
MLOps Without Borders: Fostering Synergy Across Data Science, Engineering, and
Operations

Ramakrishna Manchana*

Ramakrishna Manchana, Independent Researcher, Dallas, TX - 75040, USA

Citation: Manchana R. MLOps Without Borders: Fostering Synergy Across Data Science, Engineering, and Operations. J Artif
Intell Mach Learn & Data Sci 2024, 2(2), 1109-1118. DOI: doi.org/10.51219/JAIMLD/Ramakrishna-manchana/261

Received: 02 June, 2024; Accepted: 18 June, 2024; Published: 20 June, 2024

*Corresponding author: Ramakrishna Manchana, Independent Researcher, Dallas, TX - 75040, USA, E-mail: manchana.
ramakrishna@gmail.com

Copyright: © 2024 Manchana R., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 2 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Ramakrishna-manchana/261

 A B S T R A C T
Machine Learning Operations (MLOps) has emerged as a critical discipline for organizations seeking to harness the power

of machine learning (ML) at scale. However, many organizations grapple with siloed MLOps practices, hindering collaboration,
efficiency, and innovation. This paper explores the challenges of siloed MLOps, identifies common silos within organizations,
and proposes strategies to bridge these gaps. We delve into the components of MLOps, examine technology choices in cloud and
open-source environments, discuss implementation considerations, and highlight future trends in the field. By fostering synergy
in MLOps, organizations can accelerate model development, improve model performance and reliability, enhance scalability, and
achieve better governance, ultimately unlocking the full potential of ML.

Keywords: Machine Learning Operations (MLOps), Silos, Synergy, Collaboration, Cloud Computing, Open Source, Automation,
Scalability, Governance

1. Introduction
Machine learning (ML) has rapidly transformed industries,

from healthcare and finance to manufacturing and entertainment.
The ability to extract valuable insights and automate complex
tasks using ML models has become a competitive advantage.
However, the successful deployment and management of
ML models in production environments present significant
challenges.

Many organizations struggle with siloed MLOps practices,
where different teams (e.g., data scientists, engineers,
operations) work independently, leading to communication
breakdowns, duplicated efforts, and slower time-to-market for
ML models. This siloed approach often results in suboptimal
model performance, increased operational costs, and difficulties
in scaling ML initiatives.

MLOps, a set of practices that combines machine learning,
software engineering, and DevOps principles, offers a solution
to these challenges. By fostering collaboration, automation, and

continuous monitoring, MLOps aims to bridge the gaps between
different teams and streamline the entire ML lifecycle – from
model development to deployment and maintenance.

2. Literature Review
The importance of MLOps has been increasingly recognized

in both academic and industry literature. Early works, such as
that by Sculley et al. (2015), identified the concept of “technical
debt” in machine learning systems, emphasizing the need for
robust practices to manage the end-to-end lifecycle of ML
models. This study laid the foundation for understanding the
challenges associated with siloed MLOps practices, where
different teams work in isolation, leading to inefficiencies and
communication breakdowns.

Recent research has further explored the impact of these
silos on model performance and organizational agility. Ivanov,
Mazhelis, and Damaševičius (2021) conducted a comprehensive
study on the architecture and best practices of MLOps,
highlighting the benefits of adopting a holistic approach that

https://doi.org/10.51219/JAIMLD/Ramakrishna-manchana/261
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/Ramakrishna-manchana/261

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Manchana R.,

2

integrates data science, engineering, and operations. Their
findings suggest that organizations that embrace collaborative
MLOps practices can significantly reduce time-to-market for
ML models, improve model accuracy, and enhance scalability.

These studies underscore the critical role of collaboration in
successful MLOps implementation and provide a foundation for
the strategies and recommendations presented in this paper.

3. The MLOPS Paradigm
The MLOps paradigm is a holistic approach to managing

the end-to-end lifecycle of machine learning (ML) models in
production environments. It draws inspiration from DevOps
principles and practices, adapting them to the unique challenges
of ML development and deployment.

The core principles of the MLOps paradigm include:
•	 Collaboration: Fostering collaboration between data

scientists, engineers, and operations teams to ensure
seamless handoffs and shared responsibility throughout the
ML lifecycle.

•	 Automation: Automating repetitive and manual tasks, such
as model training, testing, deployment, and monitoring, to
improve efficiency, reduce errors, and accelerate time-to-
market.

•	 Continuous Integration and Continuous Delivery (CI/
CD): Implementing CI/CD pipelines to enable frequent and
reliable model updates, ensuring that models are always
up-to-date and performant.

•	 Monitoring and Observability: Continuously monitoring
model performance, drift, and anomalies in real-time to
proactively identify and address issues, ensuring model
reliability and accuracy.

