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 A B S T R A C T 
TMalware continues to evolve in complexity, employing evasion tactics that challenge traditional detection methods. In 

response, deep learning has emerged as a powerful approach to automate and enhance malware detection across static and 
dynamic analysis domains. This paper provides a comprehensive review of recent advances in deep learning-based detection 
systems, with particular emphasis on hybrid models that integrate static code features and runtime behavioral indicators. 
We examine key architectural approaches including convolutional neural networks for spatial pattern recognition, recurrent 
neural networks for sequential data analysis, graph neural networks for structural understanding and transformers for context-
aware, multi-modal inference. Benchmarks such as EMBER, Drebin and Malicia are discussed as standard datasets supporting 
reproducibility and comparative evaluation. Case studies of prominent malware families such as WannaCry, TrickBot and Emotet 
illustrate the operational relevance of hybrid approaches. In addition, we explore emerging trends such as federated learning for 
privacy-preserving collaboration, multimodal architectures for enriched feature learning, lightweight models for edge-based 
detection and adversarial defences for model robustness. Persistent challenges include limited labelled data, the interpretability 
of model decisions and the need to address concept drift in evolving threats. This review highlights the growing maturity of deep 
learning techniques in cybersecurity and outlines future directions for building more resilient, efficient and explainable malware 
detection frameworks.

1. Introduction
As malware becomes more sophisticated, it presents 

mounting challenges and risks to people organizations and 
key technological infrastructure. Traditional signature-based 
antivirus methods have become increasingly ineffective against 
modern polymorphic or zero-day malware, driving a surge of 

interest in machine learning (ML) and deep learning (DL) for 
automated detection1,2. Malware analysis techniques can be 
broadly classified as static, where the code is examined without 
execution or dynamic, where the program’s behavior is observed 
at runtime. Static analysis is fast and scalable, typically involving 
the extraction of features such as Portable Executable (PE) 
header fields, embedded strings or requested permissions without 
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running the file3-5. However, it performs poorly against encrypted, 
packed or heavily obfuscated code, as these techniques hinder 
feature extraction6,7. In contrast, dynamic analysis observes 
system behavior such as API calls, registry modifications and 
network activity within a sandboxed environment, allowing 
the detection of runtime tactics8,9. While effective in revealing 
malicious intent, dynamic analysis is slower and vulnerable to 
evasion by malware that detects virtualized environments or 
employs delayed execution strategies10.

To address these limitations, hybrid analysis combines static 
and dynamic features, thereby leveraging the strengths of both 
techniques11. As noted by Hussain, et al., “the hybrid approach 
is concerned with solutions of both dynamic and static analysis 
of malware detection and classification.” Similarly, Damodaran, 
et al.6 demonstrate that hybrid methods often achieve higher 
accuracy than single-mode approaches by capturing a broader 
set of malware behaviors. This fusion of code-level and 
behavioral features allows detection systems to generalize better 
across different malware types, including novel or obfuscated 
variants12. Modern malware detection increasingly integrates 
deep learning, which automates feature extraction from raw 
input data and enables complex pattern recognition across 
large-scale corpora13. DL models such as convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), graph 
neural networks (GNNs) and transformers have been effectively 
applied to both static inputs (e.g. raw binaries, opcode sequences 
or visual representations) and dynamic inputs (e.g. system call 
traces, performance counters)14.

This review paper synthesizes recent advances in hybrid 
malware detection using deep learning, while also summarizing 
progress in static-only and dynamic-only DL approaches for 
context. We explore the major DL architectures used, evaluate 
benchmark datasets such as EMBER, Drebin and Malicia and 
discuss case studies of prominent malware families (WannaCry, 
TrickBot, Emotet). Furthermore, we address critical challenges 
such as adversarial evasion, data scarcity, lack of explainability 
and concept drift and highlight emerging trends including 
federated learning, multimodal deep networks, transformer-
based models and real-time edge deployment.

