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 A B S T R A C T 

The importance of incorporating climate scenarios into financial institutions has driven them to prioritize sustainability and 
risk management in their supply chain finance operations. This white paper explores the application of advanced data engineering 
techniques to minimize climate risk exposure and enhance the financial sustainability of supply chain finance. Organizations can 
proactively identify and mitigate potential climate-related risks in their supply chain finance portfolios by leveraging machine 
learning models, scenario analysis, and data-driven insights. The paper discusses developing and implementing a comprehensive 
data engineering framework that integrates climate risk assessment, scenario generation, and credit risk modeling to support 
informed decision-making and promote sustainable practices in supply chain finance1.

Keywords: Data Engineering, Sustainable Supply Chain Finance, Climate Risk, Machine Learning, Scenario Analysis, Credit Risk 
Modeling, Risk Management, Sustainability

Research ArticleVol: 1 & Iss: 4

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/rohit-nimmala/104

Introduction
In recent years, the financial sector has increasingly 

recognized its critical role in addressing climate change and 
promoting sustainable practices. Supply chain finance, which 
involves the management of financial flows and risks within 
supply chains, has emerged as a critical area where financial 
institutions can make a significant impact. However, the 
complex and dynamic nature of climate-related risks poses 
substantial challenges for organizations seeking to integrate 
sustainability into their supply chain finance operations. Climate 
risks, including physical hazards (e.g., extreme weather events 
and natural disasters) and transition risks (e.g., policy changes 
and market shifts), can severely affect the financial stability and 
resilience of supply chains. These risks can disrupt operations, 
increase costs, and erode the value of assets, ultimately affecting 
the creditworthiness of borrowers and the overall performance 
of supply chain finance portfolios. As a result, financial 
institutions must develop robust frameworks to identify, assess, 

and mitigate climate risk exposure in their supply chain finance 
activities2. This white paper explores how ML techniques can 
be leveraged to effectively assess, monitor, and mitigate climate 
risk exposure in sustainable supply chain finance. By applying 
Data Engineering, Machine Learning, and Scenario Analysis, 
financial institutions can develop comprehensive frameworks to 
identify and manage climate-related risks. The paper discusses 
developing and implementing a data engineering framework 
that integrates climate risk assessment, scenario generation, and 
credit risk modeling to support informed decision-making and 
promote sustainable practices in supply chain finance. This white 
paper aims to discuss importance of financial institutions seeking 
to enhance the sustainability and resilience of their supply chain 
finance operations in the face of a changing climate3.

2. Climate Risk in Supply Chain Finance
2.1. Definition and types of climate risks 

Climate risks refer to the potential negative impacts of climate 
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change on financial systems, businesses, and supply chains. Two 
main types of risks include physical risks and transition risks. 
Physical risks arise from the direct consequences of climate 
change, such as increased frequency and severity of extreme 
weather events (e.g., hurricanes, floods, and droughts), rising sea 
levels, and chronic temperature and precipitation patterns. These 
physical risks can damage infrastructure, disrupt operations, and 
affect the availability of raw materials and resources. On the 
other hand, transition risks emerge from the societal, economic, 
and policy changes associated with the transition to a low-carbon 
economy. These risks include shifts in consumer preferences, 
technological advancements, regulatory changes, and reputation 
risks. Both physical and transition risks can have significant 
financial implications for organizations and their supply chain 
finance operations4.

2.2. Impact of climate risks on supply chain finance 

Climate risks can have far-reaching consequences for supply 
chain finance, affecting the creditworthiness of borrowers, the 
stability of supply chains, and the overall performance of financial 
institutions’ portfolios. Physical risks can lead to direct damage 
to assets, disruptions in production and transportation, and 
increased costs associated with adaptation and recovery efforts. 
These disruptions can affect the ability of borrowers to meet 
their financial obligations, leading to increased default risk and 
potential losses for financial institutions. Transition risks can also 
significantly impact supply chain finance, as changes in policies, 
technologies, and market dynamics can affect the profitability 
and competitiveness of borrowers. For example, introducing 
carbon taxes or stricter environmental regulations could 
increase operational costs and erode the financial performance 
of companies heavily dependent on fossil fuels. These risks can 
also lead to stranded assets and reduced collateral values, further 
exacerbating the financial risks for institutions engaged in supply 
chain finance.

