
Modern Deep Learning Approaches for Malware Detection and Classification

Samuel Akerele1, Nabeela Temitayo Adebola2, Oluwole Fagbohun3, Goodness Obaika4, Light Chukwubuikem Nwokocha4
and Paul Stephen5

1Vuhosi Limited, Nigeria
2University of Salford United Kingdom
3Vuhosi Limited, United Kingdom
4Independent Researcher, United Kingdom
5University of Bedfordshire, United Kingdom

Citation: Akerele S, Adebola NT, Fagbohun O, et al., Modern Deep Learning Approaches for Malware Detection and Classification.
J Artif Intell Mach Learn & Data Sci 2025 3(3), 2761-2768. DOI: doi.org/10.51219/JAIMLD/Samuel-Akerele/581

Received: 25 June, 2025; Accepted: 01 July, 2025; Published: 05 July, 2025

*Corresponding author: Samuel Akerele, Vuhosi Limited, Nigeria

Copyright: © 2025 Akerele S, et al., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 3 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Samuel-Akerele/581

 A B S T R A C T
TMalware continues to evolve in complexity, employing evasion tactics that challenge traditional detection methods. In

response, deep learning has emerged as a powerful approach to automate and enhance malware detection across static and
dynamic analysis domains. This paper provides a comprehensive review of recent advances in deep learning-based detection
systems, with particular emphasis on hybrid models that integrate static code features and runtime behavioral indicators.
We examine key architectural approaches including convolutional neural networks for spatial pattern recognition, recurrent
neural networks for sequential data analysis, graph neural networks for structural understanding and transformers for context-
aware, multi-modal inference. Benchmarks such as EMBER, Drebin and Malicia are discussed as standard datasets supporting
reproducibility and comparative evaluation. Case studies of prominent malware families such as WannaCry, TrickBot and Emotet
illustrate the operational relevance of hybrid approaches. In addition, we explore emerging trends such as federated learning for
privacy-preserving collaboration, multimodal architectures for enriched feature learning, lightweight models for edge-based
detection and adversarial defences for model robustness. Persistent challenges include limited labelled data, the interpretability
of model decisions and the need to address concept drift in evolving threats. This review highlights the growing maturity of deep
learning techniques in cybersecurity and outlines future directions for building more resilient, efficient and explainable malware
detection frameworks.

1. Introduction
As malware becomes more sophisticated, it presents

mounting challenges and risks to people organizations and
key technological infrastructure. Traditional signature-based
antivirus methods have become increasingly ineffective against
modern polymorphic or zero-day malware, driving a surge of

interest in machine learning (ML) and deep learning (DL) for
automated detection1,2. Malware analysis techniques can be
broadly classified as static, where the code is examined without
execution or dynamic, where the program’s behavior is observed
at runtime. Static analysis is fast and scalable, typically involving
the extraction of features such as Portable Executable (PE)
header fields, embedded strings or requested permissions without

https://doi.org/10.51219/JAIMLD/Samuel-Akerele/581
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/Samuel-Akerele/581

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Akerele S, et al.,

2

running the file3-5. However, it performs poorly against encrypted,
packed or heavily obfuscated code, as these techniques hinder
feature extraction6,7. In contrast, dynamic analysis observes
system behavior such as API calls, registry modifications and
network activity within a sandboxed environment, allowing
the detection of runtime tactics8,9. While effective in revealing
malicious intent, dynamic analysis is slower and vulnerable to
evasion by malware that detects virtualized environments or
employs delayed execution strategies10.

To address these limitations, hybrid analysis combines static
and dynamic features, thereby leveraging the strengths of both
techniques11. As noted by Hussain, et al., “the hybrid approach
is concerned with solutions of both dynamic and static analysis
of malware detection and classification.” Similarly, Damodaran,
et al.6 demonstrate that hybrid methods often achieve higher
accuracy than single-mode approaches by capturing a broader
set of malware behaviors. This fusion of code-level and
behavioral features allows detection systems to generalize better
across different malware types, including novel or obfuscated
variants12. Modern malware detection increasingly integrates
deep learning, which automates feature extraction from raw
input data and enables complex pattern recognition across
large-scale corpora13. DL models such as convolutional neural
networks (CNNs), recurrent neural networks (RNNs), graph
neural networks (GNNs) and transformers have been effectively
applied to both static inputs (e.g. raw binaries, opcode sequences
or visual representations) and dynamic inputs (e.g. system call
traces, performance counters)14.

This review paper synthesizes recent advances in hybrid
malware detection using deep learning, while also summarizing
progress in static-only and dynamic-only DL approaches for
context. We explore the major DL architectures used, evaluate
benchmark datasets such as EMBER, Drebin and Malicia and
discuss case studies of prominent malware families (WannaCry,
TrickBot, Emotet). Furthermore, we address critical challenges
such as adversarial evasion, data scarcity, lack of explainability
and concept drift and highlight emerging trends including
federated learning, multimodal deep networks, transformer-
based models and real-time edge deployment.

1.1. Static, dynamic and hybrid analysis

Static analysis inspects a program’s code or structure without
executing it. Features typically include Portable Executable (PE)
header fields, imported libraries, embedded strings, n-grams of
opcodes or visual representations of binaries10. Static analysis
is fast, scalable and safe, as it avoids the risk of executing
malicious code. However, it is vulnerable to obfuscation,
encryption and packing techniques, which can conceal
malicious payloads and hinder feature extraction. As Kang and
Won explain, static analysis has the “advantage of taking less
time to extract features,” but “feature extraction is difficult if
the malware is packed or obfuscated.” Furthermore, static-only
deep learning (DL) detectors trained on known patterns can be
bypassed through minor code mutations and analysis may be
computationally expensive for large binaries15. Examples of
static DL approaches include converting binaries into grayscale
images for classification with convolutional neural networks
(CNNs)16 or processing raw byte sequences with 1D CNNs such
as MalConv15.

