
Leveraging MongoDB Multi-Sharding to Decrease Latency to Store and Retrieve 
Fuel Transaction
Rohith Varma Vegesna*

Citation: Vegesna RV. Leveraging MongoDB Multi-Sharding to Decrease Latency to Store and Retrieve Fuel Transaction. J Artif 
Intell Mach Learn & Data Sci 2024, 2(1), 2315-2317. DOI: doi.org/10.51219/JAIMLD/rohith-varma-vegesna/503

Received: 03 March, 2024; Accepted: 28 March, 2024; Published: 30 March, 2024

*Corresponding author: Rohith Varma Vegesna, Texas, USA, E-mail: Email: rohithvegesna@gmail.com

Copyright: © 2024 Vegesna RV., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/rohith-varma-vegesna/503

1. Introduction
1.1. Background

Fuel stations generate high-frequency transaction data that 
must be stored and retrieved efficiently for real-time monitoring, 
reconciliation and fraud detection. The rapid expansion of 
IoT-connected fuel dispensers and ATG systems further 
amplifies data generation, requiring a robust storage strategy 
capable of handling massive concurrent requests. Traditional 
single-instance databases or non-sharded NoSQL databases 
often suffer from performance bottlenecks, especially when 
handling concurrent transaction loads.

Moreover, the absence of multi-region sharding in a 
distributed setup significantly impacts data storage efficiency. 
Without a multi-region sharding strategy, databases face 
increased read and write latencies due to geographical distance 
between data centers and fuel stations. This leads to slow 

reconciliation, delayed fraud detection and inefficiencies in real-
time monitoring. A well-designed sharding solution can mitigate 
these issues by distributing data across different regions, ensuring 
locality-based optimizations and reducing query response times 
for fuel transaction data.

1.2. Problem statement

Existing fuel transaction storage solutions experience 
increased query latency as the volume of data grows. Single-
node databases face challenges in scaling horizontally, leading 
to inefficient read and write operations, particularly when 
transaction rates spike. As fuel stations expand operations, 
centralized databases become overloaded, increasing the risk 
of downtime and system failures. The absence of distributed 
data storage mechanisms results in bottlenecks that delay 
reconciliation, reporting and fraud detection efforts, negatively 
impacting decision-making and regulatory compliance.

 A B S T R A C T 
The exponential growth of fuel transactions necessitates highly efficient storage and retrieval systems to facilitate real-time 

operational analytics, fraud detection and decision-making. Traditional relational database systems face scalability challenges, 
particularly as transaction loads increase, resulting in significant latency that impairs operational efficiency. Fuel station 
operations require rapid transaction processing to ensure seamless reconciliation, compliance and performance monitoring.

This paper explores MongoDB’s multi-sharding capabilities as a solution to mitigate latency issues by distributing fuel 
transaction data across multiple shards. By leveraging horizontal scaling, replication and parallelized query execution, MongoDB’s 
multi-sharding approach ensures that fuel transaction data remains accessible with minimal retrieval delay. We analyze the 
impact of sharding on read and write latency, system scalability and fault tolerance, demonstrating its effectiveness in enhancing 
real-time fuel transaction processing and data-driven decision-making.

Keywords: Fuel transaction processing, MongoDB sharding, distributed databases, real-time reconciliation, horizontal scaling, 
high availability, NoSQL databases.

https://doi.org/10.51219/JAIMLD/rohith-varma-vegesna/503
https://doi.org/10.51219/JAIMLD/mohit-bajpai/331
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/rajalakshmi-thiruthuraipondi-natarajan/446
https://doi.org/10.51219/JAIMLD/rohith-varma-vegesna/503


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Vegesna RV.,

2

cluster with multiple shards, each hosting a subset of the 
fuel transaction data.

•	 Sharding key selection: Designation of an optimal sharding 
key based on high-cardinality fields such as transaction id 
or fuel pump id.

•	 Replication strategy: Ensuring data redundancy through 
replica sets for each shard to enhance fault tolerance and 
availability.

•	 Query routing via mongos: Utilizing the Mongos router to 
direct queries to appropriate shards for optimized retrieval 
times.