•	 Reproducibility: Ensuring that ML experiments and
model training can be reproduced consistently, facilitating
collaboration, debugging, and auditing.

•	 Scalability: Designing ML systems that can scale
horizontally and vertically to meet changing demands and
handle large volumes of data and traffic.

•	 Governance: Implementing robust governance
mechanisms, such as model versioning, lineage tracking,
and access controls, to ensure compliance, accountability,
and trust in ML models.

•	 The MLOps paradigm emphasizes a shift from isolated,
manual processes to a collaborative, automated, and data-
driven approach to ML model development and deployment.
By adopting MLOps practices, organizations can:

•	 Accelerate time-to-market: Streamlined processes and
automation significantly reduce the time it takes to get
models into production, enabling faster innovation and
response to market needs.

•	 Improve model performance and reliability: Continuous
monitoring, feedback loops, and robust testing practices
ensure that models remain accurate, reliable, and performant
over time.

•	 Enhance scalability: Cloud-based and auto-scaling
infrastructure, combined with efficient resource utilization,
enable seamless scaling to meet changing demands.

•	 Strengthen governance: Model versioning, lineage
tracking, and access controls provide transparency,

accountability, and ensure compliance with regulatory
requirements.

4. Components
•	 MLOps encompasses a broad range of activities that span

the entire ML lifecycle. Key components include:
•	 Data Management: This involves data ingestion,

preparation, versioning, and the creation of feature stores to
ensure data quality and consistency.

•	 Model Development: Experiment tracking, model training,
and hyperparameter tuning are essential for developing
robust and accurate models.

•	 Model Validation and Testing: Model evaluation,
bias detection, and performance monitoring ensure that
models meet quality standards and comply with regulatory
requirements.

•	 Model Deployment: Continuous Integration/Continuous
Deployment (CI/CD) pipelines automate the deployment of
models, reducing manual errors and accelerating time-to-
market.

•	 Model Monitoring: Real-time monitoring of model
performance, drift detection, and anomaly detection enable
proactive interventions to maintain model accuracy and
address issues promptly.

•	 Model Governance: Auditing, compliance, and
explainability mechanisms ensure transparency,
accountability, and trust in ML models.

5. Productionzining Model
To illustrate the value of MLOps, let’s compare the process

of productionizing a model with and without MLOps practices:

Without MLOps:

•	 Development: Data scientists develop a model in isolation,
often using their preferred tools and environments, without
considering production requirements.

•	 Handoff: The model is handed off to engineering
for deployment, often with limited documentation or
understanding of the model’s intricacies.

•	 Deployment Challenges: Engineers struggle to replicate
the development environment, leading to errors, delays, and
potential model degradation.

•	 Monitoring Gaps: Model performance is monitored
sporadically, if at all, leading to undetected issues and
model degradation over time.

•	 Scaling Bottlenecks: Scaling the model to handle increased
traffic becomes a complex and time-consuming task, often
requiring manual intervention.

3

Manchana R., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

•	 Lack of Governance: Model updates and changes are often
ad-hoc, with limited tracking or version control, making it
difficult to reproduce results or ensure compliance.

With MLOps:

•	 Collaborative Development: Data scientists and engineers
collaborate from the outset, ensuring a smooth transition
from development to production and aligning the model
with production requirements.

•	 Automated Pipelines: CI/CD pipelines automate
model testing, deployment, and monitoring, reducing
manual errors, accelerating time-to-market, and ensuring
consistency.

•	 Reproducible Environments: Containerization and
infrastructure-as-code tools ensure consistent environments
across development, testing, and production, minimizing
the risk of deployment failures.

•	 Continuous Monitoring: Real-time monitoring tracks
model performance, drift, and anomalies, enabling
proactive interventions, model retraining, and continuous
improvement.

•	 Scalable Infrastructure: Cloud-based and auto-scaling
solutions enable seamless scaling to meet demand, ensuring
optimal performance and resource utilization.

•	 Robust Governance: Model versioning, lineage tracking,
and access controls provide transparency, accountability,
and ensure compliance with regulatory requirements.

The Value Add of MLOps:
The adoption of MLOps practices brings significant value to
organizations:
•	 Accelerated Time-to-Market: Automated pipelines and

streamlined processes significantly reduce the time it takes
to get models into production, enabling faster innovation
and response to market needs.

•	 Improved Model Performance: Continuous monitoring
and feedback loops help maintain model accuracy,
identify and address issues promptly, and ensure optimal
performance over time.

•	 Increased Reliability: Reproducible environments
and robust testing practices ensure that models perform
consistently across different environments, minimizing the
risk of unexpected failures.