Dynamic analysis involves executing a program within a

sandboxed environment or emulator and observing its behavior.
Typical features extracted include API or system call traces, file
system activity, network traffic and CPU performance counters6.
Dynamic analysis can expose malicious actions that are not
evident statically, particularly for packed or encrypted malware8,6.
For instance, ransomware may only reveal its encryption
routines during execution. However, dynamic analysis is slower,
resource-intensive and susceptible to evasion, many malware
samples now include sandbox-detection techniques or delayed
payload activation9,17,7. Dynamic techniques often employ recur-
rent neural networks (RNNs) to model sequential behavior like
API-call patterns.

Hybrid analysis combines static and dynamic techniques to
offset the weaknesses of each and achieve broader coverage. A
hybrid system may fuse static opcode features with dynamic
API-call statistics, producing a richer representation11. As
Damodaran, et al. highlight6, “both static and dynamic features
are used to detect the malware more accurately than either
approach alone.” Similarly, Nazim, et al.12 note that their proposed
hybrid system “can overcome the disputes presented by dynamic
analysis and provide a more extensive consideration of malware
activities.” Studies consistently show hybrid models outperform
static or dynamic only models on detection benchmarks12. For
example, combining PE metadata with sandbox logs can yield
high-precision classifiers18.

While static analysis is quick and suitable for early-stage
detection, dynamic methods uncover complex malicious
actions during execution. Hybrid models bring these two
strengths together, offering broader protection. The optimal
approach depends on system requirements: static for lightweight
environments, hybrid for comprehensive threat monitoring. This
paper concentrates on deep learning approaches, with a focus on
hybrid analysis systems.

1.2. Deep learning architectures for malware detection

Deep learning enables end-to-end malware classification by
automatically learning hierarchical features from raw data. Key
DL model families used in malware detection include:

1.2.1. CNNs (Convolutional Neural Networks): CNNs are
widely applied to static malware analysis, particularly when
binaries are converted into images. One method maps binary
bytes into 2D grayscale images and trains a CNN to detect
visual patterns associated with malicious code16. Another
method, MalConv, processes entire raw byte sequences using
a 1D convolutional architecture, avoiding manual feature
extraction15. CNNs are also used on dynamic features such
as CPU performance counters or memory traces19,20. While
CNNs excel at recognizing local spatial or sequential patterns,
they typically require large datasets and may be susceptible to
adversarial byte-level modifications.

1.2.2. RNNs (Recurrent Neural Networks): RNNs, including
LSTMs and GRUs, are suited to sequential inputs such as API
calls, system logs or opcode streams. These models can capture
temporal dependencies in program execution. For instance,
a bidirectional GRU with attention has been used to classify
PowerShell scripts based on their semantic structure21. However,
RNNs may suffer from vanishing gradients on long sequences
and can be slower to train than feedforward models. They are
often combined with CNN layers in hybrid models that capture
both spatial and sequential dependencies.

3

Akerele S, et al., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

1.2.3. GNNs (Graph Neural Networks): Graph neural networks
have emerged for learning on structured representations
like control-flow graphs (CFGs) or call graphs. GNNs learn
embeddings over program nodes and their relationships,
enabling nuanced modelling of malware’s logical structure22. As
Bilot, El Madhoun, Al Agha and Zouaoui23 notes, GNNs “reach
competitive results in learning robust embeddings from malware
represented as expressive graph structures.” These models excel
at capturing code logic but are computationally demanding
and can be vulnerable to adversarial graph manipulation (e.g.
injecting dead code to confuse the model).

1.3. Transformer models

Transformers and attention-based architectures are
increasingly popular in malware detection. Originally designed
for NLP, transformers have been applied to disassembled code,
system logs and even visual binary representations. Text-based
models like BERT or GPT can tokenize and model opcode
sequences or shellcode13, while Vision Transformers (ViT)
operate on binary images partitioned into patches. Graph
Transformers extend attention mechanisms to structural data.
Alshomrani, et al.13 propose a hybrid transformer framework
that integrates static metadata and dynamic behavioral
features via self-attention layers. Transformers can model
long-range dependencies more effectively than RNNs but are
computationally intensive and often require fine-tuning on large
corpora.

1.4. Hybrid networks and ensembles

To harness the strengths of multiple architectures, many
recent systems adopt hybrid or ensemble models. A typical setup
uses CNNs to extract features from raw byte inputs and passes
them to an RNN or transformer for sequential reasoning24,25.
Ensemble models may also combine static and dynamic
classifiers using voting or stacking. Song, et al.21 report that
such combinations improve overall robustness and reliability.
These architectures are well-suited to hybrid malware detection,
where both code structure and runtime behavior are critical.
Each architecture can be deployed in static-only, dynamic-only
or hybrid configurations, depending on data availability and
application context. CNNs are ideal for raw binary data, RNNs
excel at modelling behavior and transformers offer flexibility
across modalities. GNNs remain a powerful but niche option
for structural analysis. The next section explores real-world
malware case studies and public datasets that support these
modelling approaches.

2. Case Studies: Malware Families
Real-world malware families illustrate the need for robust

DL-based detection systems. Three significant examples
underscore the diversity and evolution of modern malware:

•	 WannaCry (2017 Ransomware): WannaCry was a fast-
spreading ransomware worm that exploited the Eternal
Blue vulnerability in Microsoft’s SMB protocol. It infected
over 300,000 machines across 150 countries, causing an
estimated $8 billion in global damages21. Static analysis can
detect known signatures or suspicious encryption routines,
but dynamic analysis is needed to observe its real-time
encryption behaviors. Deep learning-based hybrid systems
are particularly suited to generalizing across variants,
especially as WannaCry-like malware continues to evolve
beyond its original exploit vector.

•	 TrickBot: Initially designed as a banking Trojan, TrickBot
evolved into a modular, multi-stage malware framework
capable of credential harvesting, lateral movement and
ransomware delivery26,27. It is typically distributed via
phishing emails with malicious attachments or embedded
links. TrickBot is polymorphic, its components are
frequently encrypted or obfuscated, complicating static
detection. DL models must integrate both static artefacts
(e.g. obfuscated PE headers) and dynamic indicators (e.g.
registry edits, command-and-control beacons). TrickBot’s
architecture demands hybrid or multimodal detection
systems capable of recognizing stage-specific patterns.