•	 Shard balancer: Implementing a balancing mechanism 
to distribute data evenly across shards, preventing hotspot 
issues.

•	 Data ingestion pipeline: Streaming fuel transaction data 
in real-time, automatically partitioning incoming data into 
relevant shards.

4. Implementation Strategy
The implementation begins with setting up a MongoDB sharded 
cluster, consisting of:

•	 Three shards, each running as a replica set for high 
availability.

•	 A Mongos router to handle client requests and distribute 
queries efficiently.

•	 A Config Server to store metadata and manage shard 
distribution.

Data distribution follows a hash-based or range-based 
sharding approach, depending on the query patterns. 
Transactions are indexed based on fuel dispenser ID, timestamp 
and transaction type for optimized retrieval. The system ensures 
that high-volume queries for daily reconciliation and fraud 
detection are executed in parallel across multiple shards.

5. Case Study & Performance Evaluation
A fuel station chain with multiple outlets was selected to 
evaluate the impact of sharding on fuel transaction processing. 
The system was tested with:

•	 Baseline performance: Measured transaction retrieval 
times before implementing sharding.

•	 Post-sharding performance: Analyzed read and write 
latencies after distributing data across multiple shards.

•	 Load testing: Simulated peak transaction loads to evaluate 
system scalability.

6. Results and Discussion
6.1. Pilot implementation

The pilot implementation of MongoDB sharding resulted 
in significant performance improvements. Data ingestion 
rates increased by 40% and query response times improved 
by an average of 60% compared to a non-sharded setup. The 
distributed architecture ensured that large datasets did not cause 
performance degradation, even under heavy loads.

6.2. Performance metrics

•	 Average write latency: Reduced from 300ms to 120ms per 
transaction.

Moreover, the lack of multi-region sharding exacerbates 
these issues by forcing all transactions to be stored in a single or 
limited number of data centers. This setup creates high latencies 
for geographically distributed fuel stations, as transaction 
requests must travel long distances, causing slower response 
times. Without a multi-region sharding strategy, localized 
outages or failures in a specific region can result in partial or 
complete service disruptions. A sharded architecture with multi-
region support is required to ensure consistent performance as 
data volumes increase while simultaneously reducing geographic 
latency and improving fault tolerance.

1.3. Objectives

•	 Implement MongoDB’s multi-sharding strategy to distribute 
fuel transaction data across multiple nodes.

•	 Evaluate the impact of sharding on transaction latency and 
system scalability.

•	 Ensure seamless data retrieval for reconciliation and 
reporting with minimal performance degradation.

•	 Develop a case study to measure real-world improvements 
in fuel transaction storage and retrieval.

2. Literature Review
Several studies have explored NoSQL databases for high-

velocity transaction processing, recognizing their capability 
to handle large-scale data operations with minimal latency. 
These studies emphasize the importance of distributed data 
management in scenarios where real-time processing is 
required, such as financial transactions, sensor-based telemetry 
and high-throughput retail operations. Among various NoSQL 
databases, MongoDB has emerged as a leading solution due to 
its native support for horizontal scalability and built-in sharding 
mechanisms.

Prior research highlights MongoDB’s ability to manage 
extensive datasets effectively by automatically partitioning data 
across multiple nodes. This partitioning, known as sharding, 
ensures that queries can be executed in parallel, leading to 
significant performance gains. Additionally, studies have 
demonstrated that MongoDB’s replication features enhance data 
availability and fault tolerance, making it a reliable option for 
mission-critical applications.

Studies on distributed database architectures indicate that 
sharding enhances horizontal scalability by dividing data into 
manageable partitions, allowing distributed systems to scale 
seamlessly with increasing transaction loads. Researchers have 
also observed that optimal sharding key selection plays a crucial 
role in balancing workloads and preventing bottlenecks, which 
can otherwise negate the benefits of distributed processing.

Existing literature supports the implementation of MongoDB 
sharding in multiple domains, including financial services, 
IoT telemetry and large-scale e-commerce platforms. These 
applications exhibit similarities to fuel station transaction 
processing, where vast amounts of real-time data need to be 
stored, queried and analyzed efficiently. By drawing insights 
from these established use cases, fuel station systems can 
leverage sharding to minimize query latency, enhance storage 
efficiency and improve overall system performance.

