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 A B S T R A C T 

Machine learning (ML) has rapidly emerged as a cornerstone technology in advancing cybersecurity across multiple 
industries. This review article provides a comprehensive analysis of how ML-driven techniques are being leveraged to strengthen 
threat detection, accelerate incident response and improve the overall security posture in diverse operational landscapes, ranging 
from finance and healthcare to critical infrastructure and cloud-native environments. We begin by surveying the evolving threat 
landscape, highlighting the limitations of traditional signature-based approaches and the need for adaptive data-driven defences. 
Our synthesis of recent research and industrial deployments illustrates how state-of-the-art ML methods, including supervised, 
unsupervised, semi-supervised and reinforcement learning, can effectively detect anomalies, identify zero-day vulnerabilities, 
classify malicious activities and guide automated decision making.

Drawing from real-world case studies, we examine the key factors influencing ML’s performance and reliability of ML, such 
as data quality, model interpretability, adversarial robustness and integration into existing security architectures. We explore 
practical considerations for model selection, feature engineering, continuous learning and lifecycle management to ensure both 
scalability and resilience. Additionally, we review novel approaches that combine ML with traditional cybersecurity tools and 
processes as well as the emerging role of federated learning and privacy-preserving techniques in safeguarding sensitive data.

Through the integration of these findings, we offer a comprehensive strategic framework that enables researchers, practitioners 
and policymakers to evaluate the current status of machine learning in the field of cybersecurity. Our analysis identified research 
gaps and future directions, including the potential of automated ML (AutoML), transfer learning and causal inference to 
yield more adaptive, context-aware defences. Ultimately, this review offers a multi-industry perspective that underscores the 
transformative potential of ML in enhancing threat detection and response, guiding the field toward more robust and intelligent 
cybersecurity ecosystems.
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1. Introduction
A. The growing cybersecurity threat landscape

Over the past decade, the frequency and sophistication of 
cyber-attacks have escalated dramatically, posing significant 
challenges for organisations and governments worldwide. 
Advanced persistent threats (APTs), zero-day vulnerabilities and 
large-scale distributed denial-of-service (DDoS) attacks target 
sensitive data and critical infrastructure1-3. According to recent 
threat intelligence reports, attackers are adopting more covert 
and polymorphic tactics, enabling them to evade conventional 
security measures and exploit inherent weaknesses in both 
legacy and modern network architectures4-6.

Traditional cybersecurity defences largely rely on signature-
based detection methods, which are effective against known 
threats, but struggle to identify previously unseen attacks. 
These static approaches, although computationally inexpensive 
and easy to maintain, falter due to their vulnerability to 
polymorphic attacks and adversarial techniques that exploit 
emerging technologies such as large language models (LLMs) 
7,1. Moreover, overreliance on manual rule creation and heuristic 
filtering leads to increased false positive and false negative rates, 
causing alert fatigue among security analysts and ultimately 
undermining the effectiveness of an organisation’s defense 
posture8. In light of these evolving challenges, there is an urgent 
need for more adaptive and proactive security measures that not 
only detect but also anticipate emerging threats. Such measures 
must incorporate dynamic data-driven mechanisms capable of 
learning from complex, rapidly changing environments. This 
calls for a paradigm shift, transitioning from static, rule-based 
defences toward intelligent systems that continuously refine 
their understanding of normal and malicious behaviour patterns.

B. The emergence of machine learning (ML) in cybersecurity

Machine Learning, a branch of artificial intelligence focused 
on data-driven pattern recognition and predictive modelling, has 
emerged as a pivotal technology in modernising cybersecurity 
strategies. By leveraging vast amounts of heterogeneous 
data, ML techniques can automatically identify anomalous 
traffic patterns, classify malicious binaries, detect intrusions 
and predict potential vulnerabilities more accurately and 
efficiently than traditional methods2,9. ML models capture subtle 
relationships and correlations that often elude human experts, 
thereby enhancing threat detection and response capabilities4. In 
practical terms, ML-powered cybersecurity solutions can adapt 
to evolving attacker behaviours, improving detection rates for 
zero-day exploits and reducing response times during incident 
handling10.

