
Mitigating Duplicate Message Processing in Microservice Architectures: An
Idempotent Consumer Approach

Purshotam S Yadav1* and Arjun Mantri2

1Principal Software Engineer Georgia Institute of Technology, Dallas, USA

2Independent Researcher Bellevue, USA

Citation: Yadav PS, Mantri A. Mitigating Duplicate Message Processing in Microservice Architectures: An Idempotent Consumer
Approach. J Artif Intell Mach Learn & Data Sci 2024, 1(1), 887-891. DOI: doi.org/10.51219/JAIMLD/purshotam-s-yadav/214

Received: 03 January, 2024; Accepted: 28 January, 2024; Published: 30 January, 2024

*Corresponding author: Principal Software Engineer Georgia Institute of Technology, Dallas, USA, E-mail: Purshotam.yadav@
gmail.com

Copyright: © 2024 Yadav PS, et al., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/purshotam-s-yadav/214

 A B S T R A C T
In microservice architectures, message duplication is a common challenge that can lead to data inconsistencies and operational

errors. This paper explores the use of the Idempotent Consumer as a solution to handle duplicate messages effectively. We examine
the principles behind idempotency, various implementation strategies, and their application in microservice environments. A
case study of a payment processing microservice demonstrates the practical implementation of the Idempotent Consumer. The
research concludes by discussing the benefits and challenges of this approach, highlighting its significance in building robust and
reliable distributed systems.

Keywords: Microservices, Cloud computing, Distributed systems, Transaction management, Consistency, Scalability, Data
integrity, Cloud-native applications, Distributed databases, Atomicity, Service-oriented architecture (SOA)

1. Introduction
Microservice architectures have gained significant

popularity in recent years due to their ability to enhance
scalability, flexibility, and maintainability of complex
applications. However, this distributed nature introduces new
challenges, one of which is the handling of duplicate messages.
In a microservice ecosystem, where components communicate
asynchronously through message queues or event streams, the
possibility of message duplication becomes a critical concern.
Duplicate messages can arise from various scenarios, such as
network issues, retry mechanisms, or distributed transaction
management. When not properly handled, these duplicates can
lead to data inconsistencies, incorrect business logic execution,
or unnecessary resource consumption. To address this challenge,
the concept of idempotency and, more specifically, the
Idempotent Consumer has emerged as a powerful solution.

This research paper aims to provide a comprehensive
analysis of the Idempotent Consumer pattern and its application
in microservice architectures. We will explore the underlying
principles of idempotency, examine different implementation
strategies, and discuss how this pattern can be effectively applied
to handle duplicate messages in distributed systems.

The paper is structured as follows: First, we provide
background information on microservices architecture, the
message duplication problem, and the concept of idempotency.
Next, we delve into the Idempotent Consumer pattern, discussing
its definition, principles, and implementation strategies. We then
explore the application of this pattern in microservices, focusing
on message deduplication techniques, state management, and
considerations specific to distributed systems.

To illustrate the practical implementation of the Idempotent
Consumer, we present a case study of a payment processing

https://orcid.org/0009-0009-2628-4711
https://orcid.org/0009-0005-7715-0108
https://doi.org/10.51219/JAIMLD/purshotam-s-yadav/214
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/purshotam-s-yadav/214

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Yadav PS, et al.,

2

microservice. This example demonstrates how the pattern can be
applied to ensure that duplicate payment requests do not result in
multiple charges or inconsistent transaction records. Finally, we
discuss the benefits and challenges associated with implementing
the Idempotent Consumer pattern in microservice architectures.
The paper concludes by summarizing the key findings and
highlighting the importance of this pattern in building resilient
and reliable distributed systems. Through this research, we aim
to provide software architects, developers, and system designers
with valuable insights and practical guidance on effectively
handling duplicate messages in microservice environments
using the Idempotent Consumer pattern.

2. Background
2.1. Microservices Architecture

Microservices architecture is a software design approach
where an application is structured as a collection of loosely
coupled, independently deployable services. Each service is
focused on a specific business capability and communicates
with other services through well-defined APIs. This architectural
style offers several advantages, including:

1. Scalability: Individual services can be scaled
independently based on demand.

2. Flexibility: Services can be developed, deployed, and
maintained separately.

3. Technology diversity: Different services can use
different technologies and programming languages.

4. Fault isolation: Failures in one service are less likely to
affect the entire system.

However, the distributed nature of microservices also
introduces complexities, particularly in terms of data consistency
and message handling across services.

