develop targeted training sessions 
for different user groups, focusing on the new features, 
navigation, and workflows in Lightning Experience. This 
helps users become familiar with the interface and increases 
their productivity.

•	 Change Management Strategy: Implement a 
comprehensive change management plan that includes 
regular updates, feedback loops, and support mechanisms. 
This strategy should aim to minimize disruption and ease 
the transition for users.



3

Patel AK., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2

Testing and Quality Assurance

Thorough testing ensures that all functionalities work as 
expected in the new environment:

•	 Unit and Integration Testing: Use Salesforce’s testing 
framework to write and execute unit and integration tests 
for Apex code. This ensures that new components integrate 
seamlessly with existing logic.

•	 User Acceptance Testing (UAT): Involve a subset of 
end-users in testing to validate that the system meets 
business requirements and that users can perform their tasks 
effectively. UAT is crucial for identifying potential issues 
from an end-user perspective.

Deployment and Post-Migration Support

The deployment phase must be carefully planned to minimize 
business disruption:

•	 Staggered Rollout: Consider deploying the migration in 
phases, starting with a pilot group. This approach allows 
for the incremental rollout of the new experience across the 
organization, providing the opportunity to address issues as 
they arise.

•	 Monitoring and Support: After deployment, closely 
monitor system performance and provide ongoing support. 
Address any issues promptly and gather user feedback to 
refine and improve the user experience.

Challenges and Best Practices

Performance Optimization: While Lightning Experience 
offers significant performance enhancements, developers must 
optimize components and data access patterns to prevent latency 
issues:
•	 Efficient Data Loading: Utilize Lightning Data Service 

(LDS) and caching mechanisms to minimize server calls. 
Load data lazily where appropriate to improve performance.

•	 Component Optimizations: Avoid deeply nested 
components and ensure that each component is optimized 
for performance. This includes minimizing the use of heavy 
client-side processing and ensuring efficient rendering.

Legacy System Compatibility: Maintaining compatibility with 
legacy systems and processes can be challenging. A careful 
review of existing integrations and data flows is necessary to 
ensure they continue to function correctly after migration. In some 
cases, legacy systems may require updates or re-engineering to 
align with the new Lightning environment.
Continuous Learning and Adaptation: Salesforce’s platform 
is constantly evolving, with new features and capabilities being 
introduced regularly. Continuous learning and adaptation are 
essential for keeping up with best practices and leveraging 
new capabilities. Staying informed about platform updates and 
participating in the Salesforce community can help organizations 
maximize their investment in Lightning Experience.

5. Conclusion
Migrating from Salesforce Classic to Lightning Experience 

is a complex but rewarding process. This shift involves a deep 
architectural transformation, enhancing scalability, security, 
and performance. By adopting a well-structured approach-
including assessment, re-engineering, testing, and user training-
organizations can navigate the migration process successfully. 
The transition to Lightning Experience not only future-proofs 
Salesforce implementations but also unlocks new opportunities 
for innovation and growth.

6. References

1.	 Salesforce. (n.d.). Lightning Experience Development Guide. 
Salesforce Developer Documentation.

2.	 Salesforce. (n.d.). Salesforce Lightning Design System (SLDS). 
Salesforce.

3.	 Salesforce. (n.d.). Locker Service Overview. Salesforce 
Developer Documentation.

4.	 MuleSoft. (n.d.). Integrating Salesforce with MuleSoft. MuleSoft 
Documentation.

5.	 Salesforce Lightning Web Components Developer Guide. 
Salesforce Press, 2021.

6.	 Gitau, M. (2020). Mastering Salesforce DevOps: A Practical 
Guide to Building Trust While Delivering Innovation. Apress.

7.	 Santoro, J. (2019). Salesforce Lightning Platform Enterprise 
Architecture. Packt Publishing.

8.	 Bonasera, R. (2021). Salesforce Lightning Platform: Advanced 
Features. O’Reilly Media.

9.	 Salesforce. (n.d.). Einstein Analytics and Discovery Developer 
Guide. Salesforce Developer Documentation.

10.	 Salesforce. (n.d.). Best Practices for Building Lightning 
Components. Salesforce Developer Documentation.

https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/
https://www.lightningdesignsystem.com/
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/security_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.bi_dev_guide.meta/bi_dev_guide/
https://developer.salesforce.com/docs/atlas.en-us.bi_dev_guide.meta/bi_dev_guide/
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/best_practices_components.htm
https://developer.salesforce.com/docs/atlas.en-us.lightning.meta/lightning/best_practices_components.htm

	_GoBack
	_GoBack