For example, anomaly detection algorithms can uncover 
previously unknown attack patterns hidden within network 
telemetry, whereas supervised classification models can 
provide early warnings of impending breaches based on 
historical attack signatures and known attacker profiles1. 
Additionally, ML models facilitate automated data analysis 
and alert prioritisation, reducing false positives and mitigating 
analyst fatigue11. Collectively, these capabilities streamline the 
remediation process, helping security teams prioritise alerts, 
allocate resources efficiently and implement more informed and 
proactive strategies to mitigate future threats.

C. Scope and objectives of the review

This review focuses on the implementation and impact of 

ML-driven cybersecurity solutions across multiple industries, 
including finance, healthcare, critical infrastructure and cloud-
based environments. By examining real-world case studies, 
we aim to present a cross-sector perspective that highlights the 
versatility and efficacy of ML techniques in vastly different 
operational contexts4.

Specifically, this study provides a comparative analysis of 
various ML approaches, detailing lessons learned, best practices 
and key factors influencing model selection, performance and 
scalability. It also identifies critical research gaps, such as 
the need for more explainable models, improved adversarial 
robustness and standardised evaluation frameworks, while 
outlining potential directions for future investigation, including 
federated learning, causal inference and automated machine 
learning (Auto ML). By synthesising these insights, this review 
seeks to guide researchers, practitioners and policymakers in 
leveraging ML to create more resilient, adaptive and intelligent 
cybersecurity ecosystems.

2. Background: Foundations of Machine Learning in 
Cybersecurity 
A. Overview of machine learning techniques applicable to 
cybersecurity

The application of machine learning (ML) to cybersecurity 
relies on a variety of algorithmic paradigms, each suited to 
different aspects of threat detection and defence. Supervised 
learning, one of the most widely adopted approaches, involves 
training models using labelled datasets, enabling them to classify 
malicious traffic or predict the probability of a known exploit 
recurring2,9. Supervised techniques such as decision trees, 
random forests and deep neural networks are used to distinguish 
benign from hostile activities when sufficient ground-truth data 
are available.

However, real-world scenarios often involve emerging 
previously unseen threats that defy traditional labelling and 
pattern recognition. In these instances, unsupervised learning 
methods, including clustering and anomaly detection algorithms, 
can detect novel or rare attack behaviours without relying on 
labelled examples1. By modelling “normal” system behaviour, 
unsupervised techniques can flag deviations symptomatic of 
intrusions or data exfiltration attempts, enabling early detection 
of zero-day vulnerabilities.

Beyond strictly supervised or unsupervised paradigms, semi-
supervised and reinforcement learning (RL) approaches have 
emerged to address complex adaptive security scenarios12. Semi-
supervised methods efficiently use partially labelled datasets, 
bridging the gap between expert knowledge and the vast amounts 
of unlabelled data available in network telemetry, enabling more 
accurate and resource-efficient threat detection and response. 
RL agents, on the other hand, continuously improve defence 
strategies by interacting with a dynamic environment-evaluating 
the outcomes of detection and response actions and refining 
policies to maximise long-term system security12.

B. Data sources and feature engineering

Effective ML-driven cybersecurity solutions are predicated 
on the availability and quality of underlying data. Network 
traffic logs, derived from routers, switches and firewalls, 
provide low-level data that can be mined for patterns indicative 
of malicious activity4. Endpoint telemetry, including host-based 



3

Nosakhare VO, et al., J Artif Intell Mach Learn & Data Sci | Vol: 3 & Iss: 2

an intrusion4. For instance, algorithms such as Isolation 
Forest efficiently isolate anomalous instances by recursively 
partitioning the dataset, whereas autoencoders, a type of neural 
network trained to reconstruct input data, highlight anomalies by 
measuring reconstruction errors16,17. These approaches enhance 
the accuracy, reduce false positives and adapt to evolving threats, 
making them indispensable in dynamic environments18.