1.1. Static, dynamic and hybrid analysis

Static analysis inspects a program’s code or structure without 
executing it. Features typically include Portable Executable (PE) 
header fields, imported libraries, embedded strings, n-grams of 
opcodes or visual representations of binaries10. Static analysis 
is fast, scalable and safe, as it avoids the risk of executing 
malicious code. However, it is vulnerable to obfuscation, 
encryption and packing techniques, which can conceal 
malicious payloads and hinder feature extraction. As Kang and 
Won explain, static analysis has the “advantage of taking less 
time to extract features,” but “feature extraction is difficult if 
the malware is packed or obfuscated.” Furthermore, static-only 
deep learning (DL) detectors trained on known patterns can be 
bypassed through minor code mutations and analysis may be 
computationally expensive for large binaries15. Examples of 
static DL approaches include converting binaries into grayscale 
images for classification with convolutional neural networks 
(CNNs)16 or processing raw byte sequences with 1D CNNs such 
as MalConv15.

Dynamic analysis involves executing a program within a 

sandboxed environment or emulator and observing its behavior. 
Typical features extracted include API or system call traces, file 
system activity, network traffic and CPU performance counters6. 
Dynamic analysis can expose malicious actions that are not 
evident statically, particularly for packed or encrypted malware8,6. 
For instance, ransomware may only reveal its encryption 
routines during execution. However, dynamic analysis is slower, 
resource-intensive and susceptible to evasion, many malware 
samples now include sandbox-detection techniques or delayed 
payload activation9,17,7. Dynamic techniques often employ recur-
rent neural networks (RNNs) to model sequential behavior like 
API-call patterns.

Hybrid analysis combines static and dynamic techniques to 
offset the weaknesses of each and achieve broader coverage. A 
hybrid system may fuse static opcode features with dynamic 
API-call statistics, producing a richer representation11. As 
Damodaran, et al. highlight6, “both static and dynamic features 
are used to detect the malware more accurately than either 
approach alone.” Similarly, Nazim, et al.12 note that their proposed 
hybrid system “can overcome the disputes presented by dynamic 
analysis and provide a more extensive consideration of malware 
activities.” Studies consistently show hybrid models outperform 
static or dynamic only models on detection benchmarks12. For 
example, combining PE metadata with sandbox logs can yield 
high-precision classifiers18.

While static analysis is quick and suitable for early-stage 
detection, dynamic methods uncover complex malicious 
actions during execution. Hybrid models bring these two 
strengths together, offering broader protection. The optimal 
approach depends on system requirements: static for lightweight 
environments, hybrid for comprehensive threat monitoring. This 
paper concentrates on deep learning approaches, with a focus on 
hybrid analysis systems.

1.2. Deep learning architectures for malware detection

Deep learning enables end-to-end malware classification by 
automatically learning hierarchical features from raw data. Key 
DL model families used in malware detection include:

1.2.1. CNNs (Convolutional Neural Networks): CNNs are 
widely applied to static malware analysis, particularly when 
binaries are converted into images. One method maps binary 
bytes into 2D grayscale images and trains a CNN to detect 
visual patterns associated with malicious code16. Another 
method, MalConv, processes entire raw byte sequences using 
a 1D convolutional architecture, avoiding manual feature 
extraction15. CNNs are also used on dynamic features such 
as CPU performance counters or memory traces19,20. While 
CNNs excel at recognizing local spatial or sequential patterns, 
they typically require large datasets and may be susceptible to 
adversarial byte-level modifications.

1.2.2. RNNs (Recurrent Neural Networks): RNNs, including 
LSTMs and GRUs, are suited to sequential inputs such as API 
calls, system logs or opcode streams. These models can capture 
temporal dependencies in program execution. For instance, 
a bidirectional GRU with attention has been used to classify 
PowerShell scripts based on their semantic structure21. However, 
RNNs may suffer from vanishing gradients on long sequences 
and can be slower to train than feedforward models. They are 
often combined with CNN layers in hybrid models that capture 
both spatial and sequential dependencies.
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1.2.3. GNNs (Graph Neural Networks): Graph neural networks 
have emerged for learning on structured representations 
like control-flow graphs (CFGs) or call graphs. GNNs learn 
embeddings over program nodes and their relationships, 
enabling nuanced modelling of malware’s logical structure22. As 
Bilot, El Madhoun, Al Agha and Zouaoui23 notes, GNNs “reach 
competitive results in learning robust embeddings from malware 
represented as expressive graph structures.” These models excel 
at capturing code logic but are computationally demanding 
and can be vulnerable to adversarial graph manipulation (e.g. 
injecting dead code to confuse the model).