•	 Emotet (2014-2021): Emotet is a notorious banking Trojan
turned malware delivery botnet. It spreads through malspam
campaigns using malicious Word macros, then downloads
modules for credential theft and further infections28,29. It
is polymorphic and virtual-machine-aware, often halting
execution in sandboxed environments. Emotet has caused
individual organizations up to $1 million in damages29.
Effective DL systems must address both its adversarial
evasion capabilities (e.g. VM detection, API obfuscation)
and structural modularity by fusing static and behavioral
signals. These case studies demonstrate the complexity
of contemporary malware. Models focused on a single
modality, static or dynamic may miss essential clues.
Hybrid DL approaches, by design, offer broader coverage
and improved adaptability to sophisticated threats such as
TrickBot and Emotet.

2.1. Datasets and benchmarks

Developing robust deep learning models for malware
detection relies heavily on access to large-scale, diverse and
well-labelled datasets. Below are some of the most widely used
benchmarks in academic and applied research (Table 1):

Table 1: Commonly Used Malware Detection Datasets.
Dataset Domain Samples Description/Citation

EMBER (2018) Windows PE files ~1.1 million (0.9M train, 0.2M test) Provided by Endgame; includes static features for benign and malicious
Windows binaries30.

Drebin (2014) Android APKS 5,560 malware apps Android malware dataset covering 179 families; features include permissions,
intents, API calls31.

Malicia (2016) Drive-by malware 11,688 binaries Collected from 500 malicious domains over 11 months; useful for dynamic
analysis32.

Several foundational datasets have significantly shaped the
landscape of modern malware detection research by enabling
reproducible experimentation and comparative evaluation.
EMBER30 is widely recognized as the leading public dataset

for Windows malware detection. It provides rich, static features
extracted from Portable Executable (PE) files and is commonly
used in both classical machine learning and deep learning
studies. Drebin31, on the other hand, targets Android malware

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Akerele S, et al.,

4

and includes a labelled set of malicious and benign applications
with extracted features such as API calls and permission lists.
This makes it a vital resource for mobile security research.
Complementing these is the Malicia dataset32, which comprises
a curated collection of drive-by download malware samples,
supporting research into browser-based and dynamic malware
threats.

These three datasets represent different operational
environments and threat models including Windows desktops
android mobile platforms and web-based attacks, allowing
researchers to evaluate detection techniques across a broad
spectrum of malware behaviors. Beyond these, several
additional datasets are also gaining prominence in the field. The
MalConv dataset15 offers raw PE binaries and is particularly
useful for testing convolutional neural network-based detection
approaches. VirusShare and VirusTotal serve as large-scale
repositories with millions of diverse malware samples33,34, often
used for exploratory analyses, signature verification or dataset
expansion. Meanwhile, datasets like CIC-MalNet, IoT-23 and
CICIDS (2017/2022) address malware in networked and IoT
environments, enabling studies in real-time intrusion detection
and network-based threat assessment.

Collectively, these datasets underpin much of the
contemporary progress in malware detection research. EMBER
remains the de facto benchmark for static Windows malware
classification, Drebin is central to Android-related studies and
Malicia continues to be a key resource for investigating dynamic,
drive-by malware. The availability of these datasets supports
standardized evaluation and encourages methodological
transparency across the research community.

2.2. Evaluation metrics and benchmarks

Deep learning-based malware classifiers are typically
assessed using well-established classification metrics, including
accuracy (overall proportion of correct predictions), precision
(proportion of true positives among predicted positives), recall
(proportion of actual positives correctly identified), F1-score
(harmonic mean of precision and recall) and ROC-AUC (area
under the receiver operating characteristic curve). For example,
Nazim, et al. report a recall of 86.5%12, an F1-score of 85.0%
and a precision of 79.9% for their multimodal classification
model. These metrics are often calculated using 10-fold cross-

validation or stratified train-test splits from benchmark datasets
such as EMBER30, Drebin31 and Malicia32.

In cybersecurity contexts, recall is especially critical, as false
negatives (missed malware) pose significant risks. However,
low precision can result in excessive false positives, burdening
security analysts with unnecessary alerts. Confusion matrices,
along with false positive and false negative rates, provide
additional insights into model performance and operational
viability. Benchmarking against standard datasets facilitates
fair comparisons between different architectures, but caution
is needed: overfitting on outdated, synthetic or imbalanced
data can lead to misleadingly high scores. As Song, et al.
note21, many models report accuracy above 90%, yet fail to
generalize in real-world settings. For deployment, it is essential
to implement continual learning and live model validation to
maintain detection effectiveness over time.

2.3. Model comparison and evaluation

A comparative summary of deep learning models used
in malware detection is outlined in Table 2, detailing their
input modalities, advantages, drawbacks and notable sources.
Convolutional Neural Networks (CNNs) perform well with
inputs like raw binaries, opcode sequences or malware
visualizations by capturing spatial features, though they
typically demand extensive training data and lack transparency
in decision-making15,21. Recurrent Neural Networks (RNNs),
such as LSTMs and GRUs, are ideal for modelling sequential
data like API call traces, though they face challenges with
training efficiency and gradient stability21. Graph Neural
Networks (GNNs) capture structural relationships within
control or function call graphs, providing deep semantic insights
at the cost of complex graph construction and vulnerability to
structural manipulation22,23. Transformer-based models offer
strong performance on tokenized code, text or image patches,
benefiting from self-attention mechanisms but requiring
significant compute resources and pretraining13. Hybrid or
ensemble models integrate multiple modalities (e.g., static and
dynamic features) to improve detection accuracy and resilience,
though they tend to be more complex and computationally
intensive35,36.