B. Malware classification and zero-day detection

Malware poses a pervasive threat in diverse computing 
environments. Traditional static analysis methods leverage 
supervised learning approaches, such as decision trees, support 
vector machines and gradient-boosted ensembles, trained on 
labelled datasets of known malware samples, enabling the high-
fidelity classification of known malware families2. Beyond 
these known threats, zero-day vulnerabilities and new malware 
strains often evade signature-based methods. In such cases, 
unsupervised methods help identify anomalous file or network 
behaviours that do not match any known malicious pattern, 
detecting zero-day exploits before the corresponding signatures 
are available19.

Additionally, deep learning has emerged as a powerful 
tool for malware analysis, enabling models to learn complex 
hierarchical feature representations. Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs) 
have been applied to analyse both static binary features and 
dynamic system call sequences, identifying subtle indicators of 
compromise that simpler models might miss20. By combining 
classical supervised learning with advanced representation 
learning, these deep models can improve zero-day detection 
rates and reduce the time-to-response.

C. Phishing, social engineering and fraud detection

Phishing campaigns, social engineering attempts and 
fraudulent activities exploit human vulnerabilities and trust 
relationships. To counter these threats, ML models increasingly 
integrate natural language processing (NLP) techniques to parse 
email content, webpage text and other communication artefacts. 
For example, NLP-based classifiers can detect suspicious 
linguistic patterns, unusual grammatical structures or deceptive 
cues in phishing emails, thereby achieving higher precision and 
recall than manual keyword heuristics21,18.

In the context of fraudulent financial transactions, graph-
based ML models leverage the interconnected nature of user 
accounts and transaction history. By modelling relationships 
as nodes and edges, these approaches can identify fraudulent 
rings or collusion patterns that are not evident when examining 
isolated events22. Detecting these hidden structures enables 
security teams to proactively prevent cascading financial damage 
and to safeguard both institutions and customers.

D. Automated incident response

Beyond detection, machine learning can help orchestrate an 
efficient data-driven incident response. Reinforcement learning 
(RL) agents, for example, can autonomously evaluate defence 
actions such as isolating compromised hosts, blocking suspicious 
IPs, deploying patches and refining their strategies over time to 
minimise damage12. By simulating a range of attack scenarios, 
RL agents learn from the continuous feedback to generate 
automated playbooks that respond swiftly and effectively.

Furthermore, predictive analytics can guide resource 

events, process behaviour and file system modifications, enriches 
these analyses by offering granular insight into the attacker’s 
presence and lateral movement. In addition, security event logs 
generated by intrusion detection systems (IDS), antivirus tools 
and authentication servers serve as valuable labelled signals for 
supervised training and model validation13.

Feature engineering plays a critical role in extracting 
informative and discriminative attributes from raw data. This 
may include protocol analysis (for example, HTTP headers, 
DNS queries and SSL handshake sequences) as well as 
deriving behavioural metrics such as traffic volume anomalies, 
unusual login times or abnormal command execution patterns2. 
However, building robust models often requires balancing data 
quality, volume and diversity. Large-scale datasets can improve 
generalisation but may introduce noise and complexity, whereas 
overly curated data can fail to represent realistic operational 
environments. Striking the right balance ensures that ML models 
are both accurate and resilient to adversarial manipulation.

C. Integrating ML models into security infrastructures

Implementing ML-driven defences requires seamless 
integration into existing security frameworks and tool chains. 
Placing ML models within Security Information and Event 
Management (SIEM) systems enables automated correlation, 
prioritisation and escalation of alerts, thereby reducing the 
manual overhead for security analysts14.

This integration allows defenders to merge ML-based 
insights with rule-based detection and threat intelligence feeds 
for a more holistic security posture.

When deploying ML solutions organisations must also 
consider the real-time and batch-processing trade-offs. Real-
time analysis is essential for rapid threat detection and response; 
however, it may require more computational resources and 
robust feature selection strategies1. Batch processing, in contrast, 
can support periodic retraining and retrospective analysis, which 
helps models adapt to evolving threat landscapes over time.

Finally, continuous monitoring and lifecycle management 
are fundamental to long-term success. As attacker tactics 
evolve, models must be periodically retrained using fresh data, 
validated against emerging threats and updated to maintain their 
effectiveness. This iterative improvement cycle ensures that 
ML systems remain aligned with operational needs and resilient 
against adversarial attempts to subvert or evade detection4.

