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1. Introduction
1.1. Challenges in achieving high vaccine coverage in 
non-clinical settings

Vaccination is now considered one of the most effective 
measures to enhance public health and prevent infectious diseases. 
Nevertheless, extending vaccine coverage to the community, 
especially using non-health facilities, is quite a task. Then, 
there is a sharp contrast to places like hospitals or other primary 

care delivery centers where patients come looking for medical 
services. Instead, settings such as retail outlets or pharmacies 
require outreach and public compliance1-3. Poor information, 
physical access, lack of time and having no trust in institutional 
announcements contribute to suboptimal vaccine uptake in such 
environments. Also, using the campaign with a general message, 
which does not consider regional cultural, social or behavioral 
factors, is ineffective for people whose behaviors are distinct 
from others. This separation of two concepts merely emphasizes 
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ineffective solutions that link public health goals with consumer-
oriented messages.

1.2. Retail locations as decentralized hubs for vaccine 
delivery

Retail settings, including drugstores, superstores and clinics 
such as CVS, Walgreens, Walmart and Target, are strategically 
established within the routine social fabric of the community. 
These locations provide services to millions of people across 
various socioeconomic and geographical backgrounds. Retail 
chains could expand vaccination appointments through walk-ins, 
drive-through schemes and other sessions beyond regular business 
hours. This makes them ideal candidates to act as decentralized 
agents within the healthcare system, as most of these stores 
have well-established consumer interactions and touchpoints 
in a world that has shifted toward online communication. This 
is especially true given that retail environments, with the right 
scale and reach, have yet to be fully leveraged for delivering 
data-driven, targeted vaccination messages.

1.3. Lack of personalization in outreach and decision-making

Although retail settings offer the potential to expand vaccine 
options, most campaigns conducted through these channels remain 
somewhat generic. Public service announcements (PSAs), mass 
text messages and static billboards lack contextual information 
about the audience members, their perceptions and their existing 
knowledge of health. As a result, there is little meaningful 
interaction, particularly in areas where vaccine mistrust is most 
prevalent. Furthermore, vaccination plans typically do not take 
local clinical trial evidence or demographic-specific data into 
account, which may, in turn, influence individuals’ decisions. 
Therefore, integrating a behavioral and clinical AI model is 
essential for adapting vaccine communication and distribution 
within the community.

1.4. Designing data-driven, localized vaccination strategies

To address these challenges, this work proposes a data 
analytics framework that integrates behavioral data with 
participants’ clinical data within the U.S. retail context. 
Specifically, the proposed model involves the segmentation 
and clustering of customers based on loyalty program data, 
purchasing history and overall health-related consumer data. 
Some of these segments are then aligned with localized clinical 
trial data, including vaccine efficacy and risks, to create more 
targeted and relevant messaging. The goal is to increase the 
success rate of vaccination by integrating scientific data on 
human behavior in the context of vaccine uptake, as well as 
the influence of environmental factors on promoting high 
vaccination rates in a retail environment.

2. Related Work
2.1. Behavioral analytics in healthcare 

Interest in using behavioral analytics for healthcare has been 
growing over the last several years, providing new opportunities 
for finding methods to help predict and manage most health-
related behaviors. Underscored the use of consumers’ behaviors 
data, including lifestyle data, purchasing behavior data and 
interactions with health-tech platforms, in creating proactive 
models aimed at early interventions5-8. They explained how 
clustering techniques and classifiers such as the Naive Bayes 
classifier are useful for determining the vulnerable groups and 

consequently improving the communication strategy. These 
have been especially applicable in the practice areas, including 
chronic disease, medication compliance and preventive care. 
Applying the same strategy to vaccination education and 
promotion, particularly in non-healthcare settings such as mkt, 
presents a potential way forward in actualizing the above goals.

2.2. Vaccine hesitancy and behavioral drivers

Lack of confidence in vaccines is one of the biggest challenges 
to attaining the critical mass needed to achieve herd immunity 
with readily available and viable vaccines to patients. These And 
Multiple factors influencing vaccine hesitancy behaviors in the 
USA have been covered by examining the effects of behavioral, 
psychological and sociocultural Aspects. They established their 
work by concluding that the hesitancy is not fixed or generalized 
but rather constructed from trust in institutions, perception of 
the risks involved, perceived misinformation exposure and 
socio-economic station. They emphasized the importance of 
communications focusing on specific behaviors responding to 
specific community’s needs. First and foremost, their findings 
prove that properly executed data-driven segmentation and 
behavioral analysis encompasses numerous approaches to 
promote and increase favorable views towards vaccination.