The table serves as a quick reference for selecting suitable
architectures based on the type of malware data, target use case
and resource constraints (Table 2).

Table 2: Comparison of deep learning model families for malware detection.
Model Type Input Features Advantages Limitations Key References

CNN Raw bytes, opcodes, binary
images

Learns spatial patterns; excels on image-
like input

Needs large data; sensitive to adversarial
noise; lacks interpretability

15,21

RNN (LSTM/GRU) Sequences (API calls, opcode
streams)

Captures temporal dependencies; ideal for
dynamic sequences

Prone to vanishing gradients; slow
training

21

GNN Control Flow Graphs,
Function Call Graphs

Captures graph structures; relational
semantics

Graph construction cost; sensitive to
structure-tampering

22

Transformer Tokenized byte/code/text/
image patches

Long-range dependencies; multi-modal
flexibility

Large model size; requires pretraining 13

Hybrid/Ensemble Multi-modal (static +
dynamic features)

Combines complementary features; higher
accuracy

More complex; higher compute;
interpretation difficulty

21

2.4. Deep learning on static features

Static features are widely used with CNNs and vision-based
approaches. For instance, converting a binary to a grayscale
image enables CNNs or Vision Transformers (ViTs) to learn

visual malware patterns16,12. MalConv, a CNN on raw PE bytes,
learns end-to-end representations from binaries15. Some studies
report CNN-based models achieving up to 98% accuracy on
known datasets like Malicia37-39. In more experimental efforts,
researchers have explored generative models (e.g. GANs or

5

Akerele S, et al., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

autoencoders) for malware synthesis or detection11. However,
these are often less interpretable and computationally expensive
than discriminative models and rarely used in real-world
systems.

2.5. Deep learning on dynamic features

Deep learning approaches to dynamic malware analysis
have demonstrated significant potential by leveraging models
such as recurrent neural networks (RNNs) and transformers to
capture execution-time behaviors, including API call sequences
and performance counters. Alsumaidaee, Yahya and Yaseen
introduced a hybrid 1D-CNN-LSTM architecture designed to
process CPU and memory performance data during runtime40.
Their model, which achieved 100% detection accuracy against
sophisticated malware, illustrated the effectiveness of extracting
spatial-temporal patterns from low-level hardware behavior
for real-time anomaly detection in endpoint security systems.
This direction is further supported by Damodaran, et al.6, who
demonstrated that RNNs and transformers are well-suited to
identifying evasion-resistant sequential patterns within sandbox
execution logs, reinforcing their utility in dynamic environments.

To improve robustness and generalizability, hybrid
ensembles combining deep learning with classical machine
learning techniques are increasingly adopted. Adamu, Awan and
Younas implemented a CNN-XG Boost framework in which
convolutional networks extracted representational features from
raw byte sequences and XG Boost classified the outputs with
99.3% accuracy, while maintaining resilience against adversarial
perturbations41. Similarly, Ahmed reported that integrating
classical ensemble models such as Random Forests with deep
learning components significantly reduced false positive rates
by as much as 47 percent when detecting polymorphic malware
variants42.

These methods have proven particularly effective against
advanced threats such as fileless or polymorphic malware, owing
to their ability to encode time-series dependencies and support
multi-modal fusion. As emphasized by both Alsumaidaee, et al.40
and Or-Meir, et al.9, the integration of deep sequence models
with behavioral data enhances the reliability of detection systems
operating in dynamic and adversarial threat landscapes.

2.6. Multimodal and hybrid networks

Multimodal DL systems integrate static and dynamic
features through parallel branches or late fusion. Nazim, et
al.12 introduced a CNN+MLP hybrid that jointly learns from
malware images and handcrafted numerical features. Their
system achieved 95.36% accuracy, outperforming single-modal
variants. The authors conclude that “late fusion of numeric and
visual data makes the model more robust” to diverse malware
types. Other hybrid systems include hierarchical CNN-BiLSTM
models that combine temporal and spatial learning. While these
models often deliver higher accuracy43, they are more demanding
to train and require paired datasets (static + dynamic) for each
malware instance.

2.7. Core challenges

2.7.1. Adversarial evasion: DL models are vulnerable to
adversarial manipulation. Attackers can inject benign bytes,
reorder instructions or insert no-op API calls to alter classification
outcomes44. Raff, et al. showed that simple byte padding could
bypass MalConv15. Defenses like adversarial training and feature

suppression have been proposed, but attackers often evolve
faster than defenses23. GNNs are also at risk: inserting dummy
nodes or altering graph structure can cause GNNs to misclassify
malware45,23. The ongoing arms race demands robust, certifiable
DL defenses.

2.7.2. Data scarcity and diversity: Malware datasets often
suffer from issues related to size, diversity and annotation quality.
As noted by Song, et al.21, many deep learning studies depend
on datasets that are small and imbalanced, which undermines
model robustness and generalizability. Compounding this
challenge is the fast-changing nature of malware, with millions
of new, previously unseen variants appearing each month.
Hybrid detection approaches further complicate data demands
by requiring both static and dynamic information, which can
be costly to obtain. Strategies such as data augmentation using
GANs, transfer learning and federated learning offer promising
solutions, particularly the latter, which supports decentralized
training without sharing raw data46.

2.7.3. Explainability (Interpretability): Security analysts need
to understand model predictions. Unfortunately, many DL models
act as black boxes. Song, et al.21 call for better explainability,
such as identifying which API call or binary segment triggered
an alert. Existing efforts like attention maps or saliency scores
are promising but insufficient. Models that can explain “why”
will improve analyst trust; aid debugging and even support
adversarial detection by exposing suspicious patterns.

2.7.4. Concept drift: Malware tactics and payloads evolve
continuously. A model trained on yesterday’s threats may
underperform on today’s. Li, Iyengar, Kundu and Bertino47
propose domain-adversarial GNNs to learn invariant features
across time, enhancing robustness against drift. Concept
drift manifests as changes in binary structure, API usage
or obfuscation patterns. Adaptive retraining, drift detection
tools and semi-supervised learning frameworks are critical in
mitigating performance degradation over time.