•	 Enhanced Scalability: Cloud-based and auto-scaling
infrastructure enable seamless scaling to meet changing
demands, ensuring that models can handle increased traffic
without compromising performance.

•	 Stronger Governance: Model versioning, lineage tracking,
and access controls provide transparency, accountability,
and ensure compliance with regulatory requirements,
mitigating risks and building trust.

•	 Cost Savings: Automation and efficient resource utilization
reduce operational costs, optimize infrastructure usage, and
minimize manual intervention.

•	 Increased Innovation: By freeing data scientists and
engineers from manual tasks, MLOps fosters a culture of
experimentation and innovation, enabling teams to focus on
developing new models and improving existing ones.

6. Implementation
Implementing MLOps requires a combination of cultural

change, technological adoption, and process optimization.

•	 Cultural Change: Foster a collaborative mindset
across teams, breaking down silos and promoting shared
responsibility for the entire ML lifecycle.

•	 Platform Selection: Choose MLOps tools and platforms
that align with your organization’s specific needs, budget,
and technical expertise. Consider both cloud-based and
open-source options.

•	 Pilot Projects: Start with small-scale pilot projects to test
and refine your MLOps processes before scaling them
across the organization.

•	 Monitoring and Feedback: Continuously track MLOps
performance, gather feedback from stakeholders, and iterate
on your processes to ensure continuous improvement.

7. Technology Choices
Organizations have a variety of technology choices for

implementing MLOps, both in cloud environments and using
open-source tools.

I. Cloud Platforms

•	 AWS: Sage Maker provides a comprehensive suite of tools
for building, training, and deploying ML models. Step
Functions and Code Pipeline enable workflow orchestration
and CI/CD.

•	 Azure: Machine Learning offers a cloud-based workspace
for model development and deployment. ML Pipelines
automate ML workflows, and Azure DevOps integrates
with MLOps practices.

•	 GCP: Vertex AI provides a unified platform for building and
deploying ML models. Cloud Build and TFX (TensorFlow
Extended) offer CI/CD capabilities.

II. Open Source

•	 Kubeflow: An end-to-end MLOps platform built on
Kubernetes, providing a scalable and portable solution for
ML workflows.

•	 MLFlow: A platform for managing the ML lifecycle,
including experiment tracking, model packaging, and
deployment.

•	 Airflow: A workflow orchestration tool that can be used to
automate various MLOps tasks.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Manchana R.,

4

8. Opportunity Cost Analysis of MLOPS
Feature support with respective to ML Ops framework

Feature AWS (SageMaker, etc.) Azure (ML, etc.) GCP (Vertex AI, etc.) Kubeflow MLflow Airflow

Data Management ✓ ✓ ✓ ✓ ✓

Model Development ✓ ✓ ✓ ✓ ✓

Model Validation ✓ ✓ ✓ ✓ ✓

Model Deployment ✓ ✓ ✓ ✓ ✓

Model Monitoring ✓ ✓ ✓ ✓ ✓

Model Governance ✓ ✓ ✓ ✓

Experiment Tracking ✓ ✓ ✓ ✓ ✓

Workflow Orchestration ✓ ✓ ✓ ✓ ✓

Auto Scaling ✓ ✓ ✓ ✓

CI/CD Integration ✓ ✓ ✓ ✓ ✓ ✓

Managed Services ✓ ✓ ✓

Cost-Effective ✓ ✓ ✓

Flexibility ✓ ✓ ✓

Community Support ✓ ✓ ✓ ✓ ✓ ✓

Ease of Use ✓ ✓ ✓ ✓

Kubernetes Integration ✓ ✓ ✓ ✓

Use Case support with respective to ML Ops framework.

Use Case AWS (SageMaker, etc.) Azure (ML, etc.)GCP (Vertex AI, etc.) Kubeflow MLflow Airflow