2.3. Clinical trial efficacy data and public health 
communication

Clinical trial data is a critical piece of information to 
demonstrate the vaccine’s effectiveness and safety. The CDC 
and the FDA continuously release reports of VE based on age, 
geographical area, the presence of comorbidity and time since 
vaccination was done. These reports, for instance, the CDC’s 
COVID-19 Vaccine Effectiveness Weekly Reports, have been 
very useful in directing the national campaign to give out the 
vaccines. Unfortunately, the above worthwhile information 
remains uncommunicated /unsubstantiated in localized retailing 
communications strategy. The inclusion of such efficacy data 
into the sent messages means that, for instance, letting people 
in a particular age bracket know that a specific vaccine was 
92% effective in the clinical trial among adults can make the 
communication more appealing and believable. Our work aims 
to implement this by mapping clinical outcomes to behavioral 
theories for the pertinent and evidence-based form of vaccination.

3. Methodology
3.1. Data sources

As the basis for elaborating the behaviorally-informed 
vaccination approach, [9-12] three data sources were used: 
behavioral, clinical and survey.

•	 Behavioral data: This data was gathered from two large 
US entities, mainly Target and CVS Health and sensitive 
consumer information was anonymized. These were the 
integrated loyalty card records, visits made by the customer 
in the past and their purchases related to health, such as 
vitamins and over-the-counter drugs and even the past 
flu shot campaign rates. It focuses on over 8.2 million 
distinct customers and begins 12 months before COVID-19 
vaccinations. According to the HIPAA and GDPR rules, all 
the data collected were pooled and anonymized to preserve 
the consumers’ confidentiality. 

•	 Clinical trial data: The source of data in this paper is 
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regarding time and geography to facilitate a combined 
analysis. This gets the data ready for modeling.

3.2.3. Third layer – Segmentation: 

•	 Clustering (k-means, DBSCAN): Behavioral 
segmentation algorithms segment individuals into groups 
according to shared characteristics, like health-related 
shopping or vaccination history. Segmentation is necessary 
for personalizing outreach efforts.

3.2.4. Fourth layer - Predictive modeling: 

•	 Logistic Regression: A statistical model estimates the 
probability of vaccinating a person based on segmented 
behavioral attributes. This allows targeted interventions.

3.2.5. Last layer - Deployment and outcomes:

•	 Geographic segmentation by ZIP Code: Predictive 
insights are used locally to customize messaging and 
outreach in targeted areas, enhancing accessibility and 
personalization.

•	 Increased engagement in hesitant clusters (+21%): This 
shows that behavior-driven messaging and outreach led to 
significantly higher vaccine engagement among populations 
previously categorized as hesitant.

•	 Localized messaging based on clinical efficacy data: 
Emphasizing local vaccine trial results enhanced trust and 
take-up, particularly when adding clinical data (e.g., “Pfizer 
efficacy = 94% in your area”) to the communication.

3.3. Data integration techniques

This approach was necessary because our data sources 
included13-15 everything from transactional to clinical data.

•	 Time-aligned aggregation using apache spark: Apache 
Spark of Datasets All the analyzed datasets were brought 
into a uniform temporal resolution through Apache Spark 
to make the data distribution process scalable. This step 
also helped provide temporal consistency of the vaccination 
efforts, customers’ behaviors and emerging clinical 
evidence.

•	 Clustering for behavioral segmentation: we used 
unsupervised learning to categorize its consumers into 
groups, mainly through the K means and DBSCAN. 
Included options were how often people visited their stores, 
what health-related products they bought, whether they had 
undergone a vaccine before and other means of payment. 
These clustering provided highly resolved human mobility 
patterns, which helped design message strategies for the 
health system.