2.3. Importance of managing climate risk exposure 

Financial institutions must ensure their supply chain finance 
operations’ sustainability, resilience, and long-term success. 
By proactively identifying, assessing, and mitigating climate-
related risks, financial institutions can reduce their vulnerability 
to potential losses and maintain the stability of their portfolios. 
Effective climate risk management enables financial institutions 
to make informed decisions about credit allocation, pricing, 
and risk mitigation strategies, optimizing their returns while 
minimizing potential losses. Moreover, managing climate risk 
exposure is essential for financial institutions to meet the growing 
expectations of stakeholders, including regulators, investors, and 
customers, who increasingly demand greater transparency and 
accountability in addressing climate-related risks.

3. Data Engineering Framework for Climate Risk 
Assessment
3.1. Overview of the data engineering framework

A robust data engineering framework is essential for practical 
climate risk assessment in sustainable supply chain finance. 
The framework should be designed to handle the complex and 
heterogeneous data sources required for analyzing climate 
risks, including financial data, climate data, and supply chain 
data. The framework should also be scalable, allowing for 
processing large volumes of data and incorporating new data 
sources as they become available. Key components of the data 

engineering framework include data collection and integration, 
data preprocessing and transformation, feature engineering and 
selection, and data storage and management. By leveraging 
advanced technologies such as big data platforms, cloud 
computing, and machine learning, the framework can enable 
the efficient and accurate assessment of climate risks, supporting 
informed decision-making and risk mitigation strategies5.

Figure 1: Data Engineering Pipeline.

3.2. Data collection and integration

Data collection and integration are critical steps in the 
data engineering framework for climate risk assessment. This 
involves gathering data from various internal and external 
sources, such as financial systems, climate databases, supply 
chain management systems, and third-party data providers. The 
data collected may include financial metrics, climate variables 
(e.g., temperature, precipitation, sea level rise), supply chain 
information (e.g., supplier locations and transportation routes), 
and other relevant factors. The framework should establish clear 
procedures to ensure data quality, including data validation, data 
lineage tracking, and data security measures. Integrating these 
diverse data sources requires data integration techniques, such 
as ETL (Extract, Transform, Load) processes, APIs (Application 
Programming Interfaces), and data virtualization.

Figure 2: Integration of Data Sources.

3.3. Data preprocessing and transformation

Data preprocessing and transformation are essential to 
prepare the collected data for climate risk assessment. This 
involves cleaning the data to remove errors, inconsistencies, 
and outliers and handling missing values and data formatting 
issues. Data transformation techniques and aggregation, are 
applied to prepare the data for analysis. For example, financial 
data may need to be normalized to account for differences in 
accounting standards or reporting periods. In contrast, climate 
data may require spatial and temporal aggregation to align with 
the granularity of the financial data. Data enrichment techniques, 
such as geocoding and data fusion, can also enhance the dataset 
with additional relevant information. The preprocessed and 
transformed data is then stored in a data lake, to facilitate efficient 
access and analysis.

3.4. Feature engineering and selection

Feature engineering and selection are crucial steps in the 
data engineering framework for climate risk assessment, as 
they directly impact the performance and interpretability of 
the machine learning models used for risk prediction. Feature 
engineering involves creating new features or variables from 
the preprocessed data to capture better the underlying patterns 
and relationships relevant to climate risk. This may include 
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calculating statistical measures (e.g., mean, variance, and 
correlation), creating time- series features (e.g., moving averages 
and lag variables), or constructing domain-specific indicators 
(e.g., climate risk scores and supply chain vulnerability indices). 
Feature selection techniques are then applied to identify the 
most informative and predictive features while reducing 
dimensionality and mitigating multicollinearity. This process 
helps to improve model performance, reduce computational 
complexity, and enhance the interpretability of the results. The 
selected features are then used as inputs for the machine learning 
models in the climate risk assessment process.

4. Machine Learning Models for Climate Risk 
Prediction
4.1. Types of machine learning models

Various machine learning models can be employed for climate 
risk prediction in sustainable supply chain finance, depending 
on the nature of the problem and the available data. Supervised 
learning models are used for classification and regression tasks. 
These models can learn complex non-linear relationships between 
the input features and the target variables, such as the probability 
of default or the expected loss given default. Unsupervised 
learning models, such as clustering algorithms (e.g., K-means 
and hierarchical clustering) and anomaly detection techniques 
(e.g., Isolation Forests and Autoencoders), can be used to identify 
outliers in the data, helping to detect potential risk factors and 
vulnerabilities in the supply chain. Deep learning models can be 
employed to capture complex spatial and temporal dependencies 
in the data, particularly when dealing with high-dimensional and 
unstructured data sources, such as satellite imagery and climate 
time series6-8.