Data Preparation & Versioning ✓ ✓ ✓ ✓ ✓

Model Training & Tuning ✓ ✓ ✓ ✓ ✓

Model Evaluation & Testing ✓ ✓ ✓ ✓ ✓

Model Deployment (Batch) ✓ ✓ ✓ ✓ ✓ ✓

Model Deployment (Real-time) ✓ ✓ ✓ ✓

Model Monitoring & Alerting ✓ ✓ ✓ ✓ ✓ ✓

Model Retraining ✓ ✓ ✓ ✓ ✓ ✓

Experiment Tracking ✓ ✓ ✓ ✓ ✓

Model Registry ✓ ✓ ✓ ✓ ✓

Feature Store ✓ ✓ ✓ ✓

Pipeline Orchestration ✓ ✓ ✓ ✓ ✓

Infrastructure as Code ✓ ✓ ✓ ✓

Collaboration & Governance ✓ ✓ ✓ ✓

9. Practicle Implementations: From Code to MLOPS
Frameworks

The following section explores the practical implementation
of the “Schedule Management in Construction Activities” use
case, both in the absence and presence of MLOps. The Python
code for this use case is available at GitHub repository and
primarily focuses on model development and evaluation. The
section will delve into how this code can be integrated into
different MLOps frameworks, including AWS SageMaker
& AWS CodePipeline, Azure ML Studio & Azure ML Ops
Pipelines, GCP Vertex AI, MLflow on AWS, and Kubeflow
on Azure, highlighting the specific tools and processes involved
in each scenario. The goal is to illustrate the advantages of
adopting MLOps practices for streamlined model deployment,
monitoring, and maintenance, ultimately leading to improved

efficiency and effectiveness in managing construction project
schedules.

I. Use Case Description:

•	 The goal is to predict potential delays in construction
projects using AI-driven project management tools.

•	 The model will analyze project schedules and construction
activity data to forecast schedule adherence and identify
potential delays.

•	 The anticipated benefits include timely project delivery and
cost savings.

II. Code walkthrough

a. Data Loading and Preparation:

•	 The code starts by loading a CSV file named schedule_

https://github.com/ramamanchana/project-management-case-studies/blob/main/003-schedule-management.py

5

Manchana R., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

management.csv. This file presumably contains the
project schedules, construction activity data, and schedule
adherence labels.

•	 The relevant columns (‘Project Schedules’ and ‘Construction
Activity Data’) are selected as input features (X), and the
‘Schedule Adherence’ column is used as the target variable
(y).

•	 The input features are standardized using StandardScaler
to ensure they have a mean of 0 and a standard deviation
of 1. This is often beneficial for many machine learning
algorithms.

•	 The data is split into training and testing sets using train_
test_split, with 80% of the data used for training and 20%
for testing.

b. Model Definition and Hyperparameter Tuning:

•	 A dictionary named models is defined, containing several
classification algorithms (Logistic Regression, Decision
Tree, Random Forest, etc.) as keys and their corresponding
instantiated objects as values.

•	 Another dictionary named param_grid defines the
hyperparameters and their possible values for each model
that will be tuned using grid search.

•	 The code uses KFold cross-validation with 5 splits to
evaluate the models.

•	 For each model in the model’s dictionary:

•	 If the model has hyperparameters defined in param_grid,
GridSearchCV is used to perform a grid search over the
specified hyperparameter values, using cross-validation
to find the best combination.

•	 The best model (either from grid search or the default
model if no hyperparameters were specified) is then
trained on the training data.

•	 Predictions are made on the test data, and performance
metrics (accuracy, confusion matrix, classification
report) are calculated and printed.

•	 The best model for each algorithm is stored in the best_
models dictionary.

C. Model Performance Visualization:

•	 The performance metrics for all models are collected and
converted into a DataFrame.

•	 A bar plot is created to visualize the accuracy of each model.
•	 The best-performing model (based on accuracy) is identified,

and its confusion matrix is plotted as a heatmap.
•	 If the best model has feature importances (applicable

to some models like tree-based algorithms), a bar plot is
created to visualize the importance of each feature.

III Implementation Step Without MLOps

a. Data Preparation:

•	 The provided code creates a sample dataset using pandas
and numpy to simulate project schedules, construction
activity data, and schedule adherence labels.

•	 In a real-world scenario, this data would likely be extracted
from project management systems, construction logs, and
other relevant sources.

•	 The data is then preprocessed by standardizing the input

features using StandardScaler.

b. Model Training and Evaluation:

•	 The code defines a dictionary of various classification
models (Logistic Regression, Decision Tree, Random
Forest, etc.).

•	 It uses train_test_split to divide the data into training and
testing sets.

•	 Hyperparameter tuning is performed using GridSearchCV
with k-fold cross-validation (KFold) to find the best model
and its optimal parameters.

•	 The models are evaluated based on accuracy, and the best-
performing model is selected.

•	 Performance metrics, including the confusion matrix and
classification report, are printed for the best model.

c. Manual Deployment & Monitoring:

•	 Once the best model is identified, it would be manually
deployed, likely as a web service or integrated into an
existing application.

•	 Monitoring the model’s performance in production and
triggering retraining would likely involve custom scripts or
ad-hoc processes.

IV. Implementation Steps with MLOps

Let’s explore how this use case can be implemented with
MLOps using the five technology stacks you mentioned.