1.3. Transformer models

Transformers and attention-based architectures are 
increasingly popular in malware detection. Originally designed 
for NLP, transformers have been applied to disassembled code, 
system logs and even visual binary representations. Text-based 
models like BERT or GPT can tokenize and model opcode 
sequences or shellcode13, while Vision Transformers (ViT) 
operate on binary images partitioned into patches. Graph 
Transformers extend attention mechanisms to structural data. 
Alshomrani, et al.13 propose a hybrid transformer framework 
that integrates static metadata and dynamic behavioral 
features via self-attention layers. Transformers can model 
long-range dependencies more effectively than RNNs but are 
computationally intensive and often require fine-tuning on large 
corpora.

1.4. Hybrid networks and ensembles

To harness the strengths of multiple architectures, many 
recent systems adopt hybrid or ensemble models. A typical setup 
uses CNNs to extract features from raw byte inputs and passes 
them to an RNN or transformer for sequential reasoning24,25. 
Ensemble models may also combine static and dynamic 
classifiers using voting or stacking. Song, et al.21 report that 
such combinations improve overall robustness and reliability. 
These architectures are well-suited to hybrid malware detection, 
where both code structure and runtime behavior are critical. 
Each architecture can be deployed in static-only, dynamic-only 
or hybrid configurations, depending on data availability and 
application context. CNNs are ideal for raw binary data, RNNs 
excel at modelling behavior and transformers offer flexibility 
across modalities. GNNs remain a powerful but niche option 
for structural analysis. The next section explores real-world 
malware case studies and public datasets that support these 
modelling approaches.

2. Case Studies: Malware Families
Real-world malware families illustrate the need for robust 

DL-based detection systems. Three significant examples 
underscore the diversity and evolution of modern malware:

•	 WannaCry (2017 Ransomware): WannaCry was a fast-
spreading ransomware worm that exploited the Eternal 
Blue vulnerability in Microsoft’s SMB protocol. It infected 
over 300,000 machines across 150 countries, causing an 
estimated $8 billion in global damages21. Static analysis can 
detect known signatures or suspicious encryption routines, 
but dynamic analysis is needed to observe its real-time 
encryption behaviors. Deep learning-based hybrid systems 
are particularly suited to generalizing across variants, 
especially as WannaCry-like malware continues to evolve 
beyond its original exploit vector.

•	 TrickBot: Initially designed as a banking Trojan, TrickBot 
evolved into a modular, multi-stage malware framework 
capable of credential harvesting, lateral movement and 
ransomware delivery26,27. It is typically distributed via 
phishing emails with malicious attachments or embedded 
links. TrickBot is polymorphic, its components are 
frequently encrypted or obfuscated, complicating static 
detection. DL models must integrate both static artefacts 
(e.g. obfuscated PE headers) and dynamic indicators (e.g. 
registry edits, command-and-control beacons). TrickBot’s 
architecture demands hybrid or multimodal detection 
systems capable of recognizing stage-specific patterns.

•	 Emotet (2014-2021): Emotet is a notorious banking Trojan 
turned malware delivery botnet. It spreads through malspam 
campaigns using malicious Word macros, then downloads 
modules for credential theft and further infections28,29. It 
is polymorphic and virtual-machine-aware, often halting 
execution in sandboxed environments. Emotet has caused 
individual organizations up to $1 million in damages29. 
Effective DL systems must address both its adversarial 
evasion capabilities (e.g. VM detection, API obfuscation) 
and structural modularity by fusing static and behavioral 
signals. These case studies demonstrate the complexity 
of contemporary malware. Models focused on a single 
modality, static or dynamic may miss essential clues. 
Hybrid DL approaches, by design, offer broader coverage 
and improved adaptability to sophisticated threats such as 
TrickBot and Emotet.

