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 A B S T R A C T 
Machine learning (ML) transforms healthcare by enabling predictive analytics, personalized treatments and improved patient 

outcomes. However, traditional ML workflows often require specialized skills, infrastructure and resources, limiting accessibility 
for many healthcare professionals. This paper explores how BigQuery ML Cloud service helps healthcare researchers and data 
analysts to build and deploy models using SQL, without need for advanced ML knowledge. Our results demonstrate that the 
Boosted Tree model achieved the highest performance among the three models making it highly effective for diabetes prediction. 
BigQuery ML directly integrates predictive analytics into their workflows to inform decision-making and support patient care. 
We reveal this capability through a case study on diabetes prediction using the Diabetes Health Indicators Dataset. Our study 
underscores BigQuery ML’s role in democratizing machine learning, enabling faster, scalable and efficient predictive analytics 
that can directly enhance healthcare decision-making processes. This study aims to bridge the gap between advanced machine 
learning and practical healthcare analytics by providing detailed insights into BigQuery ML’s capabilities. By demonstrating its 
utility in a real-world case study, we highlight its potential to simplify complex workflows and expand access to predictive tools 
for a broader audience of healthcare professionals.

Keywords: BigQuery ML; predictive analytics; healthcare data; diabetes prediction; SQL for machine learning; healthcare 
analytics; healthcare data

1. Introduction
Artificial Intelligence (AI) and Machine Learning (ML) 

are shaping the future of healthcare by applying advanced data 
analysis, predictive modeling and decision support systems. The 
application of AI in healthcare allows for the identification of 
complex patterns in patient data, improving diagnostic accuracy, 
treatment personalization and operational efficiency1. Healthcare 
providers are increasingly leveraging predictive analytics to 
foresee health outcomes, enabling earlier interventions and more 
targeted care2,26. For instance, AI models have proven effective 
in identifying high-risk patients and optimizing preventive care 

strategies3. Diabetes, a major global health challenge, requires 
early detection and preventive care. Predictive models built 
using accessible tools like BigQuery ML can help healthcare 
professionals identify at-risk individuals efficiently.

Cloud computing serves as a critical tool for AI and 
ML in healthcare, addressing many of the technical and 
infrastructural challenges associated with large-scale data 
analysis. With scalable infrastructure, cloud platforms allow 
healthcare providers to process and store vast amounts of data, 
facilitating AI-driven insights without the need of extensive 
on-site resources4. Cloud computing reforms healthcare by 
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Usability Evaluation) discusses possible extensions of this study, 
including real-time predictive analytics and broader applications 
in healthcare. Finally, Section 6 (Conclusion) summarizes the 
key contributions and outlines future research directions.

Through this structure, we aim to highlight how BigQuery 
ML democratizes machine learning in healthcare, making 
predictive analytics more accessible, scalable and efficient for a 
broader range of professionals.

2. Background
The intersection of AI and healthcare has been extensively 

studied, with particular emphasis on predictive analytics for 
chronic disease management. Diabetes, a global health challenge 
affecting millions, has been a focal point for such research due to 
its significant health and economic impacts. Numerous studies 
have demonstrated the potential of ML models in identifying 
diabetes risk using health indicators such as age, BMI and blood 
pressure11-13. However, traditional ML approaches, including 
logistic regression and support vector machines, often require 
significant computational resources and specialized expertise, 
limiting their application in resource-constrained clinical 
environments.

Studies indicate that cloud-based ML has streamlined 
healthcare analytics by facilitating efficient data processing 
and model management14. While AWS and Azure provide 
comprehensive tools for machine learning, they require 
significant programming expertise and do not natively integrate 
SQL-based workflows. BigQuery ML, on the other hand, 
allows users to execute machine learning tasks within a single 
environment using SQL, making it particularly accessible for 
healthcare professionals without technical expertise. Table 1 
summarizes the key features, advantages and limitations of 
BigQuery ML compared to other leading platforms such as AWS 
SageMaker and Azure ML, highlighting its unique suitability for 
healthcare analytics (Table 1).

Platforms like BigQuery ML allow users to build and 
deploy machine learning models directly through SQL, 
reducing the technical barriers associated with traditional 
ML pipelines. BigQuery ML’s ability to integrate seamlessly 
with healthcare datasets offers a powerful tool for healthcare 
professionals without programming expertise, democratizing 
access to advanced analytics. Despite these advantages, there 
is limited literature on the practical application of BigQuery 
ML in healthcare settings, particularly for largescale datasets8. 
This study leverages the Diabetes Health Indicators Dataset to 
demonstrate the capabilities of BigQuery ML in a healthcare 
context. By utilizing SQL-based ML workflows, we aim to 
provide a framework for healthcare professionals to implement 
predictive analytics with minimal technical overhead, thereby 
addressing a critical gap in existing research.

2.1. Related studies and literature gap

Most existing research relies on programming-intensive 
platforms requiring Python, R or specialized ML frameworks, 
which create barriers for non-technical users. Limited studies 
explore SQL-based machine learning tools like BigQuery 
ML, which provide an accessible alternative for healthcare 
professionals lacking programming expertise. While studies 
have evaluated ML performance in healthcare using conventional 
programming methods, the accessibility and efficiency of 
SQL-driven ML workflows remain underexplored.

reducing costs, enabling scalability, improving patient access 
through telemedicine and enhancing data driven decisions. It 
fosters collaboration with seamless data sharing, streamlines 
hospital operations and boosts efficiency, care quality and 
outcomes5. Additionally, cloud computing in healthcare offers 
scalability and AI integration with addressing critical security 
and privacy challenges. Protecting sensitive patient data requires 
implementing regulatory-compliant measures and robust 
models. Research highlights various approaches to managing 
evolving service models and ensuring secure and efficient 
healthcare systems6.

Among major cloud providers, Amazon Web Services 
(AWS), Microsoft Azure and Google Cloud Platform (GCP) 
offer tools for AI and ML, with high strengths. AWS provides 
a wide range of machine learning tools and services such as 
SageMaker, which enables rapid model development and 
deployment. Microsoft Azure’s AI services, including Azure 
Machine Learning, are known for their integration with the 
broader Microsoft ecosystem, which can be advantageous for 
healthcare organizations used for Microsoft products7. Google 
Cloud Platform focuses on data and machine learning services 
and is a powerful data warehouse simplifying the machine 
learning process of users familiar with data analytics8.

