
Metrics, Logs, and Traces: A Unified Approach to Observability in Microservices

Pradeep Bhosale*

Citation: Bhosale P. Metrics, Logs, and Traces: A Unified Approach to Observability in Microservices. J Artif Intell Mach Learn
& Data Sci 2022, 1(1), 2084-2088. DOI: doi.org/10.51219/JAIMLD/Pradeep-bhosale/458

Received: 03 June, 2022; Accepted: 28 June, 2022; Published: 30 June, 2022

*Corresponding author: Pradeep Bhosale, Senior Software Engineer (Independent Researcher), USA, E-mail: bhosale.
pradeep1987@gmail.com

Copyright: © 2022 Bhosale P., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/Pradeep-bhosale/458

 A B S T R A C T
Microservices architectures bring flexibility and modularity at scale, yet they also introduce operational complexity; services

are scattered, with ephemeral pods and dynamic routing. Understanding system behavior under these conditions demands
robust observability. Traditionally, organizations collect metrics (quantitative measures), logs (time-stamped event records),
and traces (end-to-end request flows) in disparate silos. However, the synergy of these three pillars when unified yields deeper
insights into root causes of performance bottlenecks or errors.

This paper explores a unified approach to observability in microservices, focusing on metrics, logs, and traces as complementary
data sources. We describe the architectural components needed to ingest, store, and correlate these signals effectively; highlight
anti-patterns (like ignoring distributed traces or over-collecting logs without index strategies); and provide best practices for
bridging these signals via consistent instrumentation and tagging. Through visual diagrams, code examples, and real-world case
studies, we illustrate how to debug cross-service latencies, identify resource constraints, and pinpoint failing dependencies in
microservices-based systems. We also discuss how advanced solutions like open standards (Open Telemetry), centralized logging
platforms, and distributed tracing frameworks enable more holistic DevOps workflows. Ultimately, this paper offers a roadmap
for organizations aiming to build or evolve a comprehensive microservices observability strategy, bridging everyday debugging
tasks with advanced, data-driven insights for system resilience.

Keywords: Microservices, Observability, Metrics, Logs, Traces, Distributed Tracing, DevOps, OpenTelemetry, Performance,
Debugging, Classes, DevOps

1. Introduction
1.1. The observability challenge in microservices

Modern software architectures often rely on microservices,
each running in containers orchestrated by platforms like
Kubernetes. These microservices typically communicate via
REST, gRPC, or messaging. This distributed model increases
complexity around debugging performance or correctness
issues: partial failures, unexpected latencies, or ephemeral
container restarts can hamper root cause analysis1,2.

Observability; the capability to infer the internal state of a
system from external outputs becomes pivotal. Historically,
teams used logs or metrics in isolation; over time, distributed
tracing emerged for cross-service request tracking. A unified
approach merging metrics, logs, and traces reveals more
comprehensive system behavior, enabling faster triage and
deeper analysis.

1.2. Scope and structure

This paper addresses:

https://doi.org/10.51219/JAIMLD/Pradeep-bhosale/458
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/Pradeep-bhosale/458

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Bhosale P.,

2

cAdvisor or node exporters provide CPU, memory, and network
usage.

Snippet (Prometheus scraping a microservice):

scrape_configs:

- job_name: ‘myservice’
 kubernetes_sd_configs:
 - role: endpoints
 relabel_configs:
 - source_labels: [__meta_kubernetes_service_label_app]
 regex: myservice
 action: keep

3.2. Aggregation and dashboards

Grafana or alternative visualization platforms let teams see live
or historical metrics in line charts, histograms, or heatmaps.
Some common metrics:

•	 HTTP requests: requests_total, error_rate, p95 latency.
•	 System resources: CPU load, memory usage, disk I/O.
•	 Custom domain metrics: e.g., “cart_size,” “orders_

placed,” or ML inference requests.

3.3. Anti-pattern: Over-collecting metrics without strategy

Issue: Capturing every possible metric at high cardinalities (like
user_id dimension).
Effect: High storage costs, complicated queries.
Remedy: Focus on key operational metrics, use robust
dimensional strategies (like only collecting user_id for selective
debug sessions).