•	 Predictive modeling with logistic regression: Using 
Behavioral Attributes for Logistic Regression for Vaccine 
Uptake: To estimate the probabilities of default rates, 
logistic regression models previously trained on behavior 
characteristics were applied. Attesting the model’s 
discriminative ability, the AUC was computed to be 
0.89. These factors entail the purchase of supplements, 
seriousness of flu, flu vaccination, if any and utilization of 
health check kiosks. Model validation was conducted with 
k = 5 fold cross validation while testing on new unseen data 
containing 2,500,000 samples of the consumers.

clinical trial data available from phase III results of COVID-
19 and the seasonal influenza vaccine as reported by the 
CDC and FDA. These sources offered efficacy rates based 
on age, ethnicity, co-morbidity and geographic regions. 
The vaccines incorporated in the assessment included 
Pfizer-BNT162B2, BioNTech, Moderna, mRNA-1273 and 
standard-dose quadrivalent influenza vaccines. We also 
quoted other reports from the CDC published before the 
rollout to provide an idea of the differences in the efficacy 
of the real-world studies.

•	 Survey data: This study used data collected from a survey 
conducted in that specific nation by the encompassing 
retailers and with participants amounting to 14800. Some of 
the questions in the survey include the willingness to take 
vaccines, reasons for not taking the vaccines and reasons 
for accepting to take vaccines soon after the coronavirus 
breakout. Therefore, in this study, the survey design 
followed Dillman’s Tailored Design Method to eliminate 
any sources of respondent biases and increase response 
accuracy for the different demographic subgroups.

Figure 1: Behavioral + Clinical Integration for Retail Vaccination 
Strategy.

3.2. Behavioral + Clinical integration for retail vaccination 
strategy

3.2.1. Top layer - Sources of data: This layer emphasizes the 
three main categories of input data utilized in the study:

•	 Behavioral data (Target, CVS): Comprises anonymized 
purchase history, visit rates and past vaccine data from retail 
pharmacies.

•	 Clinical trial data (CDC, FDA): Includes efficacy and 
safety data from Phase III vaccine trials (e.g., Pfizer, 
Moderna), with regional data if applicable.

•	 Survey data (Vaccine Acceptance N=14,800): Gathered 
via customer feedback questionnaires, these surveys identify 
public attitude, confidence and reluctance to vaccines.

3.2.2. Second layer - Data processing: 

•	 Apache Spark (Time-aligned aggregation): A distributed 
processing platform that combines and aligns the data 
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3.4. Blockchain-enabled COVID-19 verification system for 
decentralized digital passports

Figure 2: Blockchain-Enabled COVID-19 Verification System 
for Decentralized Digital Passports.

3.4.1. Blockchain-based COVID-19 verification system: 
The “Blockchain-Enabled COVID-19 Verification System for 
Decentralized Digital Passports” diagram offers an architectural 
framework incorporating blockchain technology to securely 
store and verify COVID-19 vaccination and testing information. 
[16] During the pandemic, there was a pressing need for a 
decentralized, tamper-proof system to validate individuals’ 
vaccine status and test results. This system fills the need by 
synergistically integrating verified clinical input, algorithmic 
processing and public access interfaces as a single digital health 
infrastructure.

3.4.2. Data capture from authorized centers: The journey 
starts at authorized COVID-19 testing and vaccination facilities, 
where patients are tested or vaccinated. These facilities are 
reliable data sources, capturing vital health information under 
regulatory guidelines. Data from these facilities is routed into 
a processing module where verification and formatting are 
performed in readiness for secure storage. Authenticity of the 
source is paramount to the integrity of the downstream system.

3.4.3. Algorithmic execution and validation: After capture, 
data is fed into an algorithm execution layer whose main 
function is to validate the inputs. Here, cryptographic methods 
such as hashing and digital signatures are used to anonymize and 
protect personal data. Identity verification rules are enforced and 
the data is formatted to fit the blockchain schema. This phase 
is crucial in maintaining data security and interoperability to 
facilitate integration with external digital health systems.

3.4.4. Blockchain for secure and immutable storage: The 
blockchain network is at the center of the architecture, acting 
as a decentralized ledger for storing verified health records. 
Each block within the blockchain is time-stamped and cannot 
be changed once added, making any form of retroactive altering 
impossible. This provides transparency and trust, which is 
especially crucial where public health results hang on having 
accurate, current records. The blockchain application provides 
decentralized trust, free from anyone controlling the entity while 
maintaining data integrity.

3.4.5. Public access and visualization layer: Validated 
health records are made available through a data retrieval and 
public access interface, allowing external stakeholders to have 
controlled access to non-sensitive, anonymized information. 