Despite advancements in AI and ML, the need for user-
friendly tools that simplify complex workflows remains critical. 
Traditional machine learning methods often require extensive 
coding skills, which limits their accessibility to a broader 
audience of healthcare practitioners. Cloud-based ML platforms 
provide user-friendly tools that reduce the need for specialized 
expertise and technical resources9. Through this integration, 
healthcare organizations can develop, deploy and scale ML 
models with minimal local infrastructure, enhancing their ability 
to derive information from data10.

The novelty of this study lies in demonstrating the use of 
BigQuery ML to enable healthcare professionals without 
programming expertise to build, train and evaluate machine 
learning models directly through SQL queries. Unlike existing 
cloud-based platforms, BigQuery ML simplifies the integration 
of predictive analytics into healthcare workflows by eliminating 
the need for complex programming or data movement. This 
approach has not been explored in depth in prior research, which 
typically focuses on more programming-intensive platforms 
such as AWS Sage Maker or Python-based workflows. The 
objective of this study is to demonstrate how BigQuery ML 
simplifies machine learning workflows in healthcare by enabling 
users to leverage SQL instead of traditional programming-based 
approaches. This approach reduces technical barriers, allowing 
healthcare professionals with limited programming expertise 
to utilize advanced ml capabilities for decision-making and 
predictive analytics.

This paper is structured as follows: Section 2 provides 
background on cloud-based ML solutions and their role in 
healthcare analytics. Section 3 (Methodology) describes the 
use of BigQuery ML for diabetes prediction, followed by a 
discussion on data preparation and preprocessing techniques. 
Model creation, training and hyperparameter tuning in 
BigQuery ML are then presented, along with an evaluation of 
model performance using standard machine learning metrics. 
Section 4 (Results and Discussion) highlights key findings, 
including the strengths, limitations and potential applications of 
BigQuery ML in healthcare. Section 5 (Future Directions and 
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can lower technical barriers to machine learning adoption 
in healthcare, providing a scalable, efficient and accessible 
alternative to programming-heavy ML platforms.

3. Methodology
This section describes the end-to-end workflow for 

implementing machine learning models using BigQuery ML 
within Google Cloud Platform (GCP) for healthcare analytics. 
We first introduce the cloud infrastructure used for data storage, 
processing and model execution, followed by an explanation 
of the BigQuery data warehouse and its role in handling large-
scale structured healthcare datasets. Next, we outline the ML 
models employed-Logistic Regression, Boosted Tree and Deep 
Neural Network (DNN)- and justify their selection for this study. 
Additionally, we provide details about the dataset, including its 
characteristics, preprocessing considerations and rationale for 
use. The section concludes with a discussion on hyperparameter 
tuning and model evaluation (Figure 1).

Figure 1: Workflow of BigQuery ML-based machine learning 
pipeline.

3.1. Work environment 

Google Cloud Platform (GCP) provides a robust, scalable 
cloud infrastructure for data storage, processing and ML analysis. 
Its suite of tools enables end-to-end data workflows, from 
ingestion to predictive modeling, while ensuring compliance with 
healthcare regulations such as HIPAA [15]. The Google Cloud 
ecosystem, including BigQuery, Cloud Storage and BigQuery 
ML, was chosen for this study due to its efficiency in handling 
large-scale healthcare datasets securely and seamlessly16.

BigQuery, a fully managed serverless data warehouse, 
was utilized for data storage, querying and preprocessing. Its 
low-latency SQL-based architecture is particularly well-suited 
for healthcare analytics, allowing rapid data exploration without 
the need for additional infrastructure management17. By storing 
the Diabetes Health Indicators Dataset in BigQuery, we leveraged 
its built-in preprocessing capabilities while maintaining data 
security and integrity.

BigQuery ML was used to build, train and evaluate ML 
models directly through SQL queries. This SQL based approach 
democratizes ML access, allowing healthcare professionals 
without programming expertise to implement predictive 
analytics with minimal overhead18.

Table 1: Comparison of Cloud-Based Machine Learning Platforms: Key features, advantages and limitations of BigQuery ML, 
AWS SageMaker and Azure ML, with a focus on accessibility, integration and suitability for healthcare analytics.

Service Ease of Use Integration Expertise Workflow SQL Support Scalability Realtime Healthcare Use 

BigQuery ML High (SQL) Google Cloud Low (SQL) Simple Yes High Yes Strong 

AWS SageMaker Moderate (Python) AWS (S3, Lambda) High (Python) Complex No High Yes Widely used 

Azure ML Moderate (GUI/Python) Azure (Synapse) Moderate Mixed No High Yes Less accessible 

This gap is particularly significant given that SQL is widely 
used in healthcare data analytics27-29, making it a natural 
choice for enabling predictive modeling without additional 
programming knowledge. Prior studies have not focused on 
how healthcare professionals can leverage SQL for ML without 
requiring external tools, manual data movement or complex 
ML frameworks. BigQuery ML addresses this gap by allowing 
professionals to leverage the power of machine learning directly 
through SQL commands, making it an ideal solution for real-
world healthcare applications. SQL remains one of the most 
widely used programming languages worldwide, consistently 
ranking among the top three in 2024 [27]. This widespread 
familiarity makes SQL a natural choice for professionals in 
healthcare analytics, enabling them to leverage existing skills 
for advanced machine learning tasks without requiring extensive 
technical training.

While alternative tools like Weka and ChatGPT offer 
unique approaches to machine learning workflows, they fall 
short in key aspects that are critical for real-world healthcare 
applications. Weka, for example, is a GUI-driven tool suitable 
for standalone ML studies but lacks integration with cloud 
platforms, making it inefficient for handling large-scale datasets 
or real-time analysis. Additionally, Weka requires users to 
export and import data manually, increasing the likelihood of 
errors and inefficiencies. Similarly, while ChatGPT can generate 
ML code through descriptive prompts, it assumes the user has 
a basic understanding of programming to interpret, test and 
refine the code. Furthermore, ChatGPT does not provide a cloud 
environment to execute the generated code or access integrated 
tools such as BigQuery, Cloud Storage or Vertex AI. In contrast, 
BigQuery ML operates within the Google Cloud ecosystem, 
enabling direct interaction with databases and other cloud tools. 
This capability streamlines the entire data workflow, from 
ingestion to model training and deployment, without requiring 
external environments or tools.