3. Recent Trends and Emerging Directions
To address longstanding challenges in malware detection

including adversarial evasion, data scarcity and explainability,
a number of recent trends have emerged in DL-based security
research.

3.1. Federated learning

Federated learning (FL) has gained traction as a privacy-
preserving paradigm that enables collaborative model training
across distributed datasets. In this framework, local models
are trained on device or on site and only model updates (e.g.,
gradients or weights) are shared with a central aggregator. Çıplak,
et al.46 introduced FEDetect, a federated malware classifier that
achieved detection accuracy of up to 99.9% while preserving
the confidentiality of each participating organization’s data.
As the authors explain, FL “eliminates the requirement for
centralized data collecting while preserving privacy.” FL also
has the potential to improve model generalizability by learning
from non-IID (non-independent and identically distributed) data
sources across enterprises46. It has also been applied in federated
anomaly detection for IoT malware.

3.2. Multimodal learning

Given the diversity of malware representations, multimodal

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Akerele S, et al.,

6

learning is a natural extension of hybrid analysis. These models
integrate different input types such as binary images, opcode
sequences, API call logs or network metadata either via parallel
model branches or attention-based fusion. Nazim, et al.12
developed a CNN+MLP ensemble to process both malware
images and numerical vectors, achieving superior performance
compared to single-modal baselines. Their findings confirm
that “late fusion of numeric and visual data makes the model
more robust.” Other works combine text (e.g., disassembled
code), visual patterns and system behaviors using cross-modal
transformers. Multimodal architectures are expanding into
audio and side-channel signal domains as well, enabling richer
behavioral profiling.

3.3. Transformer-based detection

Transformers, first established in NLP, are increasingly
used for malware detection due to their powerful self-attention
mechanism and sequence modelling capacity. Text-based
transformers (e.g. BERT, GPT-2) have been fine-tuned on opcode
or small code for Android malware13, while Vision Transformers
(ViTs) are used on malware byte images48,49. As Alshomrani,
et al.13 state, transformers are “among the most potent for text-
based malware detection,” though their computational overhead
remains a concern. Researchers are actively working on more
efficient transformer variants such as TinyBERT and DistilBERT
to balance performance with resource constraints.

3.4. Real-time and edge-based inference

Malware detection on edge devices such as routers, IoT
hubs or endpoint clients requires lightweight, efficient models.
Recent research explores the deployment of compact LLMs
(e.g., DistilBERT) on low-power hardware to provide near real-
time threat detection50. However, these models must address
strict limitations on compute, storage and energy. Techniques
such as model pruning, quantization and knowledge distillation
are widely used to compress DL architectures without significant
loss in performance. Public datasets such as Edge-IIoTset,
TON-IoT and CIC-IDS are commonly used to benchmark edge-
aware malware detection models.

3.5. Adversarial and robustness research

Adversarial machine learning remains central to DL security
research. Gibert, et al. proposed a randomized smoothing
technique for malware detection by dividing binaries into chunks
and aggregating their predictions51, significantly enhancing
model robustness against byte-level perturbations. Other work
explores interpretability-guided attacks, which exploit saliency
maps to find weak points in classifiers44. These developments
point toward more certifiable defenses, with many systems now
integrating adversarial training and explainability layers into
deployment pipelines.

3.6. Multitask and meta-learning

Emerging research also explores multitask learning (e.g.,
malware detection, family classification, behavior prediction)
and meta-learning, where models are trained to quickly adapt
to novel malware variants. These paradigms reduce data
requirements and training cycles, particularly useful in scenarios
with fast-moving threat landscapes. Each of these innovations in
federated learning, multimodal architectures, transformers, real-
time inference and adversarial robustness contributes to solving
critical limitations of current DL approaches and represents an

exciting evolution of the field.

4. Conclusion
Modern malware detection is undergoing a paradigm shift

driven by deep learning and hybrid analysis techniques. A
diverse array of architectures including CNNs, RNNs, GNNs,
Transformers and their combinations have demonstrated
impressive performance in static, dynamic and hybrid detection
pipelines. Benchmark datasets such as EMBER30, Drebin31 and
Malicia32 underpin much of this research. Notable case studies
such as WannaCry, TrickBot and Emotet underscore the evolving
sophistication of malware, necessitating robust and adaptable
detection systems. Yet, the challenges are formidable. Adversarial
evasion remains a high-priority threat52,45. Data scarcity,
especially for zero-days, continues to hinder generalization21.
Explainability is underdeveloped, limiting trust and adoption
in operational contexts21. Concept drift in malware behavior
demands models that adapt continuously to shifting attack
patterns47,53. Promisingly, the research community is responding.
Federated learning offers privacy-preserving training across
organizations46. Multimodal architectures capture richer feature
relationships12. Transformer models, particularly those adapted
for code or vision tasks, enable context-aware detection13.
Edge-aware inference expands deep learning coverage into
constrained environments54. These innovations point towards
a future of intelligent, autonomous and explainable malware
detection frameworks. Hybrid deep learning detectors that
integrate both static and dynamic perspectives have emerged as
a highly effective strategy. By balancing scalability, detection
accuracy and operational resilience, these models are well-
suited to address the complex and evolving nature of modern
malware threats.

5. References

1. Ayeni OA. Machine Learning Techniques for Automated
Malware Detection. International Journal of Cyber Security and
Digital Forensics, 2023.

2. Rajkumar T, Sapra P. Deep Learning for Malware Classification
and Detection. In Scalable Neural Network Models for High
Dimensional Data Analysis in Cyber Defense Applications,
2025.

3. Yousuf MI, Anwer I, Riasat A, et al. Windows malware detection
based on static analysis with multiple features. PeerJ Computer
Science, 2023;9: 1319.

4. Yuk CK, Seo CJ. Static analysis and machine learning-based
malware detection system using PE header feature values.
International Journal of Innovative Research and Scientific
Studies, 2022;5: 368-374.