3. ML Techniques for Threat Detection and Response
A. Intrusion detection and intrusion prevention systems 
(IDS/IPS)

Intrusion detection and prevention systems are central to 
modern cybersecurity frameworks. Traditional signature-based 
IDS approaches rely on predefined patterns and known attack 
signatures, making them vulnerable to adversaries employing 
novel or polymorphic threats1,15. In contrast, machine-learning-
driven IDS/IPS harness data-driven models learn to recognise 
suspicious patterns of behaviour. These behaviour-based 
approaches enable the detection of both known and previously 
unseen threats with greater agility.

A key class of ML models deployed for intrusion detection 
involves anomaly detection techniques, which model “normal” 
network conditions and identify deviations that may indicate 
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allocation during an ongoing cyberattack, helping security 
operations centres prioritise which systems or alerts demand 
immediate attention. By leveraging historical data, ML models 
can estimate the potential severity and impact of an intrusion, 
enabling informed decisions that reduce downtime, data loss 
and the overall operational risk. Together, RL-driven automation 
and predictive analytics not only enhance the speed and quality 
of incident response but also free human analysts to focus on 
complex, high-level strategic tasks.

4. Multi-Industry Case Studies
A. Finance and banking

The finance sector, entrusted with safeguarding highly 
sensitive customer information and substantial monetary assets, 
exemplifies the strategic application of machine learning to 
combat fraud and maintain trust. Transaction anomaly detection, 
powered by machine learning algorithms such as gradient-
boosted ensembles and deep neural networks, identifies 
suspicious financial activities by modelling normal spending 
patterns and pinpointing deviations in real time22,23. These 
systems help flag fraudulent credit card transactions or money 
laundering attempts swiftly, thereby minimising financial losses 
and preserving brand reputation.

Beyond transactional analytics, behavioural biometrics such 
as keystroke dynamics, mouse movement patterns and mobile 
sensor data provide additional layers of authentication. These 
ML-driven behavioural models continuously adapt to users’ 
unique interaction styles, delivering ongoing, unobtrusive 
security checks that transcend static credentials like passwords 
or traditional challenge-response prompts24. Moreover, financial 
institutions increasingly embed ML-derived insights into broader 
compliance and risk management frameworks, integrating 
anomaly detection outputs into regulatory reporting structures 
and capital risk assessments. In this way, machine learning not 
only mitigates cyber threats but also supports strategic, long-
term operational planning2.

Real-world implementations of these technologies further 
validate their impact. Visa’s cloud-native ARIC Risk Hub 
profiles over 500 million cardholders and blocks anomalous 
transactions in under 300 milliseconds, resulting in a 90% 
reduction in phishing-related financial losses for the Norwegian 
Eika bank consortium within its first operational year25. 
Similarly, Mastercard’s “Decision Intelligence Pro” analyses up 
to 160 billion transactions annually, generating real-time risk 
scores within 50 milliseconds and helping prevent an estimated 
$40 billion in fraud during 2024 alone26.

These production-scale deployments corroborate the earlier 
academic consensus on the superiority of adaptive models 
over static rule-based systems. However, they also expose two 
critical implementation challenges. First is the issue of bias 
drift. Models initially trained on predominantly North American 
datasets misclassified Eastern European e-commerce flows, 
prompting urgent domain-adaptation iterations. Second is the 
growing challenge of explainability. Regulators under the EU 
PSD2 directive required granular, interpretable outputs before 
authorising model deployment, compelling institutions to 
integrate SHAP-based local explainability dashboards to meet 
audit and compliance standards.

B. Healthcare and medical devices

Healthcare organisations face escalating cyber threats, 
including ransomware attacks on hospital networks and the 
potential compromise of Internet of Things (IoT) medical 
devices. ML-based solutions for network anomaly detection 
can distinguish legitimate medical-device communications 
from unauthorised intrusions or data-exfiltration attempts4. For 
example, unsupervised clustering models can identify unusual 
traffic patterns originating from connected pacemakers or 
infusion pumps and alert security teams before patient safety is 
jeopardised.