4. Logs for Detailed Context
4.1. Structured logging

Logs give time-stamped event data with human-readable or
structured (JSON) fields. In microservices, logs frequently
contain:

•	 Timestamp
•	 Service Name
•	 Pod ID or container ID
•	 Log Level (DEBUG, INFO, WARN, ERROR)
•	 Message including user or request IDs

Anti-Pattern: Using random or unstructured logs that
hamper log correlation across services. A recommended
approach is structured JSON logs with consistent fields (like
trace_id, user_id)6.

4.2. Centralized log platforms

A typical pipeline sees logs from each container captured
by a sidecar (Fluentd, Logstash) or node agent, then shipped
to a central store (ElasticSearch, Splunk). This allows full-
text indexing, letting devs quickly locate error messages or
suspicious events across multiple microservices.

Figure 2: Centralized logging in containers.

•	 Defining observability: Contrasting monitoring with
observability and outlining the “three pillars.”

•	 Metrics: Collection, storage, and usage patterns in
microservices.

•	 Logs: Best practices for structured logging, indexing,
correlation.

•	 Traces: Distributed tracing to see how requests propagate
across services, diagnosing bottlenecks.

•	 Unifying these signals under a consistent tagging or
instrumentation approach.

•	 Anti-Patterns that degrade system clarity or hamper root
cause investigations.

•	 Real-World Scenarios and code/diagram-based examples
for adopting a holistic approach.

2. Observability Fundamentals: Metrics, Logs, and
Traces
2.1. Observability vs. monitoring

Monitoring typically focuses on known failure modes or
metrics thresholds. Observability aims at ensuring that if an
unknown or complex issue arises, the system’s emitted data
(metrics, logs, traces) can help explain it. In a microservices
environment, these signals are more critical due to ephemeral
pod lifecycles and numerous service interactions3.

2.2. The three pillars

•	 Metrics: Quantifiable measures (CPU usage, request rates,
latencies). Often aggregated over time and used for trend
analysis or alerting.

•	 Logs: Event records with timestamps that detail errors,
warnings, or debug info. Typically used to pinpoint the
precise cause or sequence of events.

•	 Traces: Show an end-to-end path of a request across
multiple services, each sub-operation’s timing, enabling
quick identification of slow or error-prone segments4.

Figure 1: Three pillars of observability.

3. Metrics in Microservices
3.1. Collecting metrics

Microservices typically expose performance counters (HTTP
request rates, latencies, memory usage) via instrumentation
libraries. Tools like Prometheus scrape these endpoints, storing
time-series data for queries or alerts5. For container environments,

3

Bhosale P., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:1

4.3. Searching and alerting on logs

When a service errors out or an unexpected stack trace
appears, ops teams can query the logs. They can also set up alerts
for certain patterns: e.g., “If more than 50 ERROR logs from
‘checkout-service’ appear in 1 minute, raise an alert.”

5. Traces: The Missing Link
5.1. Distributed tracing basics

In microservices, a single user request might traverse multiple
services. Traces record each service call as a “span,” detailing
the operation name, start time, and duration. Tools like Jaeger
or Zipkin visualize how these spans form a request tree, letting
devs see which service contributed the largest latency chunk7.

Snippet (pseudo-code for instrumentation):

Span span = tracer.buildSpan(“checkout”).start();
try {
 // call user-service
 // call payment-service
} finally {
 span.finish();
}

5.2. Trace visualization

Figure 3: Multi-service request flow.

The trace aggregator (e.g., Jaeger) collects these spans,
allowing an operator to see the timeline for each interaction.

5.3. Anti-pattern: Failing to propagate trace context

•	 Issue: If SVC-A doesn’t forward the trace ID or parent span
ID to SVC-B or SVC-C, the aggregator sees disjoint traces,
losing the end-to-end view.

•	 Remedy: Standardize an approach for injecting/extracting
trace headers (like x-b3-traceid or W3C Trace Context) in
each service.

6. Unifying Metrics, Logs, and Traces
6.1. Tagging and correlation

One powerful approach: each service logs with a trace_id
or correlation_id. Metrics also might embed that ID for certain
counters. The distributed tracer ensures each sub-span has the
same ID. This synergy allows an operator to jump from a metric
anomaly to the relevant logs, or from logs to the aggregated
trace8.