This is linked to a dashboard module, which presents vaccination 
rates, test coverage in regions and trends in population immunity. 
This layer enables real-time monitoring of policy planning 
and supports transparent communication with the public and 
institutional partners.

3.4.6. Tools, algorithms and system design: Underneath the 
primary verification layer is the system’s foundation, consisting 
of three interconnected elements: tools, algorithms and system 
design. Tools are the APIs, SDKs and data entry points that 
facilitate integration with health systems. Algorithms constitute 
the computational core, performing identity verification, access 
control and privacy-preserving computations. Lastly, the system 
design makes the solution modular, scalable and interoperable to 
be deployed across jurisdictions and platforms.

This verification system, built on blockchain, presents a 
scalable, secure and privacy-sensitive architecture for handling 
COVID-19 credentials. By decentralizing the control and 
publically enabling verification, the system lowers the chances of 
fraud, creates public confidence and assists in global endeavors 
toward pandemic management. Its modular architecture is also 
potentially extendable beyond COVID-19—to future pandemics 
or other health credentialing applications.

3.5. Experimental setup

So, to validate the predicted strategy, a field experiment was 
conducted in 30 retail shops in five cities: New York, Chicago, 
Atlanta, Houston and Phoenix.

Geographic segmentation A ZIP code level data of stores 
were adopted after considering the percentage of vaccine 
hesitancy, the demography of the region and the efficacy of 
the clinical trials based on regions. This made it possible for 
Marissa to adapt the communication style and the type of data 
she presented in a way that would be relevant to the talk, the 
presenter and the audience.

Customers were randomly assigned to two groups in all 
locations in the experimental design.

•	 Control group: Were provided with non-tailored messages 
about the COVID-19 Vitriolic (e.g., “Get your COVID-19 
vaccine today”).

•	 Treatment group: Received behavior-informed messages 
with their behavioral segment added to them, including 
vaccine efficacy rates within the state (e.g., “90% of adults 
in your area are protected with the Pfizer vaccine-take action 
for your family.”).

The study ran for four weeks and vaccine coverage was 
assessed by redeeming digital vaccination appointment coupons 
and confirming reported vaccinations by the selected pharmacy 
outlets.

3.6. Data-driven people-centred health platform: A 
multilayered framework for health service delivery

This theoretical diagram depicts an end-to-end people-
focused health platform aggregating multi-source data via a 
formal, layered structure, allowing for responsive, data-driven17 
healthcare services. On the left, concentric rings of increasing 
size depict successive layers of data, beginning with the most 
detailed (individual data) and moving outward to environmental 
data. Each layer adds to a more complete picture of patient and 
population health.
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Figure 3: Data-Driven People-Centered Health Platform: A 
Multilayered Framework for Health Service Delivery.

The hub in the center of individual data comprises biometric/
genetic data and lifestyle indicators from quantified self-devices. 
By moving outward, lifestyle data are recorded by wearable 
smart sensors, social media and telemedicine. Community data 
comprise health behavior patterns, socioeconomic determinants 
and healthcare system interactions. The outermost circles 
are health, social care and environmental data macro-level 
determinants extracted from policy, payers and environmental 
surveillance systems.

The right-hand side of the diagram describes the people-
focused health platform, bringing together diverse data types: 
biomarkers, EHR, imaging, sensor data, claims, PROMs, social 
media and community/aged care inputs. These are directed to 
big data analytics pipelines (characterized by high velocity, 
veracity and variety), enabling sophisticated modeling for 
insights generation.

The outcome of this data infrastructure is supporting the 
personalized, people-focused services represented in a shaded 
diamond at the base. It comprises:

•	 Coordinating services
•	 Reorienting care models
•	 Empowering and engaging people
•	 Creating an enabling environment
•	 Strengthening governance and accountability

Overall, this platform enables high-velocity, high-value 
health decision-making that is dynamic, inclusive and data-
driven. This model is particularly applicable to application in 
retail vaccination strategies, where behavioral, environmental 
and community-level factors directly affect vaccine uptake, 
communication and intervention success.