1. AWS SageMaker & AWS CodePipeline

This section outlines how to leverage AWS SageMaker
for model development and training, and AWS CodePipeline
for automating the end-to-end ML workflow, including data
preparation, model deployment, and monitoring.

a. Data Preparation & Feature Engineering:

•	 Store the raw data in Amazon S3.
•	 Use SageMaker Processing Jobs to execute the data

preparation and feature engineering steps (e.g., scaling)
defined in the Python code.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Manchana R.,

6

c. Model Training & Experiment Tracking:

•	 Adapt the Python code to run as a SageMaker Training Job.

•	 Leverage SageMaker’s built-in hyperparameter tuning
capabilities or integrate with other tools like Hyperopt.

•	 Track experiments, metrics, and model artifacts using
SageMaker Experiments.

d. Model Deployment & Hosting:

•	 Register the best-performing model in the SageMaker
Model Registry.

•	 Deploy the model as a SageMaker Endpoint for real-time or
batch predictions.

CI/CD Pipeline with CodePipeline:

•	 Create a CodePipeline pipeline that orchestrates the entire
workflow.

•	 Include stages for data preparation, model training,
evaluation, and deployment to the SageMaker endpoint.

•	 Trigger the pipeline based on code changes, data updates,
or a schedule.

e. Monitoring & Retraining:

•	 Use SageMaker Model Monitor to track model performance,
detect data drift, and trigger alerts.

•	 Configure the CodePipeline to automatically retrain the
model when necessary, based on monitoring insights.

2. Azure ML Studio & Azure ML Ops Pipelines

This section details the implementation using Azure ML
Studio for experimentation and model training, along with Azure
ML Pipelines for orchestrating the entire MLOps workflow,
including data preparation, deployment, and monitoring.

a. Data Ingestion & Preparation:

•	 Upload the data to Azure ML datasets or datastores.
•	 Use Azure ML pipelines or the experimentation environment

for data preparation and feature engineering.

b. Model Training & Experiment Tracking:

•	 Adapt the Python code to run as an experiment within Azure
ML Studio.

•	 Leverage Azure ML compute resources for training and
hyperparameter tuning.

•	 Track experiments, metrics, and model artifacts within
Azure ML Studio.

c. Model Deployment & Hosting:

•	 Register the best model in the Azure ML Model Registry.

•	 Deploy the model as an Azure ML web service or to other
targets.

d. MLOps Pipeline with Azure ML Pipelines:

•	 Create an Azure ML pipeline to orchestrate the entire
workflow.

•	 Trigger the pipeline based on data changes, schedules, or
other events.

e. Monitoring & Retraining:

•	 Utilize Azure ML’s monitoring capabilities to track model
performance and detect data drift.

•	 Set up alerts to notify stakeholders of issues.
•	 Configure the pipeline to automatically retrain the model

based on monitoring insights.

3. GCP Vertex AI

This section explores how to utilize GCP Vertex AI for model
development, training, and deployment, along with Cloud Build
and TFX for creating automated pipelines and managing the ML
lifecycle.

a. Data Preparation & Feature Engineering:

•	 Store the data in Google Cloud Storage.

•	 Use Vertex AI Workbench or custom Python scripts for data
preparation and feature engineering.

b. Model Training & Experiment Tracking:

•	 Adapt the Python code to run as a Vertex AI training job.

•	 Leverage Vertex AI’s hyperparameter tuning capabilities.

•	 Track experiments, metrics, and models within Vertex AI
Experiments.

c. Model Deployment & Hosting:

•	 Register the best model in the Vertex AI Model Registry.

•	 Deploy the model as a Vertex AI Endpoint for online or
batch predictions.

d. MLOps Pipeline with Cloud Build & TFX:

•	 Create a Cloud Build pipeline to orchestrate the workflow.
•	 Integrate TFX (TensorFlow Extended) for more advanced

ML workflow management.
•	 Trigger the pipeline based on code changes, data updates,

or schedules.

e. Monitoring & Retraining:

•	 Use Vertex AI Model Monitoring to track model performance
and detect data drift.

7

Manchana R., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

•	 Configure the Cloud Build pipeline to automatically retrain
the model based on monitoring insights.

4. MLflow on AWS

This section demonstrates how to integrate MLflow with
AWS services for experiment tracking, model management,
and deployment. It also covers using AWS Step Functions for
pipeline orchestration and CloudWatch for monitoring.

a. Data Storage & Preparation:

•	 Store the data in Amazon S3.
•	 Perform data preparation steps using AWS Glue, AWS

Lambda, or other AWS services.
•	 Track data versions and lineage with MLflow.

b. Model Training & Experiment Tracking:

•	 Adapt the Python code to log parameters, metrics, and
models to MLflow Tracking Server.

•	 Execute training on EC2 instances or other AWS compute
resources.

