
Micro frontend Client Application Observability and Operational Telemetry 
Approaches and Patterns

Tanmaya Gaur*

Tanmaya Gaur, Bachelor of Engineering (Electronics and Telecommunication), Birla Institute of Applied Sciences, USA

Citation: Gaur T. Micro frontend Client Application Observability and Operational Telemetry Approaches and Patterns. J Artif 
Intell Mach Learn & Data Sci 2024, 2(3), 1441-1445. DOI: doi.org/10.51219/JAIMLD/tanmaya-gaur/327

Received: 03 August, 2024; Accepted: 28 August, 2024; Published: 30 August, 2024

*Corresponding author: Tanmaya Gaur, Bachelor of Engineering (Electronics and Telecommunication), Birla Institute of 
Applied Sciences, USA, E-mail: tanmay.gaur@gmail.com

Copyright: © 2024 Gaur T., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 2 & Iss: 3

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/tanmaya-gaur/327

1. Introduction
Observability is how different stakeholders of a software 

understand its health. In control theory, observability is defined 
specifically geared towards engineers, referring to how engineers 
can infer the internal states of a system from knowledge of that 
system’s external outputs. Overall, this provides a proactive 
approach to analyse and optimize their system based on the 
data it generates. Most modern systems are complex and are 
developed and deployed at significant scale. Often these systems 

are distributed deployments and an observability platform is 
crucial to keep operations manageable.

Observability platforms provide a real-time view of the 
health of a system, most often from an operational perspective. 
These platforms traditionally provide an overall solution 
suite with ability to collect, store, analyse and visualize logs, 
other metrics and if required, traces. These help engineers and 
other stakeholders dive into applications and infrastructure to 
understand system behaviour either to resolve issues or for 

 A B S T R A C T 
Micro-frontends extend the concept of micro-services to the world of UI. The idea behind building applications as Micro 

Frontend is to develop the experience as a composition of features which are owned and developed completely isolated and 
by independent teams. These micro-experiences are then strung together either at run-time or build-time to deliver a single 
cohesive application experience to the end user.

In IT and cloud computing, observability is the ability to measure a system’s current state based on the data it generates, such 
as logs, metrics and traces. Specific to UI applications, this refers to gaining a full understanding of how the application operates 
in real-time when a consumer interacts with it.

Telemetry is often used to refer to the process of collecting and transmitting data from systems, such as logs, metrics and 
traces. Telemetry data can be used to understand how a system performs and behaves. So, while Telemetry is the collection of 
data from systems, observability is the process of analyzing that data to understand how a system works. Operational Telemetry 
refers to the specific data collection that is required by application support and engineering teams looking to debug and triage or 
ascertain application performance in a development or production environment. 

Traditional application development has some well-defined options to solution observability and operational telemetry. This 
paper will dive into a high-level understanding of the options for telemetry, observability and specific intricacies of building a 
holistic observability solution for micro-frontends. 

Keywords: Telemetry, Observability, Web development, Micro-frontend, Composable Architecture

https://doi.org/10.51219/JAIMLD/tanmaya-gaur/327
https://doi.org/10.51219/JAIMLD/satyadeepak-bollineni/296
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/tanmaya-gaur/327


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Gaur T.,

2

better understanding the system for optimization.

There are often different stakeholders for an application 
who want data collected about application operations, activity 
and performance. These stakeholders often have their specific 
concerns and differing requirements based on those concerns. 
At a macro level, these concerns may be divided as coming from 
the product, business, production operations and development 
teams. The operational teams may have different concerns 
depending on their scope being a tier 2 or early triage operations 
compared to the actual devOps or Tier3 teams representing the 
application.

For this document, we will stick to operational observability 
(figure1) and focus specifically on micro-frontend web 
applications. These concerns are well documented for traditional 
applications and on the backend systems. Web application 
telemetry is an often-overlooked topic. Micro-frontends do 
bring some specific concerns into the mix which this paper will 
try to bubble up.

2. Considerations for effective Observability 
Strategy 

Observability needs vary based on type of application and its 
targeted domain, uptime and availability needs, criticality etc. 
There is also significant variance based on the team requesting 
the observability solution. This section will go over these 
concerns before we dive into observability solutions.

2.1. Complexity of UI Application: Client web apps have 
traditionally had limited operational telemetry built into it with 
most relying heavily on their backend server telemetry for 
operations. Traditional multi page apps utilize constant chatter 
with their server across the page which provides ample coverage 
even if the application traffic is just monitored at the client-server 
interfaces. With modern development methodologies including 
strategies like single page applications and apps integrating and 
using with native OS capabilities via local API(s), monitoring 
on the server is not always enough. Additionally, the increase in 
client compute and advent of complex frameworks like angular 
is increasing complexity of client apps.