5. Puranik PA. Static malware detection using deep neural
networks on portable executables (Master’s thesis, University of
Nevada, Las Vegas). UNLV Theses, Dissertations, Professional
Papers and Capstones, 2019.

6. Damodaran A, Di Troia F, Visaggio C, et al. A comparison of
static, dynamic and hybrid analysis for malware detection, 2017.

7. AliAhmad A, Eleyan D, Eleyan A, et al. Malware detection issues,
future trends and challenges: A survey. In 2023 International
Symposium on Networks, Computers and Communications
(ISNCC), 2023: 1-6.

8. Zhang Z, Qi P, Wang W. Dynamic malware analysis with feature
engineering and feature learning. In Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence. AAAI Press,
2020: 2756-2763.

https://infonomics-society.org/wp-content/uploads/A-Supervised-Machine-Learning-Algorithm-for-Detecting-Malware.pdf
https://infonomics-society.org/wp-content/uploads/A-Supervised-Machine-Learning-Algorithm-for-Detecting-Malware.pdf
https://infonomics-society.org/wp-content/uploads/A-Supervised-Machine-Learning-Algorithm-for-Detecting-Malware.pdf
https://www.rademics.com/upload/173985208716649932167b40937cd2b2preview%2012.pdf
https://www.rademics.com/upload/173985208716649932167b40937cd2b2preview%2012.pdf
https://www.rademics.com/upload/173985208716649932167b40937cd2b2preview%2012.pdf
https://www.rademics.com/upload/173985208716649932167b40937cd2b2preview%2012.pdf
https://doi.org/10.7717/peerj-cs.1319
https://doi.org/10.7717/peerj-cs.1319
https://doi.org/10.7717/peerj-cs.1319
https://doi.org/10.53894/ijirss.v5i4.690
https://doi.org/10.53894/ijirss.v5i4.690
https://doi.org/10.53894/ijirss.v5i4.690
https://doi.org/10.53894/ijirss.v5i4.690
https://doi.org/10.34917/16076285
https://doi.org/10.34917/16076285
https://doi.org/10.34917/16076285
https://doi.org/10.34917/16076285
https://arxiv.org/abs/2203.09938
https://arxiv.org/abs/2203.09938
https://doi.org/10.1109/ISNCC58260.2023.10323624
https://doi.org/10.1109/ISNCC58260.2023.10323624
https://doi.org/10.1109/ISNCC58260.2023.10323624
https://doi.org/10.1109/ISNCC58260.2023.10323624
https://ojs.aaai.org/index.php/AAAI/article/view/5665
https://ojs.aaai.org/index.php/AAAI/article/view/5665
https://ojs.aaai.org/index.php/AAAI/article/view/5665
https://ojs.aaai.org/index.php/AAAI/article/view/5665

7

Akerele S, et al., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3

9. Or-Meir O, Nissim N, Elovici Y, et al. Dynamic malware analysis
in the modern era-A state of the art survey. ACM Computing
Surveys, 2019;52(5).

10. Kang J, Won Y. A study on variant malware detection techniques
using static and dynamic features. Journal of Information
Processing Systems, 2020;16: 1396-1412.

11. Hussain M, Ab Razak MF. Deep learning-based hybrid analysis
of malware detection and classification. Journal of Cyber
Security and Mobility, 2023;12: 1-32.

12. Nazim S, Alam MM, Rizvi S, et al. Multimodal malware
classification using ensemble deep learning. Scientific Reports,
2025;15: 10567.

13. Alshomrani M, Albeshri A, Alturki B, et al. Survey of Transformer-
Based Malicious Software Detection Systems. Electronics,
2024;13: 4677.

14. Maniriho P, Mahmood AN, Chowdhury MJM. A survey of recent
advances in deep learning models for detecting malware in
desktop and mobile platforms. La Trobe University, 2024.

15. Raff E, Barker J, Sylvester J, et al. Malware detection by eating
a whole EXE. AAAI Workshop on AI for Cybersecurity, 2018.

16. Nataraj L, Karthikeyan S, Jacob G, et al. Malware images:
Visualization and automatic classification. VizSec, 2011;11.

17. Vemparala S. Malware detection using dynamic analysis
(Master’s project, San Jose State University). SJSU
ScholarWorks, 2015.

18. Alhaidari F, Abu Shaib N, Alsafi M, et al. ZeVigilante: Detecting
zero-day malware using machine learning and sandboxing
analysis techniques. Computational Intelligence and
Neuroscience, 2022: 15.

19. Kim H, Kim M. Malware detection and classification system
based on CNN-BiLSTM. Electronics, 2024;13: 2539.

20. Singh AK, Taterh S, Dadheech P. Dynamic feature-based
detection of malware in non-executable files using a 1D
convolutional neural network. Panamerican Mathematical
Journal, 2025;35: 678.

21. Song J, Zhang D, Wang J, et al. Application of deep learning in
malware detection: A review. Journal of Big Data, 2025;12.

22. Malhotra V, Potika K, Stamp M. A comparison of graph neural
networks for malware classification, 2023.

23. Bilot T, El Madhoun N, Al Agha K, et al. A survey on malware
detection with graph representation learning. Université
Paris-Saclay, CNRS, LISITE Laboratory, ISEP and Sorbonne
Université, 2024.

24. Li H, Li Z, Zhang S, et al. Malicious DNS detection by combining
improved transformer and CNN. Scientific Reports, 2024;14:
30248.

25. Ullah F, Alsirhani A, Alshahrani MM, et al. Explainable malware
detection system using transformers-based transfer learning
and multi-model visual representation. Sensors, 2022;22: 6766.

26. CISA & FBI. Joint Cybersecurity Advisory - AA21-076A - TrickBot
Malware, 2021.

27. U.S. Department of Health and Human Services (HHS).
TrickBot, Ryuk and the HPH Sector, 2020.

28. Reddy DAR, Mohan CB. Emotet: A sophisticated and persistent
malware for stealing information, its attack and prevention
strategies. International Research Journal of Engineering and
Technology (IRJET), 2023;10: 133-138.