•	 Leverage MLflow’s hyperparameter tuning capabilities or
integrate with other tools.

c. Model Deployment & Hosting:

•	 Register the best model in the MLflow Model Registry.
•	 Deploy the model to SageMaker endpoints, AWS Lambda,

or other targets.

d. MLOps Pipeline with AWS Step Functions:

•	 Use AWS Step Functions to create a pipeline that orchestrates
the workflow.

•	 Trigger the pipeline based on events or schedules.

e. Monitoring & Retraining:

•	 Use Amazon CloudWatch and MLflow’s model monitoring
capabilities to track model performance and trigger alerts.

•	 Configure the pipeline to retrain the model based on
monitoring insights.

5. Kubeflow on Azure

This section outlines the implementation using Kubeflow
on Azure Kubernetes Service (AKS) for end-to-end MLOps.
It covers data preparation, model training, deployment using
KFServing, and monitoring with Kubeflow Metadata and
Prometheus.

a. Data Storage & Preparation:

•	 Store the data in Azure Blob Storage or other Azure data
services.

•	 Use Kubeflow Pipelines for data preparation and feature
engineering.

b. Model Training & Experiment Tracking:

•	 Use Kubeflow Pipelines or Kubeflow Fairing to orchestrate
model training and experimentation.

•	 Leverage Azure Kubernetes Service (AKS) clusters for
training.

•	 Use Kubeflow’s Katib component for hyperparameter
tuning.

c. Model Deployment & Hosting:

•	 Register the best model in the Kubeflow Model Registry.
•	 Deploy the model using KFServing, Azure Container

Instances, or other deployment options.

d. MLOps Pipeline with Kubeflow Pipelines:

•	 Create and manage the entire ML workflow using Kubeflow
Pipelines.

•	 Trigger the pipeline based on events or schedules.

e. Monitoring & Retraining:

•	 Use Kubeflow Metadata for tracking model performance
and lineage.

•	 Integrate Prometheus and Grafana for monitoring and
visualization.

•	 Configure the pipeline to retrain the model based on
monitoring insights.

10. Ways of Model Deployment
As illustrated in the accompanying image, there are four primary
deployment models to consider:

1. Model deployment methods

a. Batch Deployment:

•	 Scenario: Predictions are generated offline in batches at
scheduled intervals or triggered by specific events.

•	 Implementation: The model is typically executed on a
powerful server or cluster, processing large datasets and
storing the results for later use. User requests may trigger
the retrieval of pre-computed predictions.

•	 Advantages: Cost-effective for handling large datasets,
suitable for non-real time use cases.

•	 Considerations: Lacks the immediacy required for
applications demanding instant predictions. MLOps can
help automate batch processing, scheduling, and result
storage.

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Manchana R.,

8

b. Real-time Deployment:

•	 Scenario: The model is served as a web service or API,
providing on-demand predictions in response to user
requests.

•	 Implementation: The model is typically containerized
and deployed on cloud infrastructure or dedicated servers,
ensuring high availability and scalability.

•	 Advantages: Low latency, high responsiveness, suitable for
applications requiring real-time interactions.

•	 Considerations: Can be resource-intensive, especially
during peak usage. Requires careful scaling and load
balancing. MLOps can automate deployment, scaling, and
monitoring of real-time endpoints.

c. Streaming Deployment:

•	 Scenario: The model handles continuous streams of data,
making predictions as new data arrives.

•	 Implementation: Streaming frameworks like Apache
Kafka or Apache Flink are often used to ingest and process
data streams. The model is typically deployed on a cluster
to handle high throughput.

•	 Advantages: High throughput, adaptable to changing data
patterns, ideal for real-time applications like fraud detection
or sensor data analysis.

•	 Considerations: Complex to implement and manage,
requires robust infrastructure and fault-tolerance
mechanisms. MLOps can help automate pipeline
management, model updates, and monitoring of streaming
applications.

d. Edge Deployment:

•	 Scenario: The model is deployed directly on edge devices
(smartphones, IoT devices) for on-device inference.

•	 Implementation: Models are optimized for size and
performance to run efficiently on resource-constrained
devices.

•	 Advantages: Minimal latency, reduced reliance on cloud
connectivity, suitable for applications with real-time
requirements and limited or intermittent network access.

•	 Considerations: Limited computational resources on edge
devices, model updates and management can be challenging.
MLOps can help streamline model optimization,
deployment, and updates to edge devices.

II. Choosing the Right Deployment Model

The optimal deployment strategy hinges on various factors,
including:

•	 Latency Requirements: Real-time or streaming deployment
for applications demanding immediate predictions.

•	 Data Volume: Batch deployment may be suitable for
handling large datasets processed offline.

•	 Computational Resources: Edge deployment requires
models optimized for resource-constrained devices.

•	 Network Connectivity: Edge deployment is ideal for
scenarios with limited or unreliable network access.