How does micro-frontend strategy impact this complexity? 
Depending on how your micro-frontend is strung together, it is 
often more complex than a regular app. There is more complexity 
client side which can break the application, generally driven by 

conflicts between different microapps stemming from JavaScript, 
styles and other dependencies and from the heightened resource 
utilization.

Additionally, depending on implementation, a lot of 
enterprise observability platforms don’t work out of box. As an 
example, for an application implemented with multiple angular 
elements running side by side, a leading APM solutions’ client 
monitoring suite kept identifying every angular elements load 
and unload as individual apps creating significant noise and 
diminishing all out of box capabilities.

2.2. Type of application 

While all applications are important, certain applications 
have more critical availability and resiliency needs than others 
driving up the need for a monitoring solution. As an example, a 
banking solution may desire higher uptime and availability than 
a publishing website. The nature of the application may drive the 
observability needs.

2.3. Application Access and User-agents

Like complexity in the application codebase, the ways 
an application is accessed may also drive complexity. An 
application only accessed on specific desktop browsers is far less 
likely to have client-side issues than application that is accessed 
over desktop, mobile and web-views etc. These different clients 
that need to be supported drive up the complexity and chances 
of encountering some failure permutation. WebView’s are 
especially tricky as unlike let’s say a desktop chrome, which 
comes with a whole set of debugging tools, capabilities when 
supporting triage for an app within a web-view are significantly 
more limited, especially in production settings. Micro-frontends 
often increase this complexity as they increase the number of 
modules and codebases that come together and may fail.

2.4. Operational Support Team requirements 

Different kinds of teams may drive different requirements, 
operation teams are often broken down into different Tiers. 
Listed below are the different tiers and the kind of requirements 
they drive 

• Tier 0 Support: This level generally relies on providing 
automated or self-service capabilities for resolution. For 
client applications, this level of support automation may 
include automated or self-serve account or state reset 
for individual session issues or server restarts in case 
of widespread outages by relying on macro signals like 
traffic, performance and error rates on the site. This type of 
team does not have specific requirements from client-side 
application monitoring.

• Tier 1 Support: This is typically the first line of defence 
and again deals with basic known issues like password 
resets, printer configurations and basic troubleshooting with 
a pre-defined MOP. This type of team does not have specific 
requirements from client-side application monitoring.

• Tier 2 Support: When a customer issue goes beyond the 
skill set of a Tier 1 team member, that issue then escalates 
to Tier 2. Your Tier 2 team has the knowledge and skills 
to handle more complex customer issues and use remote 
control tools. Traditionally this involves diagnosing, 
triaging and isolating the issue to a specific layer of the 
application and executing pre-defined MOP as provided by 
development or Tier3 support teams for known issues. This 



3

Gaur T., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3

team may also be ‘eyes on glass’ to dashboards or alarms 
and react with pre-defined MOPs. Tier2 teams often need 
access to application health dashboards which may provide 
aggregated samples like traffic and error rate, latency and 
performance etc. They also need access to dashboards and 
reports with Health KPIs for various layers including the 
client application to be able to diagnose and triage issues. 

• Tier 3 Support: Tier 3 is usually the highest level of 
technical support for the application and often includes the 
engineers or developers. Tier 3 personnel are involved when 
advanced troubleshooting within a particular application tier 
is necessary. These teams often need detailed application 
logs and other client health matrices depending on the 
complexity and type of application.

2.5. Levels of Monitoring 

Even for web-apps, Monitoring can be at multiple levels 

• Website monitoring: This focuses on accessibility and 
performance of a web application from the users of the 
application perspective. It traditionally involves synthetic 
monitoring. More on this strategy later 

• Application-level monitoring: This dives into the inner 
workings of the web application itself. This level tracks key 
performance metrics within the application, such as render 
times, API response times and user interactions, this level 
of monitoring helps fine-tune an application’s performance 
to improve user experiences and troubleshoot functionality 
issues. More details on the kind of data that can be captured 
will be detailed in subsequent sections. 

• Server (OS) level monitoring prioritizes the underlying 
infrastructure that supports the web application, including 
the browser health, operating system, hardware and 
network resources. For instance, metrics like CPU usage, 
memory utilization and network traffic are collected and 
analyzed here for a peek into performance health. More on 
this in the subsequent section. Given the additional resource 
requirements for micro-frontends, this is another topic 
where we see variances in our approach to monitoring for 
micro-frontends.

3. Website monitoring
As discussed in the previous section, website monitoring 

focuses on accessibility and performance of a web application 
from the users of the application perspective. This traditionally 
involves synthetic monitoring strategies where we have scripted 
access to the application executed from distributed geographic 
locations. Advanced synthetic testing mimics user behavior as 
they engage with the application to determine how it’s working.