This study addresses this gap by showcasing BigQuery ML 
as a fully integrated cloud-based ML solution, demonstrating 
how it can be applied to structured healthcare data without 
requiring programming expertise or ML-specific knowledge.

2.2. Research question 

Given the increasing demand for accessible ML solutions in 
healthcare and the gap in research on SQLdriven ML platforms, 
this study aims to address the following research question: 

“How effectively can BigQuery ML be utilized for predictive 
healthcare analytics and how does it compare in terms of 
accessibility, ease of use and performance to other cloud-based 
ML solutions?”

This question is driven by the need to evaluate the feasibility 
of SQL-based ML workflows for healthcare professionals, 
as well as the potential advantages and limitations of using 
BigQuery ML for predictive analytics. By investigating this 
question, the study seeks to determine whether BigQuery ML 
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Hyperparameter tuning was conducted through iterative 
SQL-based adjustments in BigQuery ML. Learning rate, 
maximum iterations and tree depth were optimized using ML. 
EVALUATE functions, ensuring a balance between precision and 
recall for healthcare predictions. Since BigQuery ML operates 
as a fully managed cloud service, no on-premise hardware was 
required for model execution. The computational workload was 
handled by Google Cloud’s distributed infrastructure, leveraging 
high-performance computing resources optimized for SQL-based 
ML processing. This eliminates the need for dedicated GPUs 
or TPUs typically required for deep learning tasks, reducing 
hardware dependencies while ensuring scalability for large 
datasets.

3.2. Dataset used and rationale

The Behavioral Risk Factor Surveillance System (BRFSS) 
is an annual health survey conducted by the CDC since 1984. 
This telephone survey collects health-related data from over 
400,000 Americans each year, focusing on health risk behaviors, 
chronic conditions and preventive healthcare services. For this 
study, we used a refined 2015 BRFSS dataset, publicly available 
in CSV format on Kaggle. The dataset includes responses from 
70,692 individuals, evenly balanced between non-diabetic (0) 
and pre-diabetic or diabetic (1) individuals. The target variable 
for this study is Diabetes binary, which indicates whether a 
respondent has diabetes (1) or not (0).

To build our predictive models, we selected 21 key health 
indicators relevant to diabetes prediction. These features include 
demographic factors, lifestyle habits and clinical indicators that 
have been commonly linked to diabetes risk in prior research22. 
(Table 2) provides a summary of the 21 selected features, their 
type (numerical/categorical), key statistics and brief descriptions: 

Table 2: Summary of Selected Features in the Dataset.
Feature Description Type 

High BP High blood pressure (1 = Yes, 0 = No) Categorical 

High Chol High cholesterol (1 = Yes, 0 = No) Categorical 

Chol Check Cholesterol check in past 5 years (1 = 
Yes, 0 = No) 

Categorical 

BMI Body Mass Index Numerical 

Smoker Smoked at least 100 cigarettes in lifetime 
(1 = Yes, 0 = No) 

Categorical 

Stroke History of stroke (1 = Yes, 0 = No) Categorical 

Heart Disease or 
Attack 

Coronary heart disease or heart attack (1 
= Yes, 0 = No) 

Categorical 

Phys Activity Engages in physical activity outside work 
(1 = Yes, 0 = No) 

Categorical 

Fruits Consumes fruit daily (1 = Yes, 0 = No) Categorical 

Veggies Consumes vegetables daily (1 = Yes, 0 = 
No) 

Categorical 

HvyAlcohol 
Consump 

Heavy alcohol consumption (1 = Yes, 0 
= No) 

Categorical 

AnyHealthcare Has healthcare coverage (1 = Yes, 0 = No) Categorical 

NoDocbcCost Couldn’t see doctor due to cost (1 = Yes, 
0 = No) 

Categorical 

GenHlth General health rating (1 = Excellent, 5 = 
Poor) 

Ordinal 

MentHlth Days of poor mental health in past month 
(0–30) 

Numerical 

PhysHlth Days of poor physical health in past 
month (0–30) 

Numerical 

DiffWalk Difficulty walking or climbing stairs (1 = 
Yes, 0 = No) 

Categorical 

Sex   Gender (1 = Male, 0 = Female)          Categorical 

Age Age category (1 = 18-24, 13 = 80+) Ordinal 

Education Education level (1 = No school, 6 = 
College graduate) 

Ordinal 

Income Income category (1 = < $10,000, 8 = > 
$75,000) 

Ordinal 

Target Description Type 

Diabetes binary Diabetes status (1 = Diabetic/Pre-
diabetic, 0 = Nondiabetic) 

Categorical 

3.3. Machine learning models

To apply BigQuery ML for healthcare analytics, three 
predictive models were selected: Logistic Regression, Boosted 
Trees and Deep Neural Networks (DNN). While BigQuery 
ML supports a range of models, these models span a spectrum 
of complexity, from interpretable linear models to advanced 
ensemble methods and deep learning architectures. Their 
selection is based on prior research in healthcare predictive 
modeling, where they have shown effectiveness in disease 
prediction tasks. 

• Logistic regression: Chosen as a baseline model due to its 
interpretability and effectiveness for binary classification, 
making it particularly useful in clinical decision-making19. 

• Boosted trees: Selected for its ability to capture complex 
relationships between features and improve classification 
accuracy through an iterative learning process20. 

• Deep Neural Networks (DNN): Applied to explore the 
potential of deep learning in detecting high dimensional 
patterns within structured healthcare datasets21.