•	 Scalability: Real-time and streaming deployment require
scalable infrastructure to handle varying workloads.

III. MLOps and Deployment

Irrespective of the chosen deployment model, MLOps plays a
pivotal role in ensuring a smooth and efficient model deployment
process, along with ongoing monitoring and management.
MLOps practices facilitate:

•	 Automated Deployment: CI/CD pipelines automate
the deployment process, reducing manual errors and
accelerating time-to-market.

•	 Continuous Monitoring: Real-time monitoring tracks
model performance, detects drift or anomalies, and triggers
alerts for proactive interventions.

•	 Model Versioning: Maintaining a history of model versions
enables rollbacks and reproducibility.

•	 Scalability: MLOps infrastructure can be designed to scale
seamlessly to meet changing demands.

By incorporating MLOps principles, organizations can
effectively manage the complexities of ML model deployment
and ensure their models deliver optimal performance and value
in real-world applications.

11. Challenges and Limitations
Adopting and implementing MLOps comes with its own set of
challenges and limitations:

•	 Technical Complexity: MLOps involves a complex
ecosystem of tools, technologies, and processes. Integrating
these components, managing infrastructure, and ensuring
smooth workflows can be technically challenging, especially
for organizations with limited resources or experience.

•	 Data Quality and Management: The quality and
availability of data are critical for the success of ML models.
However, data management tasks, such as data collection,
cleaning, labeling, and versioning, can be time-consuming
and prone to errors. Ensuring data quality throughout the
ML lifecycle is a significant challenge.

•	 Model Monitoring and Maintenance: ML models can
degrade in performance over time due to changes in data
distribution or underlying patterns. Continuous monitoring
and maintenance of models, including retraining and
updating, can be resource-intensive and require specialized
expertise.

9

Manchana R., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

•	 Skill Gaps and Talent Shortages: MLOps requires a
unique blend of skills that combines machine learning,
software engineering, and DevOps expertise. Finding and
retaining talent with this diverse skill set can be a challenge
for many organizations.

•	 Organizational Silos: Collaboration between different
teams, such as data scientists, engineers, and operations,
is crucial for successful MLOps. However, organizational
silos can impede communication and hinder collaboration,
leading to delays and inefficiencies.

•	 Scalability and Performance: As ML models and datasets
grow in size and complexity, ensuring scalability and
performance becomes a challenge. MLOps infrastructure
needs to be able to handle large volumes of data and support
high-throughput model training and inference.

•	 Security and Compliance: ML models often process
sensitive data, making security and compliance a top
priority. Protecting data privacy, ensuring model fairness,
and complying with regulatory requirements are critical
challenges in MLOps.

12. Best Practices
To overcome these challenges and limitations, organizations can
adopt the following best practices:

•	 Establish a Clear MLOps Strategy: Define clear goals and
objectives for MLOps initiatives, aligning them with overall
business goals. Develop a roadmap for implementation,
prioritizing key areas based on organizational needs and
resources.

•	 Foster a Culture of Collaboration: Break down silos
between teams and encourage communication and
collaboration throughout the ML lifecycle. Implement
cross-functional MLOps teams with diverse skill sets to
ensure seamless handoffs and shared responsibility.

•	 Automate Wherever Possible: Automate repetitive and
manual tasks, such as data preprocessing, model training,
testing, deployment, and monitoring. This improves
efficiency, reduces errors, and frees up resources for more
strategic activities.

•	 Implement CI/CD Pipelines: Continuous Integration
and Continuous Delivery (CI/CD) pipelines automate the
building, testing, and deployment of ML models, enabling
rapid and reliable updates. This ensures that models are
always up-to-date and performant.

•	 Monitor and Maintain Models: Implement robust
monitoring and maintenance processes to track model
performance, detect drift, and identify anomalies. Establish
feedback loops to retrain and update models as needed to
ensure ongoing accuracy and reliability.

•	 Invest in Talent and Training: Invest in training and
development programs to upskill existing staff and attract
new talent with the required MLOps expertise. Encourage
continuous learning and knowledge sharing within the
organization.

•	 Leverage Cloud and Open-Source Tools: Utilize cloud
platforms and open-source tools that offer a wide range
of MLOps capabilities, from data management and model
training to deployment and monitoring. Choose tools that
align with your organization’s specific needs and budget.

•	 Prioritize Security and Compliance: Implement security
measures to protect sensitive data and ensure model fairness.
Comply with relevant regulations and industry standards to
mitigate risks and build trust in ML models.

•	 Focus on Scalability and Performance: Design MLOps
infrastructure with scalability in mind. Utilize cloud-based
or hybrid solutions that can easily scale to accommodate
growing data volumes and model complexity.