29. Kuraku S, Kalla D. Emotet malware - A banking credentials
stealer. IOSR Journal of Computer Engineering (IOSR-JCE),
2020;22: 31-40.

30. Anderson HS, Roth P. Ember: an open dataset for training static
pe malware machine learning models, 2018.

31. Arp D, Spreitzenbarth M, Hubner M, et al. Drebin: Effective
and explainable detection of Android malware in your pocket.
In NDSS 2014 - Network and Distributed System Security
Symposium. Internet Society, 2014.

32. Nappa A, Rafique MZ, Caballero J. Driving in the Cloud: Analysis
of Drive-by Download Operations. DIMVA, 2013.

33. VirusShare. VirusShare.com malware sample repository, 2025.

34. VirusTotal. VirusTotal online malware analysis service, 2025.

35. Demirkıran F, Çayır A, Ünal U, et al. An ensemble of pre-trained
transformer models for imbalanced multiclass malware
classification. Computers & Security, 2022;121: 102846.

36. Kunwar P, Aryal K, Gupta M, et al. SoK: Leveraging transformers
for malware analysis. IEEE Transactions on Dependable and
Secure Computing, 2025.

37. Vasan D, Alazab M, Wassan S, et al. Image-based malware
classification using ensemble of CNN architectures (IMCEC).
Computers & Security, 2022;34: 1968-1983.

38. Falana OJ, Sodiya AS, Onashoga SA, et al. Mal-Detect: An
intelligent visualization approach for malware detection. Journal
of King Saud University - Computer and Information Sciences,
2022.

39. Prima B, Bouhorma M. Using transfer learning for malware
classification. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLIV-4/W3,
2020: 343-348.

40. Alsumaidaee YAM, Yahya MM, Yaseen AH. Optimizing Malware
Detection and Classification in Real-Time Using Hybrid Deep
Learning Approaches. International Journal of Safety and
Security Engineering, 15(1): 141-150.

41. Adamu U, Awan I, Younas M. Malware classification using deep
learning and ensemble framework. University of Bradford &
Oxford Brookes University, 2024.

42. Ahmed SMAA. Applying ensemble machine learning techniques
to malware detection. Journal of Information Systems
Engineering and Management, 2025;10.

43. Zhang L, Liu T, Shen K, et al. A novel approach to malicious
code detection using CNN-BiLSTM and feature fusion, 2024.

44. Li L. Comprehensive survey on adversarial examples in
cybersecurity, 2024.

45. Peng H, Yu Z, Zhao D, et al. Evading control flow graph-based
GNN malware detectors via active opcode insertion method with
maliciousness preserving, 2025.

46. Çıplak Z, Yıldız K, Altınkaya S. FEDetect: Federated learning-
based malware detection and classification. Applied Journal of
Computer Security and Electronic Forensics, 2025;3: 1-14.

47. Li AS, Iyengar A, Kundu A, et al. Revisiting concept drift in
Windows malware detection: Adaptation to real drifted malware
with minimal samples. In Proceedings of the Network and
Distributed System Security (NDSS) Symposium 2025: 240830.

48. Bavishi S, Modi S. Accelerating malware classification: A vision
transformer solution, 2024.

49. Rahali A, Akhloufi MA. MalBERTv2: Code aware BERT-based
model for malware identification. Big Data and Cognitive
Computing, 2023;7: 60.

50. Rondanini C, Carminati B, Ferrari E, et al. Malware detection
at the edge with lightweight LLMs: A performance evaluation,
2025.

51. Mukherjee K, Wiedemeier J, Wang T, et al. Evading provenance-
based ML detectors with adversarial system actions. In
Proceedings of the 32nd USENIX Security Symposium, 2023:
3535-3552.