Justification for model selection is that while BigQuery 
ML supports various machine learning models, these three 
were deliberately chosen to showcase its capabilities across 
different levels of complexity; Logistic Regression serves as an 
interpretable, easy-to-use model for healthcare professionals with 
minimal ML expertise. Boosted Trees provide an intermediate-
level approach, offering improved predictive performance 
while remaining interpretable. Deep Neural Networks (DNNs) 
demonstrate how BigQuery ML can handle more complex, 
computationally demanding models without requiring external 
tools or custom infrastructure.

This selection highlights how BigQuery ML enables users 
to scale from simple ML applications to advanced AI-driven 
healthcare solutions within a SQL-based environment. Future 
work can explore additional models, but this study focuses on 
demonstrating BigQuery ML’s ease of use and versatility in 
healthcare analytics. 

3.4. Data loading 

The Diabetes Health Indicators Dataset was first uploaded 
from Google Cloud Storage (GCS) to BigQuery. This process 
involved multiple steps to ensure the data was correctly ingested 
and prepared for machine learning tasks. The following outlines 
the key stages:

3.4.1. Uploading  the  dataset  to  google  
cloud  storage:  The  raw  dataset, diabetes_
binary_health_indicators_BRFSS2015.csv, was stored as a CSV 
file in an existing or newly created GCS bucket. This setup 

3.5.6. Manual data preprocessing using SQL: While 
BigQuery ML automates preprocessing, additional SQL based 
feature engineering techniques can be applied for greater 
customization. Missing values can be handled with SQL queries 
by applying imputation techniques-numerical variables can be 
filled using the median and categorical variables can be encoded 
using one-hot encoding. Additionally, feature selection can be 
conducted by calculating correlations between each feature and 
the target variable (diabetes_binary) using SQL-based statistical 
functions. These features streamline the data preparation 
process, allowing all preprocessing steps to be completed within 
the BigQuery environment without requiring external tools or 
programming. (Figure 2.a) demonstrates a sample SQL query 
for handling missing values, while (Figure 2.b) shows an 
example of categorical encoding. (Figure 2.c) illustrates how 
SQL can be used to calculate correlations for feature selection.

Figure 2.a: Handling missing values by applying median 
imputation using SQL example.

Figure 2.b: SQL-based one-hot encoding of categorical 
variables example. 

Figure 2.c: Calculating feature correlation with the target 
variable using SQL example. 

3.5. Model creation and training

We employed BigQuery ML to train three models: Logistic 
Regression, Boosted Tree and Deep Neural Network (DNN), 
leveraging SQL for all training workflows. BigQuery ML 
enables healthcare professionals to build machine learning 
models using SQL commands, simplifying the process for users 
without programming expertise. Each model was trained on the 
Diabetes Health Indicators Dataset with 21 feature variables.

We explain the SQL query for the Boosted Tree model in 
this section as an example. The SQL query used to create and 
train the Boosted Tree model is shown in (Figure 3). This query 
demonstrates the simplicity and flexibility of BigQuery ML’s 
SQL-based approach for model creation.

Figure 3. SQL query used for creating and training the 
Boosted Tree model in BigQuery ML. The query includes key 
hyperparameters such as learning rate, maximum iterations and 
regularization terms to optimize model performance.
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facilitated easy access for data ingestion into BigQuery, ensuring 
data security and scalability.

3.4.2. Creating the big query dataset: A new dataset named 
diabetes_analysis was created in BigQuery to store the data. 
Configuration details such as Dataset ID and Data Location 
were specified according to project requirements. This step 
established a structured repository for managing the dataset 
within BigQuery.

3.4.3. Loading data from GCS to BigQuery: The CSV data 
was loaded into BigQuery by creating a table within the diabetes 
analysis dataset. Configuration settings included: 

Source: GCS path 
(e.g., gs://your_bucket/diabetes_binary_5050split_health_
indicators_BRFSS2015.csv). 
File Format: CSV 
Destination Table: diabetes data. 

BigQuery ML automatically partitions the data into training 
and evaluation sets during model training using parameters 
such as data_split_method and data_split_eval_fraction. This 
eliminates the need for manual data splitting and ensures a 
standardized approach to model evaluation. Additionally, 
BigQuery ML validates the schema to ensure compatibility 
during ingestion and training, reducing the likelihood of errors 
caused by data mismatches.

3.5. Data preparation 

3.5.1. Schema validation and compatibility: BigQuery ML 
validates the schema during ingestion and training to ensure 
compatibility between the dataset and the machine learning 
model. This step reduces the likelihood of errors caused by data 
mismatches, streamlining the overall process and maintaining 
data integrity. By leveraging Google Cloud Storage and 
BigQuery, the data preparation and loading process became 
highly efficient and scalable, laying a strong foundation for 
subsequent model creation and training tasks.
3.5.2. Automatic preprocessing in BigQuery ML: One 
of the advantages of BigQuery ML is its built-in automatic 
preprocessing, which eliminates the need for extensive manual 
data preparation. Automatic preprocessing consists of missing 
value imputation and feature transformations, ensuring 
consistency and efficiency in model training.
3.5.3. Missing value imputation: BigQuery ML automatically 
imputes missing values based on data type. For example, 
numerical features are replaced with the mean value, while 
categorical features are assigned to a special missing category. 
This prevents model failures due to missing data and ensures 
robust training.
3.5.4. Feature transformations: Feature Transformations: 
BigQuery ML automatically standardizes numerical features 
(zero mean, unit variance) for logistic regression and DNNs, 
ensuring consistent feature scaling. Boosted trees and random 
forests do not require standardization, as they handle raw feature 
values natively.

3.5.5. Categorical feature encoding: BigQuery ML supports 
various encoding methods for categorical variables, including 
one-hot encoding, dummy encoding, label encoding and target 
encoding. The choice of encoding depends on the model type 
and details are available in the official documentation30.

3.5.6. Manual data preprocessing using SQL: While 
BigQuery ML automates preprocessing, additional SQL based 
feature engineering techniques can be applied for greater 
customization. Missing values can be handled with SQL queries 
by applying imputation techniques-numerical variables can be 
filled using the median and categorical variables can be encoded 
using one-hot encoding. Additionally, feature selection can be 
conducted by calculating correlations between each feature and 
the target variable (diabetes_binary) using SQL-based statistical 
functions. These features streamline the data preparation 
process, allowing all preprocessing steps to be completed within 
the BigQuery environment without requiring external tools or 
programming. (Figure 2.a) demonstrates a sample SQL query 
for handling missing values, while (Figure 2.b) shows an 
example of categorical encoding. (Figure 2.c) illustrates how 
SQL can be used to calculate correlations for feature selection.