6.2. Observability platforms

Vendors or open-source solutions unify these pillars:

•	 Elastic stack: Kibana for logs, metric beat for metrics,
APM for distributed tracing.

•	 Datadog: Merges logs, metrics, and traces in one interface.
•	 Open telemetry: Emerging standard for unified

instrumentation, offering SDKs to produce logs, metrics,
traces in a consistent format.

7. Anti-Patterns in Observability
•	 Siloed tools: Using separate platforms for metrics/logs/

traces with zero cross-linking. Operators must manually
cross-reference timestamps or grep logs.

•	 No standard tagging: Each service uses different fields for
“trace_id,” “request_id,” making correlation painful.

•	 Excessive log verbosity: Dumping all internal debug logs
into production, overwhelming indexes.

•	 Ignoring traces: Relying solely on metrics/logs, leading to
blind spots for cross-service latencies.

8. Implementation Approaches in Microservices
8.1. Sidecar or library

Sidecar: Some deploy specialized containers that intercept
traffic, injecting or extracting trace headers. Tools like Envoy in
a service mesh scenario (Istio) can produce distributed tracing
data. Alternatively, each microservice can use an instrumentation
library (like Open Telemetry, Brave for Java) that automatically
wraps HTTP or gRPC calls9.

8.2. CI/CD integration

Pipelines may:

•	 Validate instrumentation presence (like scanning code for
the base tracing library).

•	 Deploy to staging clusters, run synthetic transactions
verifying trace spans are collected.

•	 Possibly set up ephemeral environment watchers for
performance metrics.

9. Real-world case study #1: E-commerce observability
9.1. Context

A mid-sized e-commerce platform runs 15 microservices
handling user, product catalog, checkout, payment, shipping,
etc. They integrated a “three pillars” approach:

•	 Metrics: Each service emits Prometheus metrics for request
throughput, error rates.

•	 Logs: JSON logs shipped to an ELK stack for query and
correlation.

•	 Traces: They use Jaeger instrumentation in each service.
The x-b3-traceid header is propagated via gRPC calls.

9.2. Key insights

•	 They discovered an unexpected 200 ms overhead in the
shipping service by analyzing spans in Jaeger.

•	 During a CPU usage spike in the checkout service, logs
revealed frequent “could not connect to DB” errors,
correlating with a metric spike in error rate.

•	 The synergy saved hours of guesswork and manual cross-
referencing. Operators improved auto-scaling thresholds
after analyzing metrics and logs together.

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Bhosale P.,

4

10. Real-world case study #2: AdTech DSP
10.1. Scenario

An AdTech demand-side platform receives thousands of QPS
in real-time bidding. Latency under 100 ms is paramount. They
implement:

•	 Low-level metrics for each microservice, tracking p95
latencies.

•	 Structured logs containing “trace_id” in each request log
line.

•	 Distributed tracing via OpenTelemetry integrated into each
microservice pipeline.

10.2. Observed gains

•	 They quickly debug slow auctions in the aggregator service,
identifying that user-profiling calls took 60+ ms.

•	 By pivoting from metrics (where aggregator’s latency
soared) to traces, they pinpointed the “profile-service” call
was stalling due to an unexpected DB lock.

•	 Logs confirmed the DB was missing an index, leading to
query lock contentions. The fix was swift once identified.

11. Organizational and DevOps culture
11.1. Autonomy with governance

Each microservice team might choose their instrumentation
approach but unify on a standard schema for logs and trace
headers. A central SRE or DevOps group ensures consistent
deployment of monitoring sidecars or libraries, standard label
usage, and uniform metrics naming10.

11.2. Ongoing training

Even the best instrumentation can fail if developers don’t
interpret or leverage these data sets effectively. Workshops
on reading logs, building Grafana dashboards, or analysing
distributed traces fosters a culture of continuous improvement in
debugging and performance tuning.

12. Advanced Techniques
12.1. Service mesh observability

Service meshes like Istio or Linkerd can automatically
intercept traffic, injecting trace IDs or collecting stats. This
approach can remove burdens from application code, though
advanced correlation might still require some in-service
instrumentation for method-level spans or contextual logs.

12.2. AI/ML for anomaly detection

As data volumes grow, some organizations layer machine
learning on top of logs, metrics, or trace data to detect anomalies
(like unusual latency patterns or error spikes). While still an
emerging approach, it can highlight hidden correlations or drift
over time.