3. System Architecture
•	 MongoDB cluster setup: Deployment of a MongoDB 



3

Vegesna RV., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

•	 Average read latency: Improved from 500ms to 180ms per 
query.

•	 Scalability: System efficiently handled 5x the baseline 
transaction volume without noticeable performance drops.

•	 High availability: Replica sets ensured zero downtime 
during maintenance operations.

7. Conclusion and Future Work 
The study demonstrates that leveraging MongoDB’s multi-

sharding capabilities significantly enhances the efficiency of 
fuel transaction storage and retrieval. The approach ensures real-
time access to transaction data while maintaining scalability for 
growing fuel station networks. Future work includes optimizing 
sharding strategies based on dynamic workload analysis and 
integrating AI-driven predictive analytics for automated data 
balancing.

8. References

1.	 Krishnan Hema, Elayidom M Sudheep, Santhanakrishnan T. 
MongoDB – a comparison with NoSQL databases. International 
Journal of Scientific and Engineering Research, 2016;7: 1035-
1037.

2.	 Tammaa Ahmed. MongoDB Case Study on Forbes, 2022.

3.	 Mungekar Akshay. Data Storage and Management Project, 
2019.

4.	 Győrödi Cornelia, Gyorodi Robert, Pecherle George, Olah 
Andrada. A Comparative Study: MongoDB vs. MySQL, 2015.

5.	 Gorasiya Darshankumar. Quantitative Performance Evaluation 
of Cloud-Based MySQL (Relational) Vs. MongoDB (NoSQL) 
Database with YCSB, 2019.

6.	 Heydari Beni Emad. Finding efficient Shard Keys with a learning 
process on query logs in Database Sharding, 2015.

7.	 Sarkar Anindita, Sanyal Madhupa, Chattopadhyay Samiran, 
Mondal Dr Kartick. Comparative Analysis of Structured and 
Un-Structured Databases, 2017: 226-241.

8.	 Prasad Aashish. HBase vs Mongo DB, 2018.

9.	 Pandey Rachit. Performance Benchmarking and Comparison 
of Cloud-Based Databases MongoDB (NoSQL) Vs MySQL 
(Relational) using YCSB, 2020.

https://www.ijser.org/researchpaper/MongoDB-a-comparison-with-NoSQL-databases.pdf
https://www.ijser.org/researchpaper/MongoDB-a-comparison-with-NoSQL-databases.pdf
https://www.ijser.org/researchpaper/MongoDB-a-comparison-with-NoSQL-databases.pdf
https://www.ijser.org/researchpaper/MongoDB-a-comparison-with-NoSQL-databases.pdf
https://ie.linkedin.com/in/akshay-mungekar-579061141?original_referer=https%3A%2F%2Fwww.google.com%2F
https://ie.linkedin.com/in/akshay-mungekar-579061141?original_referer=https%3A%2F%2Fwww.google.com%2F
https://www.semanticscholar.org/paper/A-comparative-study%3A-MongoDB-vs.-MySQL-Gyorodi-Gyorodi/0e95cbfe845adf8d05c1ba0110d6c0d28895e9a8
https://www.semanticscholar.org/paper/A-comparative-study%3A-MongoDB-vs.-MySQL-Gyorodi-Gyorodi/0e95cbfe845adf8d05c1ba0110d6c0d28895e9a8
https://www.slideshare.net/slideshow/quantitative-performance-evaluation-of-cloudbased-mysql-relational-vs-mongodb-nosql-database-with-ycsb/155975600
https://www.slideshare.net/slideshow/quantitative-performance-evaluation-of-cloudbased-mysql-relational-vs-mongodb-nosql-database-with-ycsb/155975600
https://www.slideshare.net/slideshow/quantitative-performance-evaluation-of-cloudbased-mysql-relational-vs-mongodb-nosql-database-with-ycsb/155975600
https://ui.adsabs.harvard.edu/abs/2024JIEIB.105..685M/abstract
https://ui.adsabs.harvard.edu/abs/2024JIEIB.105..685M/abstract
https://ui.adsabs.harvard.edu/abs/2024JIEIB.105..685M/abstract