Figure 2.a: Handling missing values by applying median 
imputation using SQL example.

Figure 2.b: SQL-based one-hot encoding of categorical 
variables example. 

Figure 2.c: Calculating feature correlation with the target 
variable using SQL example. 

3.5. Model creation and training

We employed BigQuery ML to train three models: Logistic 
Regression, Boosted Tree and Deep Neural Network (DNN), 
leveraging SQL for all training workflows. BigQuery ML 
enables healthcare professionals to build machine learning 
models using SQL commands, simplifying the process for users 
without programming expertise. Each model was trained on the 
Diabetes Health Indicators Dataset with 21 feature variables.

We explain the SQL query for the Boosted Tree model in 
this section as an example. The SQL query used to create and 
train the Boosted Tree model is shown in (Figure 3). This query 
demonstrates the simplicity and flexibility of BigQuery ML’s 
SQL-based approach for model creation.

Figure 3. SQL query used for creating and training the 
Boosted Tree model in BigQuery ML. The query includes key 
hyperparameters such as learning rate, maximum iterations and 
regularization terms to optimize model performance.
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Here is a line-by-line explanation of the SQL query: 

• CREATE OR REPLACE MODEL: This command creates 
a new machine learning model or replaces an existing one 
with the same name. The model is stored in the specified 
project and dataset under the name diabetes_model. 

• OPTIONS Clause: This section specifies the configuration 
settings for the Boosted Tree model: model_type = 
‘boosted_tree_classifier’: Indicates that the model is a 
Boosted Tree classifier, designed for binary classification 
tasks. input_label_cols = [‘Diabetes_binary’]: Specifies 
that the target column for prediction is Diabetes_binary. 
data_split_method = ‘RANDOM’: Instructs BigQuery 
ML to randomly split the data into training and evaluation 
sets. data_split_eval_fraction = 0.2: Allocates 20% of the 
data for evaluation and 80% for training. max_iterations 
= 150: Sets the maximum number of iterations for the 
boosting process to converge. learn_rate = 0.05: Defines 
the learning rate, which controls the contribution of each 
tree to the final prediction. min_rel_progress = 0.00001: 
Specifies the minimum relative progress required between 
iterations to avoid early stopping. l1_reg = 0.1: Applies 
L1 regularization to the model to prevent overfitting by 
penalizing large coefficients. l2_reg = 2.0: Applies L2 
regularization, adding an additional penalty for large 
coefficients to enhance generalization. 

• AS SELECT Clause: 

• SELECT *: Selects all columns from the dataset for 
model training, ensuring that all relevant features and 
the target variable are included. 

• FROM ‘project_id.dataset_id.diabetes_data’: 
Specifies the source table containing the dataset. o 
WHERE Diabetes_binary IS NOT NULL: Filters out 
rows with null values in the target column (Diabetes_
binary), ensuring clean data for training. 

The Boosted Tree model was designed to handle complex 
relationships in the data, leveraging BigQuery ML’s efficient 
infrastructure. The use of hyperparameters such as max_iterations, 
learn_rate and regularization settings (L1 and L2) ensures the 
model achieves a balance between accuracy and generalization, 
critical for healthcare applications like diabetes prediction. This 
SQL-based approach demonstrates the accessibility of advanced 
machine learning methods for healthcare professionals without 
the need for programming expertise. Hyperparameter tuning 
in BigQuery ML was conducted using iterative adjustments to 
model parameters through the OPTIONS clause in SQL queries. 
For example, for the Boosted Tree model, parameters such as 
learning rate, max iterations and tree depth were specified 
and adjusted iteratively. Each model was evaluated using the 
ML.EVALUATE function to identify the optimal settings based 
on metrics such as log loss and F1 score. This approach ensured 
that the models achieved a balance between precision and recall, 
critical for healthcare predictions.

4. Results and Discussion
This section evaluates the performance of Logistic 

Regression, Boosted Tree and Deep Neural Network (DNN) 
models using key metrics like precision, recall, F1 score, ROC 
AUC, accuracy and log loss. Section 4.2 explains these metrics 
and their relevance in healthcare analytics. Section 4.3 examines 

confidence threshold trade-offs, while Section 4.4 analyzes 
precision-recall curves. Section 4.5 discusses ROC curves and 
model discrimination ability. Section 4.6 provides a comparative 
analysis of model performance, summarized in Table 1. Finally, 
Section 4.7 explores practical implications, guiding model 
selection for healthcare applications.

4.1. Evaluation metrics 

Model evaluation is a critical aspect of the machine learning 
process, especially in healthcare applications where predictive 
accuracy has real-world implications. The performance of the 
models, Logistic Regression, Boosted Tree and Deep Neural 
Network (DNN), was assessed using multiple metrics, including 
precision, recall, F1 score, ROC AUC, accuracy and log loss. 
BigQuery ML provides these metrics along with visual tools 
such as confidence threshold plots, precision-recall curves and 
ROC curves. These tools are particularly useful in healthcare 
contexts for exploring model performance across various 
thresholds and understanding trade-offs between sensitivity 
and specificity, offering deeper insights into the strengths and 
limitations of each model.

In BigQuery ML, each trained model is automatically 
saved within the specified dataset. This built-in storage allows 
users to retrieve performance metrics directly from the model 
and streamlines the evaluation process. BigQuery ML’s ML. 
PREDICT function also allows users to generate predictions 
on new or unseen data directly within BigQuery, integrating 
predictive analytics seamlessly into healthcare workflows.

The key evaluation metrics used in this study include: 

4.1.1. Precision (P): Measures the proportion of correctly 
predicted positive cases among all positive predictions. High 
precision reduces false positives23.

𝑇𝑃

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 + 𝐹𝑃

where TP is true positives and FP is false positive.