13. Building a Unified Observability Stack
13.1. Component Roles

•	 Data collection: Libraries (OpenTelemetry, Prometheus
exporters), sidecars, or service mesh injection.

•	 Transport: Aggregators for logs (Fluentd) or traces (Jaeger
agent).

•	 Storage: Time-series DB for metrics (Prometheus TSDB,
InfluxDB), log DB (ElasticSearch), and trace DB (Jaeger
or Zipkin).

•	 Dashboards and alerting: Tools like Grafana, Kibana, or
custom UIs for end-user interactions.

•	 Correlation: Shared “trace_id” or “correlation_id”
across logs, metrics, and traces. This might mean ingest
transformations or consistent naming in code11.

Figure 4: Observability stack.

Then combined queries, dashboards, or specialized
correlation layers unify these signals.

14. Anti-Pattern Consolidation
•	 Ignoring or partial instrumentation in microservices (some

produce traces, others don’t) → incomplete distributed
view.

•	 Siloed Tools for metrics/logs/traces with zero cross-links →
manual correlation is time-consuming.

•	 Excessive cardinalities in metrics → ballooning storage
costs, hamper query performance.

•	 Low resolution or ephemeral logs → discarding logs too
quickly or collecting insufficient detail hampers debugging.

•	 No standard naming for services or resources → confusing
to follow ephemeral container names or inconsistent label
usage.

15. Best Practices Summary
•	 Define common instrumentation: Standardize a single

approach or library (OpenTelemetry) for metrics, logs, and
traces.

•	 Correlate data: Insert trace_id or request_id in logs,
connect metrics to those IDs, letting you pivot from a metric
spike to the relevant logs/traces quickly.

•	 Keep data balanced: Avoid storing everything at infinite
retention. Summaries or roll-ups can keep costs in check.

•	 Use Dashboards that unify all signals. E.g., a single place to
see a service’s CPU usage, error logs, and slow trace spans
in the same time window.

•	 Train teams: Observability is only as good as the culture
that invests in reading, analyzing, and refining the signals.

5

Bhosale P., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:1

16. Conclusion
In a microservices architecture, diagnosing performance or

reliability issues demands a robust observability framework that
ties together metrics, logs, and traces. By collecting quantitative
time-series data (metrics), capturing event details (logs), and
mapping end-to-end request flows (traces), teams gain a far
more comprehensive vantage point for debugging. The synergy
is especially crucial under ephemeral container lifecycles and
dynamic routing where partial failures or cross-service latencies
might otherwise remain opaque.

A unified approach means standard instrumentation libraries
or sidecars producing consistent signals, stable correlation via
trace_id or span_id, and integrated storage plus dashboards that
let operators pivot from high-level anomalies to specific logs or
trace timelines. This approach transforms “reactive monitoring”
into “proactive observability,” accelerating root cause analysis,
facilitating data-driven operational decisions, and building
organizational confidence in rapid iteration cycles.

As microservices continue to proliferate, ongoing innovations
like consolidated open-source solutions, further standardization
in Open Telemetry, or AI-driven anomaly detection will refine
how metrics, logs, and traces are leveraged. However, the
foundational best practices introduced here remain vital for
bridging ephemeral container sprawl and ensuring a stable,
high-performance system. By combining metrics, logs, and
traces in a single perspective, DevOps and SRE teams can unify
their approach to diagnosing and optimizing microservices in
dynamic, cloud-native environments.