https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481
https://doi.org/10.1145/3316481
https://xml.jips-k.org/full-text/view?doi=10.3745/JIPS.03.0145
https://xml.jips-k.org/full-text/view?doi=10.3745/JIPS.03.0145
https://xml.jips-k.org/full-text/view?doi=10.3745/JIPS.03.0145
https://journals.riverpublishers.com/index.php/JCSANDM/article/download/19273/19037/80473
https://journals.riverpublishers.com/index.php/JCSANDM/article/download/19273/19037/80473
https://journals.riverpublishers.com/index.php/JCSANDM/article/download/19273/19037/80473
https://pubmed.ncbi.nlm.nih.gov/40410526/
https://pubmed.ncbi.nlm.nih.gov/40410526/
https://pubmed.ncbi.nlm.nih.gov/40410526/
https://www.mdpi.com/2079-9292/13/23/4677
https://www.mdpi.com/2079-9292/13/23/4677
https://www.mdpi.com/2079-9292/13/23/4677
https://www.researchgate.net/publication/363402659_A_Survey_of_Recent_Advances_in_Deep_Learning_Models_for_Detecting_Malware_in_Desktop_and_Mobile_Platforms
https://www.researchgate.net/publication/363402659_A_Survey_of_Recent_Advances_in_Deep_Learning_Models_for_Detecting_Malware_in_Desktop_and_Mobile_Platforms
https://www.researchgate.net/publication/363402659_A_Survey_of_Recent_Advances_in_Deep_Learning_Models_for_Detecting_Malware_in_Desktop_and_Mobile_Platforms
https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
https://dl.acm.org/doi/10.1145/2016904.2016908
https://dl.acm.org/doi/10.1145/2016904.2016908
https://scholarworks.sjsu.edu/etd_projects/460
https://scholarworks.sjsu.edu/etd_projects/460
https://scholarworks.sjsu.edu/etd_projects/460
https://pubmed.ncbi.nlm.nih.gov/35586085/
https://pubmed.ncbi.nlm.nih.gov/35586085/
https://pubmed.ncbi.nlm.nih.gov/35586085/
https://pubmed.ncbi.nlm.nih.gov/35586085/
https://www.mdpi.com/2079-9292/13/13/2539
https://www.mdpi.com/2079-9292/13/13/2539
https://internationalpubls.com/index.php/pmj/article/view/3131
https://internationalpubls.com/index.php/pmj/article/view/3131
https://internationalpubls.com/index.php/pmj/article/view/3131
https://internationalpubls.com/index.php/pmj/article/view/3131
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01157-y
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01157-y
https://arxiv.org/abs/2303.12812
https://arxiv.org/abs/2303.12812
https://arxiv.org/abs/2303.16004
https://arxiv.org/abs/2303.16004
https://arxiv.org/abs/2303.16004
https://arxiv.org/abs/2303.16004
https://www.nature.com/articles/s41598-024-81189-1
https://www.nature.com/articles/s41598-024-81189-1
https://www.nature.com/articles/s41598-024-81189-1
https://doi.org/10.3390/s22186766
https://doi.org/10.3390/s22186766
https://doi.org/10.3390/s22186766
https://www.cisa.gov/sites/default/files/publications/AA21-076A-TrickBot_Malware_508.pdf
https://www.cisa.gov/sites/default/files/publications/AA21-076A-TrickBot_Malware_508.pdf
https://www.hhs.gov/sites/default/files/trickbot-ryuk-and-the-hph-sector.pdf
https://www.hhs.gov/sites/default/files/trickbot-ryuk-and-the-hph-sector.pdf
https://www.irjet.net/archives/V10/i4/IRJET-V10I422.pdf
https://www.irjet.net/archives/V10/i4/IRJET-V10I422.pdf
https://www.irjet.net/archives/V10/i4/IRJET-V10I422.pdf
https://www.irjet.net/archives/V10/i4/IRJET-V10I422.pdf
https://www.iosrjournals.org/iosr-jce/papers/Vol22-issue4/Series-2/F2204023141.pdf
https://www.iosrjournals.org/iosr-jce/papers/Vol22-issue4/Series-2/F2204023141.pdf
https://www.iosrjournals.org/iosr-jce/papers/Vol22-issue4/Series-2/F2204023141.pdf
https://arxiv.org/abs/1804.04637
https://arxiv.org/abs/1804.04637
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_3_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_3_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_3_1.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_3_1.pdf
https://techfromthenet.it/wp-content/uploads/2016/06/software.imdea_.org_juanca_papers_cloud_dimva13.pdf
https://techfromthenet.it/wp-content/uploads/2016/06/software.imdea_.org_juanca_papers_cloud_dimva13.pdf
https://virusshare.com/
https://www.virustotal.com/
https://doi.org/10.1016/j.cose.2022.102846
https://doi.org/10.1016/j.cose.2022.102846
https://doi.org/10.1016/j.cose.2022.102846
https://doi.org/10.1109/TDSC.2025.3576708
https://doi.org/10.1109/TDSC.2025.3576708
https://doi.org/10.1109/TDSC.2025.3576708
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1016/j.jksuci.2022.02.026
https://doi.org/10.1016/j.jksuci.2022.02.026
https://doi.org/10.1016/j.jksuci.2022.02.026
https://doi.org/10.1016/j.jksuci.2022.02.026
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020
https://doi.org/10.5194/isprs-archives-XLIV-4-W3-2020-343-2020
https://iieta.org/journals/ijsse/paper/10.18280/ijsse.150115
https://iieta.org/journals/ijsse/paper/10.18280/ijsse.150115
https://iieta.org/journals/ijsse/paper/10.18280/ijsse.150115
https://iieta.org/journals/ijsse/paper/10.18280/ijsse.150115
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4705897
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4705897
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4705897
https://www.jisem-journal.com/
https://www.jisem-journal.com/
https://www.jisem-journal.com/
https://doi.org/10.48550/arXiv.2410.09401
https://doi.org/10.48550/arXiv.2410.09401
https://pubmed.ncbi.nlm.nih.gov/40097459/
https://pubmed.ncbi.nlm.nih.gov/40097459/
https://pubmed.ncbi.nlm.nih.gov/40097459/
https://link.springer.com/article/10.1007/s13369-025-10043-x
https://link.springer.com/article/10.1007/s13369-025-10043-x
https://link.springer.com/article/10.1007/s13369-025-10043-x
https://dx.doi.org/10.14722/ndss.2025.240830
https://dx.doi.org/10.14722/ndss.2025.240830
https://dx.doi.org/10.14722/ndss.2025.240830
https://dx.doi.org/10.14722/ndss.2025.240830
https://doi.org/10.48550/arXiv.2409.19461
https://doi.org/10.48550/arXiv.2409.19461
https://www.mdpi.com/2504-2289/7/2/60
https://www.mdpi.com/2504-2289/7/2/60
https://www.mdpi.com/2504-2289/7/2/60
https://doi.org/10.48550/arXiv.2503.04302
https://doi.org/10.48550/arXiv.2503.04302
https://doi.org/10.48550/arXiv.2503.04302
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee
https://www.usenix.org/conference/usenixsecurity23/presentation/mukherjee

J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 3Akerele S, et al.,

8

52. Gibert D, Zizzo G, Le Q, et al. Adversarial Robustness of
Deep Learning-based Malware Detectors via (De)Randomized
Smoothing, 2024.

53. He Y, Lei J, Qin Z, et al. Going proactive and explanatory against
malware concept drift. Zhejiang University, 2024.

54. Zhang G, Guo W, Tan Z, et al. AMP4EC: Adaptive Model
Partitioning Framework for Efficient Deep Learning Inference in
Edge Computing Environments, 2025.

https://arxiv.org/abs/2402.15267
https://arxiv.org/abs/2402.15267
https://arxiv.org/abs/2402.15267
https://arxiv.org/html/2405.04095v1
https://arxiv.org/html/2405.04095v1
https://arxiv.org/abs/2504.00407
https://arxiv.org/abs/2504.00407
https://arxiv.org/abs/2504.00407