4. Results
4.1. Predictive model performance

The logistic regression model developed to predict 
vaccination likelihood demonstrated strong performance across 
multiple evaluation metrics. It achieved an F1-score of 0.83 
and an Area Under the ROC Curve (AUC) of 0.89, indicating 
excellent predictive capability and robustness against class 
imbalance. Among the most influential behavioral predictors 
were:

In-store visit frequency (β = 0.42, p < 0.001), which was 
positively correlated with the likelihood of vaccine uptake, 

suggesting that more in-store interaction increases exposure to 
campaign communication.

Health-related supplement purchases, such as vitamins and 
immunity boosters (β = 0.37, p < 0.001), which served as a 
proxy for proactive health behavior.

Historical records of flu shots (β = 0.46, p < 0.001), the 
single best predictor, consistent with prior research that a history 
of vaccine behavior is a strong predictor of future compliance.

The model’s predictability and interpretability facilitated 
successful segmentation and targeting in the experimental 
environment (Table 1).

Table 1: Predictive Model Performance.

Metric Logistic Regression Random Forest Support Vector 
Machine

Accuracy 0.86 0.88 0.84

Precision 0.81 0.83 0.78

Recall 0.85 0.87 0.8

F1-Score 0.83 0.85 0.79

AUC (ROC) 0.89 0.91 0.87

Figure 4: Graphical Represented Predictive Model Performance.

(Table 1) shows the results of evaluating the effectiveness of 
three algorithms, namely Logistic Regression, Random Forest 
and SVM, for predicting the probability of vaccination based 
on activity and demographic parameters. Moreover, among 
the evaluated models, the Random Forest model shows the 
best marker stability in most metrics considered: AUC - 0, 91; 
accuracy - 0, 88, which characterize the successful differentiation 
of vaccinated and unvaccinated groups.

Logistic Regression, though slightly less accurate in its 
results, was cooperative in terms of interpretability and achieved 
an F1-score of .83, which is best for balancing precision and 
recall. SVM also had fairly good results, slightly below the best-
performing algorithm, with an F1 score of 0.79. These results 
further support behavior-informed modeling for investigating 
vaccination behavior, especially how methods such as the 
Random Forest performed slightly better than the other models 
tested.

4.2. Effectiveness of the campaign

The A/B testing over 30 retail outlets identified a substantial 
increase in vaccination rates when implementing behavior-based 
messaging (Table 2).
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Table 2: Vaccination Campaign Effectiveness.

Strategy Vaccination Rate 
(%)

Statistical 
Significance (p)

Generic Messaging 28.3% -

Behavior-Based Messaging 39.7% < 0.01

The data-driven strategy raised vaccine acceptance by 
11.4%, a statistically significant increase (p < 0.01). This result 
supports the hypothesis that targeted, data-driven messaging is 
more effective than generic public health messages. In ZIP codes 
with historically low acceptance, the relative gain was over 
14%, showing the model’s effectiveness in overcoming vaccine 
reluctance in at-risk communities.

4.3. Clinical data utilization

Localized integration of efficacy data from clinical trials 
also improved campaign performance. In ZIP codes with trial-
reported Pfizer efficacy ≥ 90%, vaccination rates were 14% 
higher, where this information was specifically highlighted in 
campaign messaging relative to areas where this information 
was not highlighted.

Furthermore, among clusters characterized as vaccine-
hesitant based on behavioral profiling, risk communication 
rooted in trial outcome evidence from the real world increased 
vaccination intent by 21% (p < 0.05). Such clusters reacted 
positively to messages of protection statistics, side effect 
disclosure and endorsements by familiar local doctors or 
pharmacists. This result confirms the importance of integrating 
scientific evidence in behavioral outreach.

4.4. Visualizations

The following visualizations were produced to illustrate 
these findings

•	 ZIP-Code vaccination conversion heatmap: Visual 
heatmaps displayed spatial variation in campaign 
performance, with evident regional patterns and revealing 
where the behavioral model was most effective.

•	 ROC curve for predictive model: The ROC curve 
exhibited high true positive rates and a low false positive 
rate, in line with the model’s AUC of 0.89. The visual 
confirmed that the model was well-calibrated across several 
behavioral segments.

•	 Survey response word cloud: Sentiment analysis of 
qualitative survey responses was carried out. The word 
cloud from the resultant survey highlighted principal 
positive themes such as “trust,” “safety,” “local pharmacist,” 
and “protection” within the behavior-informed group. 
In contrast, the control group expressed more neutral or 
cynicism-laced language (e.g., “unsure,” “wait,” “side 
effects”).