2.1. Datasets and benchmarks

Developing robust deep learning models for malware 
detection relies heavily on access to large-scale, diverse and 
well-labelled datasets. Below are some of the most widely used 
benchmarks in academic and applied research (Table 1):

Table 1: Commonly Used Malware Detection Datasets.
Dataset Domain Samples Description/Citation

EMBER (2018) Windows PE files ~1.1 million (0.9M train, 0.2M test) Provided by Endgame; includes static features for benign and malicious 
Windows binaries30.

Drebin (2014) Android APKS 5,560 malware apps Android malware dataset covering 179 families; features include permissions, 
intents, API calls31.

Malicia (2016) Drive-by malware 11,688 binaries Collected from 500 malicious domains over 11 months; useful for dynamic 
analysis32.

Several foundational datasets have significantly shaped the 
landscape of modern malware detection research by enabling 
reproducible experimentation and comparative evaluation. 
EMBER30 is widely recognized as the leading public dataset 

for Windows malware detection. It provides rich, static features 
extracted from Portable Executable (PE) files and is commonly 
used in both classical machine learning and deep learning 
studies. Drebin31, on the other hand, targets Android malware 
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and includes a labelled set of malicious and benign applications 
with extracted features such as API calls and permission lists. 
This makes it a vital resource for mobile security research. 
Complementing these is the Malicia dataset32, which comprises 
a curated collection of drive-by download malware samples, 
supporting research into browser-based and dynamic malware 
threats.

These three datasets represent different operational 
environments and threat models including Windows desktops 
android mobile platforms and web-based attacks, allowing 
researchers to evaluate detection techniques across a broad 
spectrum of malware behaviors. Beyond these, several 
additional datasets are also gaining prominence in the field. The 
MalConv dataset15 offers raw PE binaries and is particularly 
useful for testing convolutional neural network-based detection 
approaches. VirusShare and VirusTotal serve as large-scale 
repositories with millions of diverse malware samples33,34, often 
used for exploratory analyses, signature verification or dataset 
expansion. Meanwhile, datasets like CIC-MalNet, IoT-23 and 
CICIDS (2017/2022) address malware in networked and IoT 
environments, enabling studies in real-time intrusion detection 
and network-based threat assessment.

Collectively, these datasets underpin much of the 
contemporary progress in malware detection research. EMBER 
remains the de facto benchmark for static Windows malware 
classification, Drebin is central to Android-related studies and 
Malicia continues to be a key resource for investigating dynamic, 
drive-by malware. The availability of these datasets supports 
standardized evaluation and encourages methodological 
transparency across the research community.

2.2. Evaluation metrics and benchmarks

Deep learning-based malware classifiers are typically 
assessed using well-established classification metrics, including 
accuracy (overall proportion of correct predictions), precision 
(proportion of true positives among predicted positives), recall 
(proportion of actual positives correctly identified), F1-score 
(harmonic mean of precision and recall) and ROC-AUC (area 
under the receiver operating characteristic curve). For example, 
Nazim, et al. report a recall of 86.5%12, an F1-score of 85.0% 
and a precision of 79.9% for their multimodal classification 
model. These metrics are often calculated using 10-fold cross-

validation or stratified train-test splits from benchmark datasets 
such as EMBER30, Drebin31 and Malicia32.

In cybersecurity contexts, recall is especially critical, as false 
negatives (missed malware) pose significant risks. However, 
low precision can result in excessive false positives, burdening 
security analysts with unnecessary alerts. Confusion matrices, 
along with false positive and false negative rates, provide 
additional insights into model performance and operational 
viability. Benchmarking against standard datasets facilitates 
fair comparisons between different architectures, but caution 
is needed: overfitting on outdated, synthetic or imbalanced 
data can lead to misleadingly high scores. As Song, et al. 
note21, many models report accuracy above 90%, yet fail to 
generalize in real-world settings. For deployment, it is essential 
to implement continual learning and live model validation to 
maintain detection effectiveness over time.

