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Dear Editor, 

The sharing of innovative perspectives on the challenges 
faced in space exploration, combined with effective solutions 
related to regenerative medicine, creates a favorable environment 
for revolution. Long-duration extraterrestrial travel is in the 
planning stages of major government agencies and companies 
worldwide for a significant resurgence in the coming decades. 
These journeys, as well as simulations in Earth analogs, pose 
significant challenges to astronauts’ health, with adverse effects 
on both physical and mental health1. In this context, emerging 
technologies arise and are refined to meet the specific demands 
of humans in suborbital and orbital flights, as well as in lunar 
or Martian environments, among others, promoting not only 
cellular regeneration but also a more robust biological adaptation 
to the hostile conditions encountered in the space setting2.

“Degenerative changes affect numerous organ systems, 
including the musculoskeletal, hematopoietic, endocrine, 
nervous, ocular and immune systems2. In addition, the space 
environment accelerates biological aging and increases cancer 
risk due to: promotion of oxidative stress, DNA damage, 
mitochondrial dysregulation, epigenetic changes, alterations 
in telomeric DNA and changes in the microbiome3. A recent 
example was that of two NASA astronauts who returned to 
Earth after nine months on the International Space Station (ISS), 
during a mission originally planned to last only eight days. Both 

presented observable and likely hidden debilitations, probably 
resulting from prolonged exposure to microgravity and cosmic 
radiation, without excluding the psychophysiological effects of 
extreme confinement and isolation4.

In this scenario, regenerative medicine offers significant 
potential to meet space health needs5. Technologies from this 
field and related areas, isolated and especially combined, can 
enhance the biological adaptability of astronauts, optimizing 
cellular responses to extreme environmental stressors2,6, such as 
CRISPR.

CRISPR in vivo screening targeted at adult stem cells and 
non-germline progenitor cells presents itself as a promising tool 
for identifying and correcting specific genetic mutations resulting 
from exposure to the space environment7. Initially limited to 
organoids or tumors transplanted into mice8, this method can 
minimize the impacts of exposure to high-risk environments, 
such as those experienced by astronauts9. Although this 
biotechnology raises ethical and biosafety concerns, its 
application can be carried out safely and responsibly10,11.

The initial cost of these technologies is high; however, 
the long-term benefits are substantial. The implementation of 
therapies such as the ones mentioned would not only contribute 
to the health of astronauts but also open doors for advances in 
regenerative medicine, with applications in the treatment of 
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degenerative diseases and accelerated biological aging, including 
on Earth, consequently contributing to the advancement of 
the scientific field9. Collaboration between space agencies, 
universities and companies can provide the necessary funding 
to make these solutions viable, especially considering that 
investments in prevention are more economical in the long run 
and save lives.

Regenerative medicine, with an emphasis on the application 
of in vivo CRISPR technology for stem cell therapies, is 
recommended as a key solution for the challenges of space 
medicine and concentrated efforts in this direction are 
differentiators. It can significantly improve the health conditions 
of astronauts while providing essential clinical data for highly 
precise personalized medicine, adapted to the specific needs of 
space explorers and Earthlings. Sincerely, 
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