2.2. Message duplication problem

In microservice environments, services often communicate
asynchronously through message queues or event streaming
platforms. This approach decouples services and improves
system resilience, but it also introduces the possibility of
message duplication. Duplicate messages can occur due to
various reasons:

1. Network issues: Temporary network failures may cause
message brokers to resend messages.

2. Retry mechanisms: Application-level retry logic might
resend messages if acknowledgments are not received.

3. At-least-once delivery guarantees: Some messaging
systems prioritize message delivery over duplication
prevention.

4. Distributed transaction management: Two-phase
commit protocols can lead to message duplication in failure
scenarios.

The impact of processing duplicate messages can be severe,
potentially leading to:

1. Data inconsistencies: e.g., double-counting financial
transactions.

2. Unnecessary resource consumption: Processing the
same request multiple times.

3. Incorrect business logic execution: e.g., sending
multiple notifications for a single event.

2.3. Idempotency concept

Idempotency is a property of certain operations in
mathematics and computer science. An operation is considered
idempotent if it can be applied multiple times without changing
the result beyond the initial application. In the context of
distributed systems and microservices, idempotency refers to the
ability of a service to handle duplicate requests without adverse
effects.

Key characteristics of idempotent operations include:

1. Repeatability: The operation can be repeated without
causing unintended side effects.

2. Consistency: The system state remains consistent regardless
of how many times the operation is performed.

3. Safety: Multiple invocations of the operation do not lead to
errors or data corruption.

Understanding and implementing idempotency is crucial
for building robust microservices that can handle message
duplication gracefully. This leads us to the Idempotent Consumer
pattern, which provides a structured approach to achieving
idempotency in message-driven systems.

3. The Idempotent Consumer
3.1. Definition and Principles

The Idempotent Consumer is a design approach that enables
a service to handle duplicate messages safely and consistently.
This pattern ensures that processing a message multiple times
has the same effect as processing it once, thereby maintaining
system integrity in the face of message duplication.

Key principles of the Idempotent Consumer include:

1. Unique Message Identification: Each message must have
a unique identifier that persists across retries or duplications.

2. State Tracking: The service maintains a record of processed
messages using their unique identifiers.

3. Conditional Processing: Before processing a message, the
service checks if it has already been processed.

4. Atomic Operations: Message processing and state updates
should be performed atomically to prevent inconsistencies.

5. Idempotent Actions: The actual business logic triggered by
the message should be designed to be idempotent.

3.2. Implementation Strategies

There are several strategies for implementing the Idempotent
Consumer:

1. Natural Idempotency: Some operations are naturally
idempotent (e.g., setting a value, deleting a record). For these,
simple retry mechanisms may suffice.

2. Deduplication Table:

• Maintain a table of processed message IDs.
• Before processing, check if the ID exists in the table.
• If not, process the message and add the ID to the table.

3. Status Field:

• Add a status field to the affected entities.
• Use the status to determine if an operation has already

been applied.

3

Yadav PS, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

• Update the status atomically with the operation.

4. Version Number:

• Assign a version number to each entity.
• Include the expected version in the message.
• Process the message only if the versions match.

5. Idempotency Key:

• Clients generate a unique key for each logical operation.
• The server uses this key to detect and handle duplicates.

6. Event Sourcing:

• Store all changes as a sequence of events.
• Design events to be idempotent when replayed.

7. Distributed Locks:

• Acquire a distributed lock based on the message ID.
• Process the message only if the lock is acquired.

Each strategy has its trade-offs in terms of complexity,
performance, and storage requirements. The choice depends
on the specific requirements of the system and the nature of the
operations being performed.

4. Applying Idempotent Consumer In Microservices
4.1. Message deduplication techniques

In microservice architectures, message deduplication is
crucial for implementing the Idempotent Consumer pattern.
Common techniques include:

1. In-Memory Caching:

• Store recently processed message IDs in a distributed
cache.

• Suitable for high-throughput systems with short
deduplication windows.

2. Persistent Storage:

• Use a database to store processed message IDs.
• Provides durability but may introduce performance

overhead.

3. Bloom Filters:

• Use probabilistic data structures for efficient set membership
testing.

• Can result in false positives but never false negatives.

4. Message Broker Features:

• Leverage built-in deduplication features of message brokers
(e.g., Apache Kafka’s idempotent producer).

4.2. State Management

• Effective state management is critical for implementing
idempotency:

1. Eventual Consistency:

• Accept that duplicate processing may occur and design
systems to converge to a consistent state.

2. Transactional Outbox Pattern:

• Store outgoing messages in a database table as part of the
business transaction.