4.2. Model training and validation

Model training and validation are critical steps in developing 
robust and reliable machine-learning models for climate risk 
prediction. The training process involves fitting the model to a 
subset of the available data, known as the training set, using 
optimization algorithms such as gradient or stochastic gradient 
descent. Regularization

techniques, such as L1 and L2, can be applied to prevent 
overfitting and improve model generalization. The validation 
process involves evaluating the trained model’s performance on 
an independent subset of the data, known as the validation set, 
using appropriate evaluation metrics such as accuracy, precision, 
recall, and F1-score for classification tasks, and mean squared 
error (MSE), mean absolute error (MAE), and R-squared 
for regression tasks. Cross- validation techniques, such as 

k-fold cross-validation and stratified k-fold cross-validation, 
are commonly employed to obtain more robust and unbiased 
estimates of the model’s performance, mainly when dealing with 
limited data. Hyperparameter tuning, using techniques such as 
grid search and random search, can be performed to optimize the 
model’s hyperparameters and further improve its performance.

Figure 3: Model Training and Validation process

4.3. Model interpretability and explainability

Model interpretability and explainability are crucial 
considerations in climate risk prediction, as they enable 
stakeholders to understand the factors driving the model’s 
predictions and make informed decisions based on the model’s 
outputs. Interpretable models, such as decision trees and logistic 
regression, provide a clear and transparent representation of 
the relationships between the input features and the target 
variables, allowing users to understand the reasoning behind 
the model’s predictions. However, these models may not always 
capture complex non-linear relationships in the data. Post-hoc 
explanation techniques, such as feature importance analysis 
(e.g., Gini importance and permutation importance), partial 
dependence plots (PDPs), and Shapley Additive Explanations 
(SHAP), can be applied to black-box models, such as Random 
Forests and Gradient Boosting Machines, to provide insights into 
the model’s behavior and the relative importance of different input 
features. Visual analytics tools, such as interactive dashboards 
and visualization libraries (e.g., D3.js and Plotly), can be used to 
present the model’s results and explanations in an intuitive and 
accessible manner, facilitating communication and collaboration 
among stakeholders.

4.4. Integration of machine learning models 

Into the risk assessment process Integrating machine learning 
models into the climate risk assessment process requires a 
well-defined framework that ensures the models are effectively 
deployed, monitored, and updated over time. The integration 
process typically involves several key steps, including model 
deployment, data pipelines, monitoring and alerting, and model 
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maintenance. The trained and validated models are deployed 
into a production environment, where downstream applications 
and users can access them. Data pipelines are established to feed 
the deployed models with real-time or batch data from various 
sources, ensuring that the models are provided with up-to-date 
information for making predictions. Monitoring and alerting 
systems are put in place to track the models’ performance and 
detect any anomalies or deviations from expected behavior, 
allowing for proactive identification and resolution of issues. 
Regular model maintenance, including retraining and updating, 
ensures that the models remain relevant and accurate as new 
data becomes available and business requirements evolve. 
The integration process also involves establishing governance 
frameworks and documentation to ensure transparency, 
accountability, and compliance with relevant regulations and 
standards.

5. Scenario Analysis and Stress Testing
5.1. Importance of scenario analysis 

In climate risk assessment Scenario analysis plays a vital role 
in climate risk assessment for sustainable supply chain finance, 
as it enables financial institutions to explore a range of plausible 
future scenarios and assess their potential impacts on credit 
risk, portfolio performance, and overall economic stability. By 
considering multiple scenarios, including transition risks (e.g., 
policy changes, technological shifts) and physical risks (e.g., 
extreme weather events, chronic climate changes), financial 
institutions can understand the potential risks and opportunities 
associated with climate change. Scenario analysis allows for 
quantifying climate-related financial risks, identifying key risk 
drivers, and assessing the resilience of supply chain finance 
portfolios under different climate futures. This information is 
crucial for informed decision-making, strategic planning, and the 
development of effective risk mitigation strategies9.