5. Discussion
5.1. Implications

Given these study outcomes, behavioral analytics should 
be integrated with clinical trial information to shape public 
intervention strategies, particularly in retail settings. The 
observed statistically significant increase in vaccination rates in 
the behavior-informed messaging group (11.4%) demonstrates 
that it is possible to overcome the barriers associated with 
traditional messaging campaigns using the proposed method 
based on consumer behavior analysis.

Every day, stores like CVS and Target, which provide 
products consumed by the lower, middle and upper classes 
across the country, can serve as localized extensions of the 
public health apparatus. They have the advantage of accessing 
transactional data and direct consumer contact, allowing them 
to provide real-time points of intervention. Furthermore, our 
study shows that promoting vaccine effectiveness through 
localized clinical trial information boosts people’s confidence in 
the vaccines, particularly among vaccine-skeptical populations. 
When trial data were specifically mentioned (for example, 
“90% efficacy in adults aged 18–49 in your area”), both vaccine 
intention and actual uptake increased significantly, proving that 
the comprehension of scientific evidence can be enhanced when 
it is personalized.

Thus, it can be concluded that retail-based health 
communication, supported by data science, can go beyond 
being a convenient method of accessibility and address public 
health concerns—especially during pandemics, when timely and 
comprehensive vaccination is crucial.

5.2. Limitations

Although the given work advances in terms of the methodology 
and outcomes, several limitations should be taken into account 
regarding this analysis:

•	 Sampling bias: The behavioral data was collected from 
participants of a loyalty program and thus may exclude 
those who do not participate in such programs and may 
give inclination towards a health-conscious population or 
population that is brand conscious. The subjects surveyed 
differed from those who do not participate in such schemes 
or those who make cash payments exclusively because their 
contributions were used in the study.

•	 Clinical data granularity: While the datasets collected 
from the CDC and FDA possessed significant information, 
this information was not granular enough to be analyzed 
at the ZIP code or sub-county level. This was done due 
to a limitation that reduced the precision of localized 
communication efficacy in some areas. Moreover, the trial 
was sometimes only completed after the usual timeframe of 
a specific campaign; therefore, the integration occasionally 
only took place after the end of a campaign.

•	 Controlled retail environment: The split experiment was 
conducted on 30 stores in 5 major cities; thus, although the 
sample demographics are quite diverse, the experiment is 
not comprehensive and does not involve rural sites with 
restricted retail facilities.

Despite these limitations, some methodological strength is 
sufficient for integrating behavioral and clinical data of vaccine 
outreach.

5.3. Future work

Based on the increase in successful outcomes resulting 
from the combination of behavioral analytics and clinical 
trial information, further enhancements to the vaccination 
approach can be amplified with the help of mobility-based 
campaign design. By using real-time mobile geolocation data, 
health services (HS) and retail partners can incorporate highly 
relevant behavioral variables, in addition to purchasing habits 
or engagement activities, as well as spatial preferences in the 
physical environment. When collected in compliance with 
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ethical standards and fully anonymized, such data allows for the 
mapping of congregation areas, such as workplaces, bus/metro 
stations, shops or local fairs and festive occasions—thereby 
providing previously unavailable precision in hyper-location 
targeting for vaccine distribution. This geospatial enrichment 
helps make campaigns more dynamic, adapting to the daily 
movements of people and ensures that the right areas are targeted 
with vaccination information and services.

Equally crucial is addressing the decline in vaccination 
rates for booster doses, which are less effective than initial 
doses and have seen significant drop-offs despite early success. 
Precedent consumer behaviors, such as seasonal health product 
purchases, visit frequency and digital engagement patterns, can 
serve as indicators of intent to receive vaccines. By leveraging 
AI-based self-learning strategies, such as reinforcement learning 
and neural recommendation systems, retailers can develop 
intelligent messaging that adapts based on feedback, time-based 
behaviors or regional outbreaks. Additionally, creating clusters 
of collaborating retailers could help consolidate public health 
networks that extend beyond individual brand networks, while 
still preserving the distinctiveness of regional niches. These 
future directions promise to enhance vaccination uptake and 
establish a dynamic, smart environment for preparedness against 
future pandemics.
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