• A separate process reads from this table and sends the
messages.

3. Saga Pattern:

• Implement long-running transactions as a sequence of local
transactions.

• Design compensating actions for each step to handle failures
and duplicates.

4.3. Distributed Systems Considerations

When applying the Idempotent Consumer in distributed
microservices:

1. Consensus Algorithms:

• Use algorithms like Paxos or Raft for distributed agreement
on message processing status.

2. CAP Theorem Trade-offs:

• Consider the balance between consistency, availability, and
partition tolerance when designing idempotent systems.

3. Clock Synchronization:

• Be aware of clock skew issues when using timestamps for
deduplication.

4. Scalability:

• Design deduplication mechanisms that can scale
horizontally with the system.

5. Message Ordering:

• Consider how to handle message ordering when
implementing idempotency, especially for event- driven
architectures.

5. Case Study: Implementing Idempotent Consumer in
a Payment Processing Microservice

To illustrate the application of the Idempotent Consumer
pattern, let’s consider a payment processing microservice within
an e-commerce system. This service is responsible for handling
payment requests, which must be processed exactly once to
avoid double-charging customers or missing payments.

5.1. System Overview

The payment processing microservice:

• Receives payment requests via a message queue

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Yadav PS, et al.,

4

• Processes payments through a third-party payment gateway
• Updates the order status in a database
• Sends confirmation messages to other services

5.2. Challenge

The main challenge is to ensure that each payment is
processed exactly once, even in the face of message duplication,
network issues, or service restarts.

5.3. Implementation

We’ll implement the Idempotent Consumer using a
combination of techniques:

• Unique Message Identification: Each payment request
message includes a unique requestId generated by the client.

• Deduplication Table: We’ll use a database table to
track processed requests:

• Idempotent Processing Logic: Here’s a pseudocode
representation of the payment processing logic:

4. Error Handling and Retries:

• If the payment gateway times out, we’ll retry the operation
using an exponential backoff strategy.

• If the payment gateway confirms the payment but the
service crashes before recording it, the deduplication table
will prevent double charging on retry.

5. Cleanup Strategy

To prevent unbounded growth of the processed_payments table:

• Implement a periodic cleanup job to remove entries older
than a defined retention period (e.g., 30 days).

• Use a rolling window approach for high-volume systems,
maintaining only recent entries.

6. Results
This implementation of the Idempotent Consumer ensures that:

• Duplicate payment requests are safely handled without
double-charging.

• The system is resilient to failures at any point in the process.
• The payment status remains consistent across retries and

service restarts.

7. Considerations
• Performance: The additional database operations introduce

some overhead, which may need optimization for high-
throughput scenarios.

• Scalability: The deduplication table may become a
bottleneck and might require sharding for very large-scale
systems.

• Data Retention: Balancing between keeping sufficient
history for auditing and managing storage costs.

8. Benefits and Challenges
8.1. Benefits

• Data Consistency: The Idempotent Consumer pattern
ensures that operations are applied only once, maintaining
data integrity even in the face of message duplication or
retries.

• System Reliability: By handling duplicate messages
gracefully, the system becomes more resilient to network
issues, service failures, and other disruptions.

• Simplified Error Handling: With idempotent operations,
retry mechanisms can be implemented more confidently, as
repeating an operation won’t cause unintended side effects.

• Improved User Experience: Prevents issues like double-
charging or duplicate order processing, which can
significantly impact user satisfaction.

• Decoupled Services: Allows services to operate more
independently, as they can trust that their messages will be
processed correctly even if duplicated.

• Audit Trail: The tracking of processed messages can serve
as an audit trail, useful for debugging and compliance
purposes.

• Scalability: Enables more effective horizontal scaling of
services, as multiple instances can handle the same message
without conflicts.

8.2. Challenges

• Implementation Complexity: Implementing idempotency
often requires additional code and infrastructure, increasing
system complexity.

• Performance Overhead: Checking for duplicate messages
and maintaining state can introduce latency and increase
resource usage.

• Storage Requirements: Keeping track of processed
messages requires additional storage, which can be
significant for high-volume systems.

• Distributed State Management: In a distributed system,
managing the state of processed messages across multiple
nodes can be challenging.

• Message Ordering: Ensuring correct message ordering
while implementing idempotency can be complex, especially
in distributed environments.

• Time Window Management: Determining how long to
keep records of processed messages involves trade-offs
between resource usage and the ability to detect duplicates.

5

Yadav PS, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

• Partial Failures: Handling scenarios where a message is
partially processed before a failure occurs can be complex
and may require compensating actions.