In the era of telemedicine and remote patient monitoring, 
maintaining the confidentiality and integrity of patient data 
is of paramount importance. ML-driven identity verification 
and anomaly detection tools can continuously authenticate 
healthcare providers and validate patient requests, thereby 
reducing the likelihood of data breaches or unauthorised access 
to electronic health records12. In addition, the use of natural 
language processing and encryption-aware ML algorithms can 
ensure that sensitive diagnostic information and treatment plans 
remain both accessible and protected.

C. Critical infrastructure (energy, transportation, utilities)

Critical infrastructure systems, including energy grids, 
water treatment plants and transportation networks, present 
unique cybersecurity challenges owing to their massive scale 
and potentially catastrophic consequences of compromise. ML 
models integrated into Supervisory Control and Data Acquisition 
(SCADA) systems enable real-time anomaly detection and 
early threat identification. These models can distinguish 
normal operational states, such as predictable fluctuations 
in power demand, from malicious manipulations that could 
degrade services or cause physical damage27. To counter 
highly sophisticated nation-state-level attacks, ML-based early 
warning systems aggregate threat intelligence across multiple 
data streams, correlating sensor readings, network telemetry 
and industrial process parameters. By pre-emptively identifying 
subtle patterns of infiltration or sabotage, these systems empower 
infrastructure operators to mitigate disruptions and preserve the 
stability of essential public services28.

D. Cloud and virtualised environments

The shift towards cloud computing and virtualisation has 
introduced new attack surfaces and complexities. In multi-
tenant architectures, attackers can attempt lateral movement 
by navigating from one compromised virtual machine to others 
within the same physical host. ML-based anomaly detection 
agents monitor east-west traffic flows to detect unexpected 
communication patterns and isolate compromised instances29. 
Such a layered defense ensures that even if an attacker breaches 
one segment of the cloud infrastructure, they cannot easily 
expand their reach.

Moreover, threat intelligence in containerised and serverless 
environments relies on ML’s ability of ML to adapt to short-
lived and rapidly scaling services. By modelling normal 
container startup times, resource utilisation and inter-service 
calls, ML techniques can highlight suspicious deviations and 
help security teams contain breaches before attackers exploit 
ephemeral workloads30. The fluidity and dynamism of cloud 
infrastructure make ML’s speed, adaptability and automation 
essential components of an effective defense strategy.
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E. Key lessons from cross-industry comparisons

The application of ML in finance, healthcare, critical 
infrastructure and cloud environments underscores the need to 
tailor solutions to domain-specific challenges. Data availability, 
labelling and privacy concerns differ markedly across industries. 
While financial institutions have ample transaction logs, 
healthcare organisations must manage sensitive patient data 
under strict regulatory constraints2. Consequently, domain-
specific data challenges influence the choice of algorithms, 
feature engineering techniques and performance evaluation 
metrics.

Likewise, customisation of ML models to unique operational 
contexts is essential. Models trained on financial datasets may 
not seamlessly transfer to detecting medical device anomalies or 
SCADA system intrusions. Instead organisations must carefully 
adapt architectures, hyperparameters and training strategies to 
align with the nuances of each environment1. Nevertheless, there 
remain opportunities for transferability of best practices across 
sectors. Techniques that prove effective in detecting lateral 
movement in cloud infrastructure, for instance, may inform 
strategies for identifying similar patterns in industrial control 
networks, provided that careful domain adaptation occurs.

These cross-industry insights collectively highlight the 
potential of ML for robust, adaptive cybersecurity measures 
while simultaneously illuminating the complexities inherent 
in scaling, generalising and operationalising these solutions in 
diverse real-world settings.