3.1. Advantages of Synthetic monitoring 

There are some key advantages to maintaining synthetic 
monitors 

• With Synthetic monitoring constantly running, they can 
also identify and report issues during low traffic period or 
during periods which lack transactions. As an example, in 
a retail store application, issues that escalate during night-
time deployments often go unnoticed till stores open in the 
morning. A synthetic monitor can help catch such issues 
proactively. 

• Synthetic monitoring for user interactions can be executed 
based on factors such as geographic location, network types, 
different devices and more. This tactic can give proactive 
insights into application issues for a specific type of users 
which may not widespread.

• With synthetic monitors constantly executing, this tactic also 
helps create a baseline of application uptime, performance 
and availability. Anomaly detection on this data may also 
help identify emerging minor issues which may not be full 
blown outages. 

3.2. Types of Synthetic monitoring concerns 

Synthetic monitoring can be created to monitor for specific 
concerns. The commonly monitored concerns include 

• Performance Monitors: This includes scripts that mimic 
the user while trying to capture macro page load time as 
well as micro response times for specific web assets. 

• Availability Monitors: This is the most common pattern 
where access to the website determines availability. 
This pattern can also help identify other issues that 
impact availability like connectivity, certs, etc. There 
may be complexity involved if website is hidden behind 
authentication challenges with specific credentials needed.

• Transaction Monitors: This type of synthetic script looks 
at performing an end-to-end transaction. There may be 
additional monitors to ensure that the submitted transaction 
had the desired outcome. As an example, does an order 
placed on an ecommerce web-site post successfully to 
the fulfilment system, creating an expected entry in the 
fulfillment database? There is often complexity around 
ensuring test data availability for such scenarios. A lot of 
applications skip the final submit step owing to complexity 
or compliance requirements.

3.3. Granularity of Synthetic monitoring for web-apps 

There may be two levels of granularity for synthetic 

• Web Application: these often simulate user transactions 
with the webpage. 

• API or web resource: These tests access the API or resource 
endpoints directly.

 3.4. Synthetic monitoring challenges 

Synthetic monitoring strategy comes with some common 
challenges which are listed below. 

• It is often difficult to simulate every possible transaction 
scenario within a system. This can prevent application 
teams from being able to rely on synthetic monitoring as 
the only solution. 

• Synthetic monitoring can be costly and include complex 
setup depending on application type. 



J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3Gaur T.,

4

• Synthetic tests, especially web application tests are brittle 
as UI changes often cause these tests to fail. There are 
strategies and learning curve with making the test scripts 
resilient. 

Micro-frontends complicate this strategy in a few ways. 
Modern micro-frontend applications are more complex and often 
distributed. Testing across an entire micro-frontend application 
can requires testing individual micro-frontends for concerns 
like availability, performance and transaction uptime. This 
may complicate the scripting significantly or require additional 
scripts. If multiple micro-frontend teams are involved, as is 
often the case, there is the added complexity and overhead of 
managing script creation and co-ordination across these teams.

4. Application-level monitoring
This type of monitoring also often referred to as ‘End-user-

Monitoring’ or ‘Real-user-Monitoring’ looks at the inner 
workings of the web application. This type of monitoring looks 
at capturing logs and health signals while actual end-users access 
the application. As such, while it lacks the proactive nature of 
synthetic apps, it allows us to quantify user interactions and 
critical performance data. This also helps us capture and analyse 
site metrics like access by user types, devices etc.

4.1. Advantages of Application-level monitoring 

There are some key advantages to maintaining an application 
monitoring strategy 
• No Test Scope Limitations: Real user monitoring is not 

limited by browser, connection types, etc. so can help 
validate entire population of the website as well as all 
use-cases. 

• Troubleshooting: This strategy helps us diagnose and 
triage issues faced by users. As such, this approach is valued 
more by Tier3 teams. 

• Actionable Results: Most application monitoring alerts 
often identify area of the application impacted clearly.

4.2. Application-level monitoring data-points 

Application monitoring often uses multiple avenues to capture 
data. 

• Page load events and different measures like first paint, first 
contentful paint, time to interactive etc. We can also use this 
solution to capture load time breakdown. 

• HTTP requests, including RED Metric capture of rate, error 
and duration of the API calls going out of the browser. We 
can also use this solution to capture load time breakdown 
and create performance grouping. 

• Static requests load times and insights. 

• Browser logs, including capturing different log levels like 
warn and log. 

• Capturing application sessions and timestamps, additional 
application meta-data 

• Browser Crash reports.

 4.3. Application-level monitoring approaches 

The above data can be captured using a combination of a few 
approaches. There is always the option of buying a third-party 
solution to avoid having to build and maintain a solution. 