4.1.2. Recall (Sensitivity, R): Represents the proportion of 
actual positive cases correctly identified by the model. High 
recall ensures minimal false negatives23. 

𝑇𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃 + 𝐹𝑁

where FN is false negatives.

4.1.3. F1 score: The harmonic means of precision and recall, 
balancing the two metrics24,25. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.1.4. Accuracy (A): The ratio of correctly predicted cases (both 
positive and negative) to the total cases. 

𝑇𝑃 + 𝑇𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 2 ×  

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

where TN is true negative. 
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4.1.5. Log Loss: A metric used for probabilistic predictions, 
penalizing incorrect confidence levels. Lower log loss indicates 
better performance. 
𝑁

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠                 [𝑦𝑖𝑙𝑜𝑔

𝑖

N represents the total number of samples, 𝑦𝑖 denotes the 
actual class label (0 or 1) and 𝑦�̂� refers to the predicted probability 
of the positive class (1). 

4.1.6. Receiver Operating Characteristic (ROC) AUC: 
Measures the ability of the model to distinguish between classes 
across different thresholds. A higher AUC indicates better 
discrimination between positive and negative cases. 

𝐴𝑈𝐶  

These metrics provide a comprehensive evaluation of the 
models, ensuring a balanced assessment of their predictive 
performance in healthcare applications.

4.2. Confidence threshold vs precision/recall 

The leftmost panels in Figure 4 depict the relationship 
between confidence thresholds, precision and recall for the three 
models. These graphs illustrate how the precision and recall 
values change as the confidence threshold is adjusted. Precision 
measures the proportion of true positive predictions among all 
positive predictions, while recall indicates the proportion of 
actual positive cases correctly identified by the model.

For the Boosted Tree model, precision and recall intersect 
at a balanced threshold, highlighting its ability to maintain a 
robust trade-off between the two metrics. The DNN model 
exhibits a similar pattern, with both precision and recall values 
demonstrating consistent performance as the threshold varies. In 
contrast, the Logistic Regression model shows a steeper decline 
in recall as the threshold increases, emphasizing its limitations in 
preserving sensitivity at higher confidence levels.

Understanding these trade-offs is crucial in healthcare, where 
high recall is often prioritized to minimize false negatives, such 
as undiagnosed diabetes cases. By analyzing these graphs, 
practitioners can identify thresholds that align with clinical 
priorities, ensuring that the selected model meets the specific 
needs of the application while balancing precision and recall 
effectively (Figure 4).

 

 

Figure 4. Model’s precision-recall by threshold, precision-recall 
curve and ROC curve. a) The Boosted Tree, b) DNN, c) The 
Logistic Regression.

4.3. Precision-recall curve

The middle panels in Figure 4 illustrate the precision-recall 
curves for the models. These curves provide a detailed view of 
the relationship between precision and recall across different 
thresholds. The area under the precision-recall curve (AUC-PR) 
is a critical metric for evaluating a model’s ability to maintain 
high recall without sacrificing precision. For the Boosted Tree 
model, the AUC-PR is 0.808, indicating strong performance in 
identifying true positives while minimizing false positives. This 
robustness is particularly valuable in healthcare applications, 
where accurate identification of diabetes cases is essential. The 
DNN model achieved an AUC-PR of 0.797, slightly lower than 
the Boosted Tree but still demonstrates reliable performance. In 
contrast, the Logistic Regression model exhibited an AUC-PR 
of 0.748, highlighting its comparatively lower ability to balance 
precision and recall. Precision-recall curves are especially useful 
for imbalanced datasets, such as the diabetes dataset, where the 
positive class (diabetes cases) is relatively rare. By analyzing 
these curves, healthcare practitioners can gain insights into the 
models’ trade-offs, enabling the selection of the most suitable 
model for their specific needs.

4.4. Receiver Operating Characteristic (ROC) curve 

The rightmost panels in Figure 4 show the Receiver Operating 
Characteristic (ROC) curves for the models. These curves are 
essential for evaluating a model’s ability to distinguish between 
positive and negative classes by plotting the true positive rate 
(recall) against the false positive rate across various thresholds. 
The area under the ROC curve (AUC-ROC) provides a single, 
comprehensive metric to summarize the model’s discriminatory 
power. For the Boosted Tree model, the AUC-ROC is 0.834, 
demonstrating its strong ability to differentiate between 
individuals with and without diabetes. This high value highlights 
the model’s reliability in achieving a balance between sensitivity 
and specificity, critical for healthcare applications. The DNN 
model follows closely with an AUC-ROC of 0.83, showcasing 
comparable discriminatory power. The Logistic Regression 
model, while simpler, achieved an AUC-ROC of 0.778, 
indicating a modest but effective performance in distinguishing 
between the two classes. ROC curves are particularly valuable 
in healthcare scenarios were minimizing false negatives (e.g., 
missed diabetes cases) is essential. By analyzing the ROC curves, 
healthcare professionals can determine optimal thresholds that 
prioritize sensitivity while maintaining reasonable specificity, 
ensuring effective interventions for at-risk patients.

4.5. Comparative insights 

Among the evaluated models, the Boosted Tree model 
achieved the highest performance, with an F1-score of 0.7626 
and an AUC-ROC of 0.8339 (see Table 1). These metrics were 
chosen to determine the best performing model as they provide a 
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balanced assessment of classification performance, particularly 
in healthcare applications where both false positives and false 
negatives must be minimized. The F1-score is widely recognized 
as an essential metric when dealing with class imbalance, as it 
accounts for both precision and recall. In diabetes prediction, 
missing a positive case (false negative) can lead to delayed 
diagnosis and worsened health outcomes, making recall 
particularly critical. However, an excessive focus on recall could 
lead to more false positives, which may overburden healthcare 
resources. Therefore, a model that optimally balances these 
factors-such as Boosted Tree-offers clinical and operational 
advantages in a real-world healthcare setting.