F. Large-language-model (LLM)-enabled threats and 
defences

As large language models (LLMs) continue to advance, their 
application within cyber threat vectors is transforming traditional 
social engineering tactics into highly adaptive and automated 
attack mechanisms. LLMs now enable the automated production 
of grammatically flawless, contextually tailored phishing emails 
and, increasingly, real-time synthetic voice impersonations 
that mimic the speech patterns of corporate executives. These 
capabilities significantly reduce the time, cost and expertise 
required to mount targeted cyberattacks31. Recent intelligence 
from investigative reports has uncovered a proliferation of 
“LLM as a service” offerings on dark web forums, where even 
individuals with minimal technical background can deploy 
multilingual, context-sensitive spear-phishing campaigns at 
scale32. The commodification of generative AI in cybercrime 
circles marks a paradigm shift, transforming social engineering 
from a manual craft into a scalable automated operation.

In response, cybersecurity operations centres (SOCs) and 
enterprise defenders are actively deploying countermeasures 
that leverage the same class of models to detect and neutralise 
these emerging threats. One such approach is semantic 
anomaly detection, wherein SOCs retrain natural language 
classifiers on transformer-based embeddings to identify subtle 
inconsistencies, unexpected tone shifts or unnatural language 
patterns within message threads, which are key signals that often 
betray generative origin33. In parallel, graph neural networks 
(GNNs) are being utilised to uncover coordination patterns 
across attack surfaces. These models integrate heterogeneous 
data including email content, metadata, sender infrastructure and 
behavioural user-click pathways to detect and isolate distributed 
LLM-generated phishing campaigns in near real time34.

Another promising defence involves the integration of user-
facing LLMs into productivity and messaging platforms. These 
embedded assistants serve as “phish-check” agents, offering real-
time coaching by paraphrasing potentially suspicious messages 
and drawing attention to anomalous requests. Preliminary 
deployments have shown measurable success. In pilot studies, 
users equipped with these tools demonstrated a 14 percent 
reduction in phishing click-through rates, indicating a positive 
impact on human-in-the-loop security outcomes26. Together, 
these developments illustrate the dual use nature of LLMs in 
cybersecurity, functioning both as a vector for novel attacks 
and as a foundation for next-generation defence architectures. 
The challenge for researchers and practitioners lies in staying 
ahead of offensive innovation, deploying proactive and adaptive 
models that can scale in step with adversarial capabilities.

5. Challenges and Limitations 
A. Data quality, bias and label scarcity

A key challenge in building robust machine learning (ML) 
models for cybersecurity lies in ensuring access to high-quality 
and representative data. Many real-world datasets suffer from 
insufficient labelled samples, limiting the effective use of 
supervised learning and hindering the performance of anomaly 
detection methods2. Further compounding this issue, datasets 
commonly exhibit class imbalance, in which benign events 
vastly outnumber malicious instances. Such skewed distributions 
may lead to models that excel at detecting normal activities but 
underperform in identifying subtle or rare attacks4.

Additional complications arise from noise, incomplete 
data and the prevalence of false positives and negatives in 
network logs and security event streams. Noise can mask 
attack signals, whereas incomplete data may omit the critical 
contextual information necessary for accurate classification. 
Misclassifications, such as false alarms that overload security 
personnel or missed intrusions that compromise systems, can 
erode trust in ML-driven solutions. Overcoming these data 
challenges requires rigorous data engineering, active learning 
strategies to refine labelling and continual dataset maintenance 
to preserve the model performance over time.

B. Interpretability and explainability of ML models

As ML models become more complex, the difficulty of 
interpreting their decisions increases. Regulatory and compliance 
requirements, particularly in sectors such as finance and 
healthcare, demand that organisations justify security decisions 
for auditing and legal purposes1. Highly complex deep learning 
models, although powerful, often function as “black boxes”, 
whose internal logic remains opaque. Lack of transparency can 
raise concerns about bias, fairness and accountability, posing 
hurdles to widespread adoption.

From an operational perspective, trust and usability for 
security analysts hinge on interpretable outputs. To make 
informed response decisions, analysts must understand why 
a model flagged a particular event as malicious. Post-hoc 
explanation tools, such as feature importance rankings, rule 
extraction methods and local approximation techniques, aid 
in bridging this gap35. However, achieving a balance between 
predictive accuracy and interpretability remains an ongoing 
area of research and practice, influencing how effectively these 
models are integrated into day-to-day cybersecurity workflows.
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C. Adversarial attacks against ML models

Attackers are becoming increasingly aware that ML models 
now guard critical infrastructure and sensitive data. Consequently, 
adversarial attacks, including poisoning (tampering with training 
data), evasion (crafting inputs that fool detection) and model 
inversion (deriving information about the model or training data) 
have emerged as significant threats36. Such attacks can degrade 
model performance or reveal sensitive patterns, reducing the 
overall effectiveness of ML-based defences.