•	 Embrace a Data-Driven Approach: Use data and metrics
to drive decision-making in MLOps. Continuously monitor
and analyze model performance, feedback, and user
behavior to identify areas for improvement and optimize
ML workflows.

13. Future Trends
The field of MLOps is constantly evolving, with several
emerging trends shaping its future:

•	 Increased Automation: AutoML, automated model
deployment and monitoring, and other automation
technologies will further streamline the MLOps lifecycle,
reducing manual effort and accelerating time-to-market.

•	 Serverless MLOps: Leveraging serverless architectures for
scalability and cost efficiency will enable organizations to
deploy and manage ML models more effectively, especially
for unpredictable workloads.

•	 Edge MLOps: Deploying and managing models at the edge
for real-time inference will become increasingly important
as ML applications expand to IoT devices and other edge
computing environments.

•	 Explainable AI (XAI) and MLOps: Integrating XAI
into MLOps will become crucial to ensure transparency,
accountability.

•	 MLOps for Large Language Models (LLMs): As LLMs
like GPT-4 become more prevalent, MLOps practices will
need to adapt to address the unique challenges of deploying
and managing these massive models. This includes
developing efficient training and inference pipelines,
managing large datasets, and ensuring the ethical and
responsible use of LLMs.

•	 Real-time MLOps: The demand for real-time decision-
making and predictions will drive the adoption of MLOps
practices that enable rapid model updates and deployment.
This includes techniques like online learning, streaming
data processing, and continuous model retraining.

•	 MLOps for Responsible AI: As concerns about the ethical
implications of AI grow, MLOps will play a vital role in
ensuring that ML models are fair, unbiased, and transparent.
This involves incorporating fairness metrics into model
evaluation, monitoring for bias in real-time, and providing
explanations for model predictions.

•	 MLOps as a Service (MLaaS): The emergence of MLaaS
platforms will provide organizations with a convenient and
scalable way to adopt MLOps practices without having
to build and maintain their own infrastructure. This will
democratize access to MLOps and accelerate the adoption
of ML across industries.

14. Conclusion
In conclusion, MLOps has emerged as a critical discipline

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Manchana R.,

10

for organizations seeking to unlock the full potential of machine
learning. The transition from siloed MLOps to a synergistic
approach is essential for accelerating model development,
improving performance, and ensuring scalability and governance.
However, this transition requires a cultural shift, technological
adoption, and process optimization.

Organizations that embrace collaborative MLOps practices
will be better positioned to respond to market needs, innovate
more rapidly, and maintain a competitive edge in the age of
AI. As the field of MLOps continues to evolve, it is crucial for
organizations to stay ahead of emerging trends, such as increased
automation, serverless MLOps, and the rise of large language
models (LLMs).

We encourage organizations to take the first steps toward
implementing MLOps by establishing a clear strategy, fostering
collaboration, and investing in the necessary tools and talent. By
doing so, they can not only overcome the challenges of MLOps
but also unlock new opportunities for growth and innovation.

15. Glossary of Terms
•	 MLOps: Machine Learning Operations, a set of practices

that combines machine learning, software engineering, and
DevOps principles to manage the end-to-end lifecycle of
ML models in production environments.

•	 Silos: Isolated teams or departments within an organization
that operate independently and lack effective communication
and collaboration.

•	 Synergy: The interaction or cooperation of two or more
organizations, substances, or other agents to produce a
combined effect greater than the sum of their separate
effects.

•	 CI/CD: Continuous Integration/Continuous Delivery, a
software development practice that involves automating the
integration, testing, and deployment of code changes.

•	 AutoML: Automated Machine Learning, the process of
automating the tasks of applying machine learning to real-
world problems.

•	 Serverless Computing: A cloud computing execution
model in which the cloud provider allocates machine
resources on demand, taking care of the servers on behalf
of their customers.

•	 Edge ML: The practice of deploying and running ML
models on edge devices, such as smartphones, IoT devices,
and embedded systems.

•	 Explainable AI (XAI): A set of techniques and tools that
make it possible to understand and interpret the output of
machine learning models.

•	 Large Language Models (LLMs): A type of machine
learning model that has been trained on a massive dataset
of text and code and can generate text, translate languages,
write different kinds of creative content, and answer your
questions in an informative way.

16. References

1.	 Sculley D, Holt G, Golovin D, et al. Hidden technical debt in
machine learning systems. In Advances in neural information
processing systems, 2015; 2503-2511.

2.	 Ivanov I, Mazhelis V, Damaševičius R. Machine learning
operations (MLOps): Overview, definition, and architecture.
Electronics, 2021; 10: 321.

	_GoBack
	_GoBack