2.3. Model comparison and evaluation

A comparative summary of deep learning models used 
in malware detection is outlined in Table 2, detailing their 
input modalities, advantages, drawbacks and notable sources. 
Convolutional Neural Networks (CNNs) perform well with 
inputs like raw binaries, opcode sequences or malware 
visualizations by capturing spatial features, though they 
typically demand extensive training data and lack transparency 
in decision-making15,21. Recurrent Neural Networks (RNNs), 
such as LSTMs and GRUs, are ideal for modelling sequential 
data like API call traces, though they face challenges with 
training efficiency and gradient stability21. Graph Neural 
Networks (GNNs) capture structural relationships within 
control or function call graphs, providing deep semantic insights 
at the cost of complex graph construction and vulnerability to 
structural manipulation22,23. Transformer-based models offer 
strong performance on tokenized code, text or image patches, 
benefiting from self-attention mechanisms but requiring 
significant compute resources and pretraining13. Hybrid or 
ensemble models integrate multiple modalities (e.g., static and 
dynamic features) to improve detection accuracy and resilience, 
though they tend to be more complex and computationally 
intensive35,36.

The table serves as a quick reference for selecting suitable 
architectures based on the type of malware data, target use case 
and resource constraints (Table 2).

Table 2: Comparison of deep learning model families for malware detection.
Model Type Input Features Advantages Limitations Key References

CNN Raw bytes, opcodes, binary 
images

Learns spatial patterns; excels on image-
like input

Needs large data; sensitive to adversarial 
noise; lacks interpretability

15,21

RNN (LSTM/GRU) Sequences (API calls, opcode 
streams)

Captures temporal dependencies; ideal for 
dynamic sequences

Prone to vanishing gradients; slow 
training

21

GNN Control Flow Graphs, 
Function Call Graphs

Captures graph structures; relational 
semantics

Graph construction cost; sensitive to 
structure-tampering

22

Transformer Tokenized byte/code/text/
image patches

Long-range dependencies; multi-modal 
flexibility

Large model size; requires pretraining 13

Hybrid/Ensemble Multi-modal (static + 
dynamic features)

Combines complementary features; higher 
accuracy

More complex; higher compute; 
interpretation difficulty

21

2.4. Deep learning on static features

Static features are widely used with CNNs and vision-based 
approaches. For instance, converting a binary to a grayscale 
image enables CNNs or Vision Transformers (ViTs) to learn 

visual malware patterns16,12. MalConv, a CNN on raw PE bytes, 
learns end-to-end representations from binaries15. Some studies 
report CNN-based models achieving up to 98% accuracy on 
known datasets like Malicia37-39. In more experimental efforts, 
researchers have explored generative models (e.g. GANs or 
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autoencoders) for malware synthesis or detection11. However, 
these are often less interpretable and computationally expensive 
than discriminative models and rarely used in real-world 
systems.

2.5. Deep learning on dynamic features

Deep learning approaches to dynamic malware analysis 
have demonstrated significant potential by leveraging models 
such as recurrent neural networks (RNNs) and transformers to 
capture execution-time behaviors, including API call sequences 
and performance counters. Alsumaidaee, Yahya and Yaseen 
introduced a hybrid 1D-CNN-LSTM architecture designed to 
process CPU and memory performance data during runtime40. 
Their model, which achieved 100% detection accuracy against 
sophisticated malware, illustrated the effectiveness of extracting 
spatial-temporal patterns from low-level hardware behavior 
for real-time anomaly detection in endpoint security systems. 
This direction is further supported by Damodaran, et al.6, who 
demonstrated that RNNs and transformers are well-suited to 
identifying evasion-resistant sequential patterns within sandbox 
execution logs, reinforcing their utility in dynamic environments.

To improve robustness and generalizability, hybrid 
ensembles combining deep learning with classical machine 
learning techniques are increasingly adopted. Adamu, Awan and 
Younas implemented a CNN-XG Boost framework in which 
convolutional networks extracted representational features from 
raw byte sequences and XG Boost classified the outputs with 
99.3% accuracy, while maintaining resilience against adversarial 
perturbations41. Similarly, Ahmed reported that integrating 
classical ensemble models such as Random Forests with deep 
learning components significantly reduced false positive rates 
by as much as 47 percent when detecting polymorphic malware 
variants42.

These methods have proven particularly effective against 
advanced threats such as fileless or polymorphic malware, owing 
to their ability to encode time-series dependencies and support 
multi-modal fusion. As emphasized by both Alsumaidaee, et al.40 
and Or-Meir, et al.9, the integration of deep sequence models 
with behavioral data enhances the reliability of detection systems 
operating in dynamic and adversarial threat landscapes.