Similarly, AUC-ROC is a crucial metric for assessing a 
model’s ability to distinguish between diabetic and non-diabetic 
patients across various decision thresholds. A higher AUC-ROC 
score indicates that the model consistently ranks positive cases 
above negative ones, making it particularly valuable for risk 
stratification in healthcare applications. The Boosted Tree model 
outperformed Logistic Regression and DNN in both F1-score 
and AUC-ROC, demonstrating better generalization and superior 
classification performance in this study. Based on these findings, 
the Boosted Tree model is recommended for diabetes prediction 
using BigQuery ML (Table 3).

Table 3: Evaluation metrics of Logistic Regression, Boosted 
Tree and DNN models trained in BigQuery ML. 

Precision Recall Accuracy F1 
Score 

Log 
Loss 

ROC 
AUC 

Logistic 
Regression 

0.6972 0.7443 0.708 0.72 0.5674 0.7766 

Boosted Tree 0.7324 0.7954 0.7546 0.7626 0.498 0.8339 

DNN 0.7185 0.8215 0.752 0.7665 0.5049 0.8295 

 4.6. Feature importance analysis for the boosted tree model

Feature importance helps us understand which variables 
contribute the most to the model’s predictions. For the boosted 
tree classifier, we used importance gain as the primary metric. 
Importance gains measures how much a feature improves 
decision splits in the model, meaning higher values indicate 
more influential predictors. The results indicate that High Blood 
Pressure (HighBP) is the most significant predictor of diabetes, 
followed by General Health (GenHlth). This aligns with medical 
expectations, as high blood pressure and overall health perception 
are strongly associated with metabolic disorders, including 
diabetes. Other key features influencing diabetes prediction 
include Age, BMI and High Cholesterol (HighChol), all of 
which are well-documented risk factors for diabetes. Difficulty 
Walking (DiffWalk), Heavy Alcohol Consumption and History 
of Heart Disease or Attack also show moderate importance, 
reflecting broader cardiovascular risks associated with diabetes. 
Lifestyle factors such as Physical Activity, Smoking Status and 
Vegetable Consumption have relatively lower importance in this 
model. While these factors influence overall health, their specific 
contribution to diabetes risk is smaller compared to the dominant 
predictors. To better illustrate the impact of each feature, we 
present a bar chart showing the importance gain of all features 
in Figure 5. Higher values indicate stronger predictive power 
(Figure 5). 

In conclusion, the feature importance results align well with 
medical knowledge. Blood pressure, general health, age, BMI 
and cholesterol levels play key roles in predicting diabetes. 

These insights can help refine predictive models and inform 
healthcare interventions.

Figure 5. Feature Importance in Boosted Tree Model for 
Diabetes Prediction.

4.7. Discussion and practical implications

4.7.1 Strengths of BigQuery ML: 

• Ease of use: The SQL-based interface of BigQuery ML 
allows users to perform end-to-end machine learning 
workflows-including data preparation, model training, 
evaluation and prediction-entirely within BigQuery. This 
simplicity enables healthcare researchers, data analysts and 
non-technical professionals to integrate predictive analytics 
into their decision-making processes without requiring 
advanced ML expertise. BigQuery ML also serves as a 
bridge for professionals transitioning into data engineering 
or data science roles by offering an accessible introduction 
to machine learning concepts using SQL. Non-technical 
managers and analysts can leverage BigQuery ML to 
generate insights from healthcare data without coding in 
Python or other programming languages.

• Scalability & speed: BigQuery ML’s serverless architecture 
allows for the efficient processing of largescale healthcare 
datasets in real time. Unlike traditional machine learning 
workflows that require manual ETL pipelines, BigQuery ML 
integrates data storage, preprocessing and model training 
into a single environment, reducing the need for additional 
computational infrastructure. This scalability makes it 
suitable for population-level health studies, predictive 
modeling for disease risk assessment and large-scale patient 
data analytics. By leveraging Google Cloud’s infrastructure, 
healthcare organizations can process and analyze millions 
of records without significant latency. While BigQuery 
ML benefits from cloud scalability organizations with cost 
or resource constraints may need to optimize queries and 
select cost effective models to balance performance and 
affordability. 

• Seamless integration with healthcare workflows: 
BigQuery ML’s ability to integrate directly with Google 
Cloud services-such as Cloud Storage, Cloud Functions and 
Vertex AI-enables a streamlined machine learning workflow 
for healthcare applications. This allows automated model 
updates, real-time predictions and interoperability with 
electronic health records (EHRs) and other healthcare 
platforms. By reducing technical barriers and infrastructure 
overhead, BigQuery ML makes predictive healthcare 
analytics more accessible to hospitals, clinics and public 
health organizations.

4.7.2. Limitations and challenges:

• Dataset biases and generalizability: While this study 
utilizes a balanced diabetes dataset, healthcare datasets often 
suffer from biases related to demographics, socioeconomic 
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factors and healthcare accessibility. Since our dataset is 
derived from a specific population, it may not generalize 
well to other groups. 

• To mitigate bias and improve fairness, future research 
should explore external validation with diverse datasets 
to assess model robustness across different populations. 
Additionally, bias detection techniques and fairness-aware 
machine learning approaches could be integrated into 
BigQuery ML workflows.

• Interpretability of complex models: While Boosted Trees 
and Logistic Regression models in BigQuery ML offer 
transparency and interpretability, Deep Neural Networks 
(DNNs) lack explainability, making them less suitable 
for high-stakes medical decision-making. To improve 
interpretability, techniques such as SHAP (Shapley 
Additive Explanations) and LIME (Local Interpretable 
Model-agnostic Explanations) can be integrated with 
BigQuery ML workflows. Future research can explore 
post-hoc interpretability frameworks that enhance model 
trustworthiness for healthcare applications.

• Image-based machine learning limitations: BigQuery 
ML is optimized for structured, tabular datasets and does 
not natively support image-based machine learning. 
For healthcare applications involving medical imaging 
(e.g., X-rays, MRIs, CT scans), specialized tools such as 
Google Cloud Auto ML Vision and TensorFlow should 
be considered. However, metadata associated with image 
datasets (e.g., diagnostic labels, patient history) can still be 
processed using BigQuery ML, providing valuable insights 
when combined with clinical data. Future work can explore 
hybrid workflows, where image analysis is performed using 
deep learning models in Vertex AI or TensorFlow, while 
BigQuery ML is used for structured data integration and 
analysis.