• Testing Complexity: Thoroughly testing idempotent
systems often requires simulating various failure scenarios
and message duplication patterns.

• Integration with Legacy Systems: Implementing
idempotency in systems that weren’t originally designed for
it can be challenging and may require significant refactoring.

• Eventual Consistency: In some implementations, there may
be a period of inconsistency before the system converges to
the correct state, which needs to be managed carefully.

9. Conclusion
The Idempotent Consumer is a powerful approach for

handling duplicate messages in microservice architectures.
By ensuring that operations can be safely repeated without
unintended consequences, it addresses one of the key challenges
in distributed systems: maintaining data consistency in the face
of message duplication and retries.

Throughout this paper, we have explored the principles behind
the Idempotent Consumer pattern, various implementation
strategies, and its practical application in microservices. The
case study of a payment processing service demonstrated how
this pattern can be effectively implemented to solve real-world
problems.

While the benefits of using the Idempotent Consumer
pattern are significant, including improved data consistency,
system reliability, and simplified error handling, it’s important
to acknowledge the challenges. These include increased
implementation complexity, potential performance overhead,
and the need for careful state management.

As microservice architectures continue to evolve and become
more prevalent, the importance of patterns like the Idempotent
Consumer will only grow. Developers and architects should
consider this pattern as a valuable tool in their design arsenal,
particularly for systems where data consistency and reliability
are critical.

Future research in this area could focus on optimizing
performance for high-throughput systems, exploring novel
approaches to distributed state management, and developing
tools and frameworks to simplify the implementation of
idempotent consumers.

In conclusion, while implementing the Idempotent Consumer
requires careful consideration and design, its benefits in creating
robust, reliable, and consistent microservice systems make it an
invaluable approach in modern distributed architectures.

10. References

1. Davis J, Daniels R. Effective DevOps: Building a Culture of
Collaboration, Affinity, and Tooling at Scale. O’Reilly Media
2016.

2. Waseem M, Liang P, Ahmad A, Shahin M, Khan AA, Márquez
G. Decision models for selecting patterns and strategies in
microservices systems and their evaluation by practitioners.
Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP ‘22)
2022; 135-144.

3. Nygard MT. Release It!: Design and deploy production- ready
software. Pragmatic Bookshelf 2018.

4. Vernon V. Domain-Driven Design Distilled. Addison-Wesley
Professional 2016.

5. Aksakalli K, Celik T, Can AB, Tekinerdogan B. Systematic
Approach for Generation of Feasible Deployment Alternatives
for Microservices. IEEE Access 2021;9: 92964-92979.

6. Fan P, Liu J, Yin W, Wang H, Chen X, Sun H. 2PC*: A distributed
transaction concurrency control protocol of multi- microservice
based on cloud computing platform. J Cloud Computing 2020;9:
1-17.

7. Newman S. Building Microservices: Designing fine-grained
systems. O’Reilly Media 2021.

8. Kleppmann M. Designing Data-Intensive Applications. O’Reilly
Media 2017.

9. Richardson C. Microservices Patterns: With Examples in Java.
Manning Publications 2019.

10. Narkhede N, Shapira G, Palino T. Kafka: The Definitive Guide.
O’Reilly Media 2017.

11. Burns B. Designing Distributed Systems: Patterns and
paradigms for scalable, reliable services. O’Reilly Media 2018.

12. Fielding RT. Architectural styles and the design of network-
based software architectures. University of California 2000.

13. Hohpe G, Woolf B. Enterprise integration patterns: Designing,
building, and deploying messaging solutions. Addison- Wesley
2003.