• Modern browser capabilities and HTML5 specifications, 
such as the Performance and Navigation Timing APIs, 
provide detailed metrics on page load times, resource 
utilization and user interactions, enabling fine-grained 
telemetry. This data can be captured and persisted outside 
the application. All modern browsers like Chrome support 
advanced observability features through these APIs offering 
precise measurements of various performance metrics, 
including DNS lookup times, TCP handshake times and 
document load events. 

• Browser logging methods and events can be captured and 
persisted. For the logging solution as an example, it is 
possible to override the default logging implementation of 
the browser to capture logs and upload it server side. 

• Application events can often be captured, as an example, 
application teams may raise specific events and payloads 
during failures which can be captured alongside other health 
data for triage. 

• Server-side RED Capture alongside capturing client-side 
data, it is an option to capture data from the nearest API 
gateway endpoint, which may help co-relate network issues 
not visible to application layer.

4.4. Application-level monitoring challenges 

While there are advantages to this type of monitoring, it does 
come with its set of limitations. 

• Noise: This approach can provide detailed data about every 
single user session and experience, which can cause issues. 
With this large level of detail, it can often cause significant 
noise which can either raise false alarms or hide real issues. 

• No Baseline: The data captured depends on several factors 
including compute on the device, user access patterns, 
network connectivity etc. as such, it does not provide the 
most usable baseline. 

• Ineffective during low traffic hours: RUM is not useful 
if the website does not have enough traffic, such as late at 
night for our retail store example. 

• Micro-frontends complicate the application data capture 
as they cause even more logs and noise. As previously 
mentioned, quite a few third-party solutions have trouble 
comprehending micro-frontend application data signals out 
of box. The same problem applies to homegrown solutions 
relying on the modern performance and navigation API(s). 
The performance object for example only shows the data for 
the first loaded micro-frontend which may not be the main 
concern we want to monitor.

5. Server (OS) level monitoring
This level of monitoring captures data from the underlying 

user-agent or device running the web application. Capturing 



5

Gaur T., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 3

this level of data is not always in the hands of the application 
teams, but this strategy is often executed alongside synthetic 
monitoring strategies.

Data points like memory usage, which are a significant 
concern for micro-frontends, are often measurable using this 
strategy. Some modern browsers, like chrome, allow memory to 
be captured via the performance object, a capability that is not 
widely supported.

6. Conclusion
Observability and telemetry in UI apps come with its own set 

of challenges. micro-frontend applications add to this challenge 
by presenting unique specificities beyond traditional UI 
monitoring. By understanding these specificities and operational 
requirements and leveraging a combination of synthetics and 
application monitoring side by side organizations can still 
achieve comprehensive observability for micro-fronted UI Tiers. 

References

1. https://sematext.com/guides/what-is-real-user-monitoring/-rum-
limitations 

2. https://www.datadoghq.com/product/real-user-monitoring/ 

3. h t t p s : / / w w w . i b m . c o m / t o p i c s / s y n t h e t i c -
monitoring#:~:text=Synthetic%20monitoring%2C%20or%20
synthetic%20testing,and%20impacting%20the%20user%20
experience.

4. https://www.solarwinds.com/solarwinds-observabil i ty/
use-cases/web-app-monitoring 

5. https://medium.com/@NeotericEU/single-page-application-vs-
multiple-page-application-2591588efe58 

6. https://www.buchanan.com/what-is-the-difference-between-
it-support-tiers/#:~:text=Your%20Tier%202%20team%20
should,the%20product%20engineers%20or%20developers 

7. https://www.netsuite.com/portal/resource/art icles/erp/
operational-analytics.shtml 

8. https://onlinedegrees.scu.edu/media/blog/data-analytics-
driving-better-business-decisions#:~:text=The%20four%20
subsets%20of%20data,at%20al l%20levels%20of%20
operations 

9. https://newrelic.com/blog/best-practices/what-is-observability 

10. https://en.wikipedia.org/wiki/Real_user_monitoring 

11. https://www.swyx.io/frontend-observability 

https://sematext.com/guides/what-is-real-user-monitoring/-rum-limitations
https://sematext.com/guides/what-is-real-user-monitoring/-rum-limitations
https://www.datadoghq.com/product/real-user-monitoring/
https://www.solarwinds.com/solarwinds-observability/use-cases/web-app-monitoring
https://www.solarwinds.com/solarwinds-observability/use-cases/web-app-monitoring
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://www.netsuite.com/portal/resource/articles/erp/operational-analytics.shtml
https://www.netsuite.com/portal/resource/articles/erp/operational-analytics.shtml
https://newrelic.com/blog/best-practices/what-is-observability
https://en.wikipedia.org/wiki/Real_user_monitoring
https://www.swyx.io/frontend-observability

	_GoBack
	OLE_LINK9
	OLE_LINK10
	OLE_LINK11
	OLE_LINK12
	OLE_LINK13
	OLE_LINK14