2.6. Multimodal and hybrid networks

Multimodal DL systems integrate static and dynamic 
features through parallel branches or late fusion. Nazim, et 
al.12 introduced a CNN+MLP hybrid that jointly learns from 
malware images and handcrafted numerical features. Their 
system achieved 95.36% accuracy, outperforming single-modal 
variants. The authors conclude that “late fusion of numeric and 
visual data makes the model more robust” to diverse malware 
types. Other hybrid systems include hierarchical CNN-BiLSTM 
models that combine temporal and spatial learning. While these 
models often deliver higher accuracy43, they are more demanding 
to train and require paired datasets (static + dynamic) for each 
malware instance.

2.7. Core challenges

2.7.1. Adversarial evasion: DL models are vulnerable to 
adversarial manipulation. Attackers can inject benign bytes, 
reorder instructions or insert no-op API calls to alter classification 
outcomes44. Raff, et al. showed that simple byte padding could 
bypass MalConv15. Defenses like adversarial training and feature 

suppression have been proposed, but attackers often evolve 
faster than defenses23. GNNs are also at risk: inserting dummy 
nodes or altering graph structure can cause GNNs to misclassify 
malware45,23. The ongoing arms race demands robust, certifiable 
DL defenses.

2.7.2. Data scarcity and diversity: Malware datasets often 
suffer from issues related to size, diversity and annotation quality. 
As noted by Song, et al.21, many deep learning studies depend 
on datasets that are small and imbalanced, which undermines 
model robustness and generalizability. Compounding this 
challenge is the fast-changing nature of malware, with millions 
of new, previously unseen variants appearing each month. 
Hybrid detection approaches further complicate data demands 
by requiring both static and dynamic information, which can 
be costly to obtain. Strategies such as data augmentation using 
GANs, transfer learning and federated learning offer promising 
solutions, particularly the latter, which supports decentralized 
training without sharing raw data46.

2.7.3. Explainability (Interpretability): Security analysts need 
to understand model predictions. Unfortunately, many DL models 
act as black boxes. Song, et al.21 call for better explainability, 
such as identifying which API call or binary segment triggered 
an alert. Existing efforts like attention maps or saliency scores 
are promising but insufficient. Models that can explain “why” 
will improve analyst trust; aid debugging and even support 
adversarial detection by exposing suspicious patterns.

2.7.4. Concept drift: Malware tactics and payloads evolve 
continuously. A model trained on yesterday’s threats may 
underperform on today’s. Li, Iyengar, Kundu and Bertino47 
propose domain-adversarial GNNs to learn invariant features 
across time, enhancing robustness against drift. Concept 
drift manifests as changes in binary structure, API usage 
or obfuscation patterns. Adaptive retraining, drift detection 
tools and semi-supervised learning frameworks are critical in 
mitigating performance degradation over time.

3. Recent Trends and Emerging Directions
To address longstanding challenges in malware detection 

including adversarial evasion, data scarcity and explainability, 
a number of recent trends have emerged in DL-based security 
research.

3.1. Federated learning

Federated learning (FL) has gained traction as a privacy-
preserving paradigm that enables collaborative model training 
across distributed datasets. In this framework, local models 
are trained on device or on site and only model updates (e.g., 
gradients or weights) are shared with a central aggregator. Çıplak, 
et al.46 introduced FEDetect, a federated malware classifier that 
achieved detection accuracy of up to 99.9% while preserving 
the confidentiality of each participating organization’s data. 
As the authors explain, FL “eliminates the requirement for 
centralized data collecting while preserving privacy.” FL also 
has the potential to improve model generalizability by learning 
from non-IID (non-independent and identically distributed) data 
sources across enterprises46. It has also been applied in federated 
anomaly detection for IoT malware.