• Manual hyperparameter tuning: BigQuery ML currently 
does not support automated hyperparameter tuning (e.g., 
grid search or random search). Instead, users must manually 
specify parameters in SQL queries, adjusting learning rates, 
iterations and tree depths based on model performance. 
This manual tuning process may require additional effort 
compared to platforms like AWS Sage Maker or Azure ML, 
which offer automated tuning features. Future versions of 
BigQuery ML could benefit from integrating Auto ML like 
hyperparameter optimization to further enhance usability.

5. Future Directions and Usability Evaluation 
This study represents one of the first investigations into cloud-

based SQL-driven machine learning workflows in healthcare. 
Future research should expand its applicability to a wider range 
of medical datasets and real-time predictive healthcare systems.

5.1. Future research directions 

5.1.1. Real-time predictive analytics integration: Future work 
should explore the integration of BigQuery ML into real-time 
healthcare systems, such as hospital EHR systems, telemedicine 
platforms and public health dashboards. Real-time analytics 
could enable immediate identification of high-risk patients, 
allowing timely interventions and improving patient outcomes. 

5.1.2. Expanding dataset diversity: While this study focused 

on diabetes prediction, future research should explore broader 
healthcare challenges, such as cardiovascular diseases, cancer 
detection and mental health.

Additionally, extending BigQuery ML’s application to 
image-based medical datasets-such as X-rays, MRIs and CT 
scans-could be an important area for further investigation. A 
hybrid approach integrating BigQuery ML for structured data 
with deep learning models in Vertex AI or TensorFlow for image 
analysis could enhance predictive insights and broaden the scope 
of healthcare analytics.

5.1.3. Ethical considerations and bias mitigation: Ethical 
challenges, such as algorithmic bias and fairness, must be 
addressed in future research. Developing fairness-aware models 
and ensuring that BigQuery ML workflows are compliant 
with healthcare regulations (e.g., HIPAA) will be essential for 
equitable and responsible deployment.

5.2. Possible applications of the research 

5.2.1. Personalized healthcare: BigQuery ML can support the 
creation of personalized treatment plans by predicting individual 
risks for chronic conditions such as diabetes. High-risk patients 
could benefit from tailored interventions, including dietary 
adjustments, exercise regimens and medication schedules.
5.2.2. Population health management: Public health 
organizations can leverage BigQuery ML to analyze population 
health trends, enabling resource allocation to communities with 
higher health risks. For example, targeted diabetes prevention 
campaigns could reduce disease prevalence and associated 
healthcare costs.
5.2.3. Clinical Decision Support Systems (CDSS): Integrating 
BigQuery ML predictions into CDSS could assist healthcare 
providers by flagging high-risk patients during routine checkups, 
reducing diagnostic delays and improving treatment outcomes.
5.2.4. Remote monitoring and telemedicine: BigQuery ML 
can analyze real-time data from wearable devices or remote 
monitoring systems, enabling continuous diabetes management 
and reducing hospital visits for chronic patients.
5.2.5. Risk assessment for health insurance: Health insurers 
can use BigQuery ML to optimize risk assessments, personalize 
insurance plans and incentivize preventive care, ultimately 
reducing costs and improving patient outcomes.
5.2.6. Educational tools for healthcare professionals: 
BigQuery ML’s SQL-based approach can serve as an educational 
tool for healthcare professionals, teaching them the fundamentals 
of predictive analytics and encouraging broader adoption of 
machine learning in clinical settings.

5.3. Proposed usability evaluation

While this study shows BigQuery ML’s capabilities, a 
formal usability evaluation could provide deeper insights into 
its effectiveness for healthcare professionals. A structured 
questionnaire comparing BigQuery ML, WEKA and Python-
based tools could assess: 

• Ease of use: Comparing the SQL-based workflow with 
GUI-driven (WEKA) and code-based (Python) tools. 

• Tool preference: Evaluating user preference based on 
familiarity, flexibility and usability. 

• Cloud services: Assessing the importance of scalability, 
integration and real-time analytics in ML tool selection. 
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• Efficiency: Measuring workflow speed and reduction in 
external tool dependency. 

• Overall satisfaction: Rating usability and the likelihood 
of recommending BigQuery ML.Such an evaluation would 
validate BigQuery ML’s practicality in healthcare ML 
workflows and justify the benefits of SQL-based machine 
learning tools in cloud environments.

6. Conclusion
This study demonstrated how BigQuery ML simplifies 

machine learning workflows in healthcare by enabling predictive 
modeling through SQL-based queries. By eliminating the need 
for extensive programming expertise, BigQuery ML makes 
machine learning more accessible to healthcare professionals, 
data analysts and researchers. Through a case study on diabetes 
prediction using the Diabetes Health Indicators Dataset, we 
evaluated three predictive models-Logistic Regression, Boosted 
Tree and Deep Neural Networks (DNN)-and identified the 
Boosted Tree model as the best-performing approach based on 
F1-score and ROC AUC.

The results confirm that BigQuery ML’s built-in preprocessing, 
scalability and ease of integration with cloud-based healthcare 
data pipelines make it a valuable tool for predictive analytics. 
The feature importance analysis revealed that High Blood 
Pressure, General Health, BMI and Age are significant predictors 
of diabetes, aligning with medical expectations. These findings 
underscore BigQuery ML’s capability to support real-world 
healthcare applications, particularly in identifying high-risk 
individuals for early intervention. While BigQuery ML offers 
significant advantages in accessibility and efficiency, certain 
challenges remain, including model interpretability, dataset 
biases and the lack of automated hyperparameter tuning. Future 
research should explore methods to enhance explainability, 
integrate real time predictive analytics into healthcare systems 
and expand the application of BigQuery ML to other diseases 
and medical datasets. The study highlights the broader impact of 
cloud-based machine learning on healthcare analytics, paving the 
way for more scalable, interpretable and data-driven decision-
making. By bridging the gap between advanced AI techniques 
and practical healthcare use cases, BigQuery ML provides a 
cost-effective and accessible solution for predictive analytics, 
supporting the future of personalized medicine and population 
health management.
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