5.2. Development of climate risk scenarios 

The development of climate risk scenarios is a critical 
step in the scenario analysis. Climate risk scenarios should be 
based on scientific evidence, expert judgment, and stakeholder 
input. They should cover a range of plausible future climate 
pathways, including high-emission and low-emission scenarios. 
Commonly used climate scenarios include those developed by 
the Intergovernmental Panel on Climate Change (IPCC), such 
as the Representative Concentration Pathways (RCPs) and the 
Shared Socioeconomic Pathways (SSPs), as well as scenarios 
developed by industry bodies and regulatory authorities, such as 
the NGFS scenarios. The development of climate risk scenarios 
involves the translation of climate projections into economic 
and financial variables, such as GDP growth, sector-specific 
impacts, and asset valuations, using integrated assessment 
models (IAMs) and other economic modeling techniques. The 
scenarios should be tailored to the financial institution’s specific 
context, considering factors such as geographic exposure, sector 
concentration, and the time horizon of the analysis10,11.

5.3. Integration of scenario analysis 

Into the data engineering framework. The integration 
of scenario analysis into the data engineering framework is 
essential for effectively assessing and managing climate risks 
in sustainable supply chain finance. This involves incorporating 
climate risk scenarios into the framework’s data preprocessing, 
feature engineering, and modeling stages. Climate risk scenarios 

can be used to generate synthetic data points or to perturb 
existing data points, allowing for the simulation of potential 
future climate states and their impacts on supply chain finance 
portfolios. The integration of scenario analysis may require the 
development of additional data pipelines and processing steps, 
such as the interpolation and downscaling of climate projections, 
the mapping of climate variables to economic and financial 
variables, and the aggregation and disaggregation of data at 
different spatial and temporal scales. The integrated framework 
should be flexible and scalable, allowing for the incorporation of 
new scenarios and updating existing scenarios as new information 
becomes available.

5.4. Stress testing and sensitivity analysis 

Stress testing and sensitivity analysis are essential 
components of the scenario analysis process, as they allow 
for assessing the resilience of supply chain finance portfolios 
to extreme but plausible climate risk events and identifying 
key risk drivers and vulnerabilities. Stress testing involves the 
application of severe but plausible shocks to the input variables 
of the climate risk models, such as abrupt policy changes, 
technological disruptions, or catastrophic weather events, and 
evaluating the resulting impacts on portfolio performance 
and financial stability. It involves the systematic variation of 
input parameters within a plausible range, allowing for the 
identification of the most influential variables and the assessment 
of the robustness of the model, which results in uncertainty in 
the input assumptions. Stress testing and sensitivity analysis 
results can inform the development of risk mitigation strategies, 
such as portfolio diversification, insurance and hedging, and the 
setting of risk limits and capital buffers.

6. Case Study
A Systematic Investigation of the Integration of Machine 

Learning into Supply Chain Risk Management12.

6.1. Overview of a real-world implementation

This provides literature review related to the integration 
of machine learning (ML) into supply chain risk management 
(SCRM), mainly focusing on areas where ML has been applied 
to address various risks, including those related to climate 
scenarios.

6.2. Data sources and integration challenges

The study highlights how machine learning can leverage new 
data sources, such as social media and weather data, to enhance 
risk identification and management in supply chains. This 
integration presents data heterogeneity, volume, and veracity 
challenges, requiring robust data processing and analysis 
frameworks.

6.3. Model development and validation process

Integrating ML into SCRM involves developing models that 
can analyze and predict risk based on a diverse array of inputs, 
including dynamic climate data. The validation process consists 
of testing these models against real-world scenarios to ensure they 
accurately predict risks and effectively aid decision-making.

6.4. Results and insights gained from the implementation

The application of ML in SCRM, especially with the 
integration of climate data, helps in early risk identification and 
mitigation, enhancing the resilience of supply chains against 
climate-induced disruptions. The study concludes that ML 
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significantly contributes to the evolution of SCRM by enabling 
proactive rather than reactive management.

7. Conclusion
In conclusion, this white paper has highlighted the crucial 

role of data engineering in managing climate risk exposure 
in sustainable supply chain finance. By leveraging the power 
of data engineering, machine learning, and scenario analysis, 
financial institutions can enhance their understanding of 
climate risk exposure, develop effective strategies to improve 
sustainable practices. The case study demonstrates the real-world 
implementation of a data engineering framework for climate risk 
assessment in the agricultural sector, showcasing the challenges 
and opportunities associated with integrating diverse data sources 
and deriving actionable insights. As the financial industry 
continues to navigate the challenges posed by climate change, 
adopting data-driven approaches to climate risk assessment 
and management will be crucial for financial system, requiring 
ongoing collaboration, research, and innovation.
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