Researchers and practitioners have developed techniques to 
improve the model robustness and resilience, such as adversarial 
training, input sanitisation and the use of robust feature 
representations that are less susceptible to manipulation17. 
Continual adaptation and rigorous testing against known 
adversarial scenarios are vital for preserving the integrity and 
reliability of ML-driven cybersecurity measures.

D. Scalability and integration costs

Although ML solutions promise enhanced detection and 
response capabilities, practical implementation at scale often 
involves computational overhead and resource constraints. 
Processing massive datasets, training large models and 
conducting real-time inference can strain organisational 
infrastructure, both in terms of hardware capacity and latency 
requirements2. Ensuring that these systems remain efficient, 
cost-effective and responsive as data volumes increase is a 
persistent engineering challenge.

In addition organisational resistance, skill gaps and the 
cost of adoption may impede the seamless integration of ML 
solutions into existing cybersecurity programs. Specialised data 
science and ML engineering expertise are required to select 
the right models, tune hyperparameters and maintain model 
performance over time. Without adequate training and buy-in, 
operational teams may hesitate to trust ML-driven alerts or fail 
to harness the full potential of these technologies. Overcoming 
these barriers demands not only technical innovation but 
also effective communication, training and alignment with 
organisational priorities to ensure that ML-driven cybersecurity 
solutions deliver both technological and operational value.

6. Emerging Trends and Future Research Directions 
A. Federated learning and privacy-preserving approaches

As organisations and industries increasingly collaborate 
to address evolving cyber threats, safeguarding sensitive data 
remains a critical concern. Federated learning, a paradigm in 
which models are trained across decentralised data sources 
without transferring raw information, offers a promising 
approach to protecting privacy while gaining collective 
intelligence35. Paired with secure multiparty computation and 
differential privacy techniques, federated learning enables 
the sharing of threat intelligence across financial institutions, 
healthcare providers and critical infrastructure operators without 
disclosing proprietary datasets or vulnerable system details38. 
Such cooperative models can capture broader threat patterns 
and improve detection rates against emerging attacks, while 
maintaining strict data governance and regulatory compliance. 
Additionally, adherence to privacy regulations, such as GDPR 
and CCPA, becomes more manageable, as federated learning 
inherently minimises data transfer risks39.

B. Automated machine learning (AutoML)

AutoML frameworks aim to streamline the selection, tuning 
and deployment of ML models, thereby reducing the need for 
deep domain or data science expertise. By automating tasks, 
such as hyperparameter optimisation, feature selection and 
ensemble construction, AutoML can rapidly iterate through 
myriad configurations, converging on robust, well-calibrated 
solutions40. This efficiency not only accelerates the pace at 
which organisations deploy and update their cybersecurity 
models, but also enables smaller or resource-constrained 
security teams to benefit from sophisticated ML techniques. In 
effect, AutoML democratises access to ML-driven cybersecurity 
solutions, enhancing overall resilience and enabling continuous 
improvements in threat detection and response.

C. Transfer learning and domain adaptation

However, attacks are rarely confined to a single domain. 
Patterns identified in one industry, such as the lateral movement 
techniques observed in cloud infrastructure, may offer valuable 
insights for detecting similar tactics in industrial control systems 
or healthcare networks2. Transfer learning and domain adaptation 
techniques allow models trained on one dataset to be fine-tuned 
or adapted to another, conserving computational resources and 
reducing the need for extensive labelled data in new domains41. 
These approaches not only accelerate the deployment of 
ML solutions to emerging sectors but also help ensure that 
lessons learned from one field inform and strengthen defences 
elsewhere. As threat landscapes evolve, ML models capable of 
adapting their knowledge and recontextualising learned patterns 
are crucial for maintaining robust security.