https://www.amazon.in/Effective-DevOps-Building-Collaboration-Affinity-ebook/dp/B01GGQKXOE
https://www.amazon.in/Effective-DevOps-Building-Collaboration-Affinity-ebook/dp/B01GGQKXOE
https://www.amazon.in/Effective-DevOps-Building-Collaboration-Affinity-ebook/dp/B01GGQKXOE
https://ieeexplore.ieee.org/document/9793911
https://ieeexplore.ieee.org/document/9793911
https://ieeexplore.ieee.org/document/9793911
https://ieeexplore.ieee.org/document/9793911
https://ieeexplore.ieee.org/document/9793911
https://ieeexplore.ieee.org/document/9793911
https://www.amazon.in/Release-Design-Deploy-Production-Ready-Software-ebook/dp/B079YWMY2V
https://www.amazon.in/Release-Design-Deploy-Production-Ready-Software-ebook/dp/B079YWMY2V
https://www.amazon.in/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
https://www.amazon.in/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
https://ieeexplore.ieee.org/document/9348889
https://ieeexplore.ieee.org/document/9348889
https://ieeexplore.ieee.org/document/9348889
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-00183-w
https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018/
https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.amazon.in/Microservice-Patterns-examples-Chris-Richardson/dp/1617294543
https://www.amazon.in/Microservice-Patterns-examples-Chris-Richardson/dp/1617294543
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/designing-distributed-systems/9781491983638/
https://www.oreilly.com/library/view/designing-distributed-systems/9781491983638/
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://github.com/ivanarandac/Books/blob/master/Enterprise%20Integration%20Patterns%20-%20Designing%2C%20Building%20And%20Deploying%20Messaging.pdf
https://github.com/ivanarandac/Books/blob/master/Enterprise%20Integration%20Patterns%20-%20Designing%2C%20Building%20And%20Deploying%20Messaging.pdf
https://github.com/ivanarandac/Books/blob/master/Enterprise%20Integration%20Patterns%20-%20Designing%2C%20Building%20And%20Deploying%20Messaging.pdf

	_GoBack
	_GoBack
	II.__BACKGROUND
	A.__Microservices_Architecture
	1)_Scalability:_Individual_services_can_
	2)_Flexibility:_Services_can_be_develope
	3)_Technology_diversity:_Different_servi
	4)_Fault_isolation:_Failures_in_one_serv
	B.__Message_Duplication_Problem
	1)_Network_issues:_Temporary_network_fai
	2)_Retry_mechanisms:_Application-level_r
	3)_At-least-once_delivery_guarantees:_So
	4)_Distributed_transaction_management:_T
	1)_Data_inconsistencies:_e.g.,_double-co
	3)_Incorrect_business_logic_execution:_e
	C.__Idempotency_Concept
	1)_Repeatability:_The_operation_can_be_r
	2)_Consistency:_The_system_state_remains
	3)_Safety:_Multiple_invocations_of_the_o
	III._The_Idempotent_Consumer
	A._Definition_and_Principles
	1)_Unique_Message_Identification:_Each_m
	2)_State_Tracking:_The_service_maintains
	3)_Conditional_Processing:_Before_proces
	4)_Atomic_Operations:_Message_processing
	5)_Idempotent_Actions:_The_actual_busine
	B.__Implementation_Strategies
	1)_Natural_Idempotency:_Some_operations_
	2)_Deduplication_Table:
	3)_Status_Field:
	4)_Version_Number:
	5)_Idempotency_Key:
	6)_Event_Sourcing:
	7)_Distributed_Locks:
	IV._Applying_Idempotent_Consumer_in_Micr
	A._Message_Deduplication_Techniques
	1)_In-Memory_Caching:
	2)_Persistent_Storage:
	3)_Bloom_Filters:
	4)_Message_Broker_Features:
	B.__State_Management
	1)_Eventual_Consistency:
	2)_Transactional_Outbox_Pattern:
	3)_Saga_Pattern:
	C._Distributed_Systems_Considerations
	1)_Consensus_Algorithms:
	2)_CAP_Theorem_Trade-offs:
	3)_Clock_Synchronization:
	4)_Scalability:
	5)_Message_Ordering:
	_GoBack
	V._Case_Study:_Implementing_Idempotent_C
	A._System_Overview
	B._Challenge
	C._Implementation
	4)_Error_Handling_and_Retries:
	5)_Cleanup_Strategy:_To_prevent_unbounde
	VI._Results
	VII._Considerations
	VIII._Benefits_and_Challenges
	A.__Benefits
	1)_Data_Consistency:_The_Idempotent_Cons
	2)_System_Reliability:_By_handling_dupli
	3)_Simplified_Error_Handling:_With_idemp
	4)_Improved_User_Experience:_Prevents_is
	5)_Decoupled_Services:_Allows_services_t
	6)_Audit_Trail:_The_tracking_of_processe
	7)_Scalability:_Enables_more_effective_h
	B._Challenges
	1)_Implementation_Complexity:_Implementi
	2)_Performance_Overhead:_Checking_for_du
	3)_Storage_Requirements:_Keeping_track_o
	4)_Distributed_State_Management:_In_a_di
	5)_Message_Ordering:_Ensuring_correct_me
	6)_Time_Window_Management:_Determining_h
	7)_Partial_Failures:_Handling_scenarios_
	8)_Testing_Complexity:_Thoroughly_testin
	9)_Integration_with_Legacy_Systems:_Impl
	10)_Eventual_Consistency:_In_some_implem
	IX._Conclusion