17. References

1.	 Fowler M and Lewis J. “Microservices Resource Guide,” 2016.

2.	 Newman S. Building Microservices, O’Reilly Media, 2015.

3.	 Gilt Tech Blog, “Challenges in Observing Container-based
Microservices,” 2018.

4.	 Krishnan S. “Distributed Tracing in a DevOps Culture,” ACM
DevOps Conf, 2019.

5.	 https://prometheus.io/

6.	 https://www.elastic.co/

7.	 https://www.jaegertracing.io/

8.	 Netflix Tech Blog, “Correlating Service Metrics with Traces,”
2017.

9.	 CNCF Webinar, “Service Mesh Observability with Envoy,” 2019.

10.	 Molesky J and Sato T. “DevOps in Distributed Systems,” IEEE
Software, 2013;30.

11.	 https://opentelemetry.io/

12.	 Brandolini A. Introducing EventStorming, Leanpub, 2013.

13.	 Blum A and Mansfield G. “Multi-Dimensional Logging Strategies,”
ACMQueue, 2018;14.

14.	 Cockcroft G. “Multi-Service Debugging with Distributed Traces,”
ACM SoCC Workshops, 2019.

15.	 Microservices Observability Whitepaper, “Advanced Tagging
Approaches,” 2020.

16.	 https://argo-cd.readthedocs.io/

17.	 Datadog Blog, “Metrics, Logs, and Traces for Container
Monitoring,” 2019.

18.	 AWS Observability Solutions, “Correlating Traces with Cloud
Metrics,” 2021.

https://www.oreilly.com/library/view/building-microservices/9781491950340/
https://prometheus.io/
https://www.elastic.co/
https://www.jaegertracing.io/
https://www.researchgate.net/publication/363867276_Netflix_Big_Data_The_Strategic_Ambivalence_of_an_Entertainment_Company
https://www.researchgate.net/publication/363867276_Netflix_Big_Data_The_Strategic_Ambivalence_of_an_Entertainment_Company
https://opentelemetry.io/
https://argo-cd.readthedocs.io/
https://aws.amazon.com/marketplace/pp/prodview-7tlwraipohxq6?gclid=Cj0KCQiAhbi8BhDIARIsAJLOluflrXFqvv4X3s0Ny6_qVq6zA3-DM-9umqoJiUCC31LWnoHoWZDSQdIaAiFhEALw_wcB&trk=135e6817-0158-4f9d-b03e-9571037210fd&sc_channel=ps&ef_id=Cj0KCQiAhbi8BhDIARIsAJLOluflrXFqvv4X3s0Ny6_qVq6zA3-DM-9umqoJiUCC31LWnoHoWZDSQdIaAiFhEALw_wcB:G:s&s_kwcid=AL!4422!3!714346467483!p!!g!!datadog%20observability!21724663161!168584710740
https://aws.amazon.com/marketplace/pp/prodview-7tlwraipohxq6?gclid=Cj0KCQiAhbi8BhDIARIsAJLOluflrXFqvv4X3s0Ny6_qVq6zA3-DM-9umqoJiUCC31LWnoHoWZDSQdIaAiFhEALw_wcB&trk=135e6817-0158-4f9d-b03e-9571037210fd&sc_channel=ps&ef_id=Cj0KCQiAhbi8BhDIARIsAJLOluflrXFqvv4X3s0Ny6_qVq6zA3-DM-9umqoJiUCC31LWnoHoWZDSQdIaAiFhEALw_wcB:G:s&s_kwcid=AL!4422!3!714346467483!p!!g!!datadog%20observability!21724663161!168584710740
https://aws.amazon.com/cloudops/monitoring-and-observability/
https://aws.amazon.com/cloudops/monitoring-and-observability/

	_Hlk185542544
	_vxvfpowmnth5
	_pkn0a21bpp35
	_egamyyi2wwz0
	_ny3g458nq6fs
	_tes5t2ol3tij
	_knur9gfz2km
	_g65mvp39vq4x
	_tk2rwrrgd7pj
	_jxf0mov6kjst
	_58fr6h1czdis
	_5ml8navif6u9
	_gnf0rkjgcnor
	_3h5eda2ichvf
	_mqkr0bu6832t
	_meoa14quv48z
	_jeaqk8epeod7
	_qtux0bfikt7t
	_rlrb7f1mrknv
	_sqtvrlfw35tu
	_d1hb5tll7x10
	_yra44mor7w5l
	_gcwf1qjyxzul
	_a78v4wrzk9oc
	_3d3v9bkokun4
	_ed9rp86d47je
	_s7t21745dfwb
	_sbwkki5xfqi
	_owo2zrs177d8
	_ujg4ip4g0mdu
	_4wd3btz2hwvq
	_6h0smatr1jor
	_u454dz7bz5w
	_affqubi21p0a
	_wgkgtvo8pkbt
	_ogb46cqhkm6m
	_4rc27zqqkss1
	_1e7muuinxox8
	_a1taonhzcbbm
	_7h7m0eschl8h
	_mt7dxqk73uhe