D. Causal inference and complex system modelling

While many ML methods excel at pattern recognition, the next 
frontier involves understanding the cause-effect relationships 
underlying cyber-attacks. Causal inference methods allow 
practitioners to move beyond correlation-based modelling, 
providing insights into what triggers or influences certain attack 
patterns and how different defense strategies produce tangible 
outcomes42. By constructing complex system models, ML-driven 
cybersecurity solutions can simulate the interplay between 
attackers, defenders and evolving infrastructure, leading to more 
strategic planning and a better allocation of defensive resources.

These advancements have the potential to enhance predictive 
accuracy and improve strategic defense planning. For example, 
by understanding which infrastructure components or user 
behaviours are causally linked to increased vulnerability 
organisations can prioritise hardening those elements, resulting in 
more proactive and cost-effective defence measures. Ultimately, 
integrating causal inference techniques into ML-driven 
cybersecurity can yield more trustworthy, explainable and 
targeted defences that can adapt to changing adversary tactics.

7. Conclusion
This study has demonstrated the pivotal role that machine 

learning (ML) plays in strengthening cybersecurity strategies 
across multiple sectors. By enabling the detection of complex 
attack patterns and subtle anomalies that frequently elude 
traditional signature-based defences, ML techniques significantly 
enhance early threat detection and response capabilities2,1. 
Through case studies drawn from finance, healthcare, critical 
infrastructure and cloud environments, this review has illustrated 
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the flexibility and domain adaptability of ML-based solutions, 
offering insights that transcend industry boundaries and inform 
broader digital defence strategies. Strategic integration of ML 
models into Security Information and Event Management 
(SIEM) systems, alongside careful alignment with regulatory 
frameworks and the deliberate curation of training data, has 
emerged as a best practice for deploying robust and scalable 
defences. These systems must also account for adversarial 
evolution, making continuous validation and adaptation essential 
for sustained efficacy.

From a research perspective, this synthesis reveals several 
urgent areas for advancement. Chief among them is the 
development of interpretable models that provide transparent 
decision-making pathways for both practitioners and regulators. 
Additionally, there is a pressing need for more resilient 
architectures capable of withstanding adversarial perturbations, 
as well as domain adaptation techniques that allow effective 
model transfer across operational contexts43. These challenges 
underscore the necessity of advancing explainable AI frameworks 
and adversarially robust methodologies that can evolve in parallel 
with the threat landscape. For practitioners, the findings offer 
concrete guidelines for implementation. Key recommendations 
include the deployment of continuously retrained models, the 
prioritisation of diverse and representative datasets and the 
adoption of privacy-preserving techniques that uphold user 
trust and regulatory compliance. Ensuring transparency through 
explainability not only enhances operational clarity but also 
contributes to stakeholder confidence in AI-driven security 
workflows.

Policymakers also have a vital role in shaping the future 
of ML in cybersecurity. Regulatory foresight, standard-
setting and incentives for secure data sharing can help build a 
trustworthy foundation for AI adoption. The European Union’s 
AI Act (Regulation (EU) 2024/1689), which came into force 
on 1 August 2024, exemplifies this regulatory momentum by 
imposing specific cyber resilience obligations on high-risk AI 
systems used in security monitoring. These include mandatory 
accuracy thresholds, robustness testing protocols and post-
incident reporting requirements within 72 hours44. Notably, the 
Act mandates demonstrable human oversight and the integration 
of failsafe mechanisms, prompting system architects to 
implement dual control features that permit manual intervention 
in autonomous response scenarios45. Machine learning offers 
a transformative opportunity to construct intelligent, adaptive 
and resilient cybersecurity ecosystems. Through ongoing 
innovation, interdisciplinary collaboration and supportive policy 
environments, ML-driven security strategies can extend beyond 
reactive defences to enable proactive and pre-emptive resilience. 
As cyber threats continue to grow in scale and complexity, these 
intelligent systems are increasingly positioned to serve as the 
foundation of next-generation digital security, capable not only 
of mitigating today’s risks but also of anticipating and addressing 
the threats of tomorrow.
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