3.2. Multimodal learning

Given the diversity of malware representations, multimodal 
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learning is a natural extension of hybrid analysis. These models 
integrate different input types such as binary images, opcode 
sequences, API call logs or network metadata either via parallel 
model branches or attention-based fusion. Nazim, et al.12 
developed a CNN+MLP ensemble to process both malware 
images and numerical vectors, achieving superior performance 
compared to single-modal baselines. Their findings confirm 
that “late fusion of numeric and visual data makes the model 
more robust.” Other works combine text (e.g., disassembled 
code), visual patterns and system behaviors using cross-modal 
transformers. Multimodal architectures are expanding into 
audio and side-channel signal domains as well, enabling richer 
behavioral profiling.

3.3. Transformer-based detection

Transformers, first established in NLP, are increasingly 
used for malware detection due to their powerful self-attention 
mechanism and sequence modelling capacity. Text-based 
transformers (e.g. BERT, GPT-2) have been fine-tuned on opcode 
or small code for Android malware13, while Vision Transformers 
(ViTs) are used on malware byte images48,49. As Alshomrani, 
et al.13 state, transformers are “among the most potent for text-
based malware detection,” though their computational overhead 
remains a concern. Researchers are actively working on more 
efficient transformer variants such as TinyBERT and DistilBERT 
to balance performance with resource constraints.

3.4. Real-time and edge-based inference

Malware detection on edge devices such as routers, IoT 
hubs or endpoint clients requires lightweight, efficient models. 
Recent research explores the deployment of compact LLMs 
(e.g., DistilBERT) on low-power hardware to provide near real-
time threat detection50. However, these models must address 
strict limitations on compute, storage and energy. Techniques 
such as model pruning, quantization and knowledge distillation 
are widely used to compress DL architectures without significant 
loss in performance. Public datasets such as Edge-IIoTset, 
TON-IoT and CIC-IDS are commonly used to benchmark edge-
aware malware detection models.

3.5. Adversarial and robustness research

Adversarial machine learning remains central to DL security 
research. Gibert, et al. proposed a randomized smoothing 
technique for malware detection by dividing binaries into chunks 
and aggregating their predictions51, significantly enhancing 
model robustness against byte-level perturbations. Other work 
explores interpretability-guided attacks, which exploit saliency 
maps to find weak points in classifiers44. These developments 
point toward more certifiable defenses, with many systems now 
integrating adversarial training and explainability layers into 
deployment pipelines.

3.6. Multitask and meta-learning

Emerging research also explores multitask learning (e.g., 
malware detection, family classification, behavior prediction) 
and meta-learning, where models are trained to quickly adapt 
to novel malware variants. These paradigms reduce data 
requirements and training cycles, particularly useful in scenarios 
with fast-moving threat landscapes. Each of these innovations in 
federated learning, multimodal architectures, transformers, real-
time inference and adversarial robustness contributes to solving 
critical limitations of current DL approaches and represents an 

exciting evolution of the field.

4. Conclusion
Modern malware detection is undergoing a paradigm shift 

driven by deep learning and hybrid analysis techniques. A 
diverse array of architectures including CNNs, RNNs, GNNs, 
Transformers and their combinations have demonstrated 
impressive performance in static, dynamic and hybrid detection 
pipelines. Benchmark datasets such as EMBER30, Drebin31 and 
Malicia32 underpin much of this research. Notable case studies 
such as WannaCry, TrickBot and Emotet underscore the evolving 
sophistication of malware, necessitating robust and adaptable 
detection systems. Yet, the challenges are formidable. Adversarial 
evasion remains a high-priority threat52,45. Data scarcity, 
especially for zero-days, continues to hinder generalization21. 
Explainability is underdeveloped, limiting trust and adoption 
in operational contexts21. Concept drift in malware behavior 
demands models that adapt continuously to shifting attack 
patterns47,53. Promisingly, the research community is responding. 
Federated learning offers privacy-preserving training across 
organizations46. Multimodal architectures capture richer feature 
relationships12. Transformer models, particularly those adapted 
for code or vision tasks, enable context-aware detection13. 
Edge-aware inference expands deep learning coverage into 
constrained environments54. These innovations point towards 
a future of intelligent, autonomous and explainable malware 
detection frameworks. Hybrid deep learning detectors that 
integrate both static and dynamic perspectives have emerged as 
a highly effective strategy. By balancing scalability, detection 
accuracy and operational resilience, these models are well-
suited to address the complex and evolving nature of modern 
malware threats.
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