
Improving Software Development Using AI Enabled Predictive Analytics

Srija Saha*

School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA

Citation: Saha S. Improving Software Development Using AI Enabled Predictive Analytics. J Artif Intell Mach Learn & Data Sci 
2024, 2(1), 1050-1053. DOI: doi.org/10.51219/JAIMLD/srija-saha/249

Received: 03 January, 2024; Accepted: 28 January, 2024; Published: 30 January, 2024

*Corresponding author: Srija Saha, School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, 
USA, E-mail: ssaha35@asu.edu

Copyright: © 2024 Saha S., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

ReviewVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/srija-saha/249

 A B S T R A C T 
The incorporation of Artificial intelligence into software development is moving rapidly with predictive analytics playing a 

crucial role in better decision making, maximising resources, and increasing product quality. The use of AI powered predictive 
analytics, and several phases of the software development life cycle has gained considerable traction. However, there is still a 
lack of exploration in implementing a comprehensive strategy to its application. This paper provides a thorough investigation of 
the incorporation of Artificial intelligence (AI) across the whole software development process, including requirement analysis, 
design, coding, testing and maintenance. Using predictive models, artificial intelligence allows for the anticipation of the changes 
in requirements, discovery of design fault, detection of code defects, optimization of test coverage, prediction of maintenance 
needs. This paper discusses the comprehensive integration of AI across the whole project lifetime, leading to improved results 
by enhancing individual stages and creating synergetic benefits. The proposed solution aims to tackle key challenges such as 
data quality, model interpretability, and tool integration. These solutions include implementation of explainable AI approaches, 
adoption and strong governance practices. Concrete examples from real world scenarios showcase the practical advantages of 
using AI driven predictive analytics. These examples highlight the ability to reduce project timelines, enhance code quality, and 
raise fault detection rates. The importance of AI in software development is anticipated to increase as it continues to improve, 
presenting enhanced prospects for innovation and efficiency. This paper offers a roadmap for enterprises aiming to use AI to 
revolutionise the software development processes and achieve exceptional results.

1. Introduction
The evolution of software development processes has been 

characterised by the ongoing pursuit of tools and techniques 
that improve efficiency and speed. Conventional approaches 
like Waterfall and even Agile, often face challenges in meeting 
the requirements of constantly increasingly complex software 
systems and need for faster deployment. Consequently, there 
has been an increasing interest in using Artificial Intelligence 
(AI) to tackle these challenges. AI driven predictive analytics, 
using algorithms and machine learning models, has emerged 
as a promising method for forecasting future events based on 
previous data. 

In recent years, much research has been carried out on the 
use of Artificial Intelligence (AI) in many phases of the software 

development process. Defect prediction has been a significant 
area of research, where studies have shown that machine 
learning models can effectively forecast software defects. This 
improves code quality and reduces debugging time1,2. AI has 
also been used in automated testing, demonstrating its ability to 
improve test case development and prioritising testing efforts3,4. 
AI also had a positive impact on project management, namely in 
the areas of resource allocation and risk management. Predictive 
analytics has been used to enhance decision making processes 
in these areas5. 

There has been an increasing desire in recent years to use 
AI extensively across the whole software development process. 
Aryyama and Srija6 investigated how AI may increase efficiency 
in smart buildings by using AI powered controls systems. They 

https://doi.org/10.51219/JAIMLD/srija-saha/249
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/srija-saha/249


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Saha S.,

2

found that this approach led to substantial improvement in 
resource usage and operational efficiency. Their research focused 
on using AI to optimise financial aspects of electrical power 
networks, namely in project planning and risk management, 
demonstrated the adaptability and efficiency of AI in several 
fields7. Furthermore, the capacity of AI to analyse extensive 
quantities of data instantaneously has become a significant asset 
in a dynamic environment, where prompt and precise decision 
making is essential8. The capacity to handle the growing needs 
of modern communication networks is especially evident in 
network management since AI driven solutions are created for 
this purpose9.

In addition, their research on enhancing the resilience and 
security of infrastructure using AI-powered threat detection 
and prevention emphasised the crucial role of AI in making 
smart grids more efficient10. By utilising Artificial Intelligence 
(AI) to identify potential risks in real time, previous research 
works have demonstrated the significant role that AI can play in 
preserving the stability and reliability of critical services such 
as PowerGrid which are continually susceptible to cyber-attacks 
and other forms of disturbances11,12. For sectors that depend on 
continuous operations, the capacity to proactively detect and 
address potential risks prior to their ability to cause substantial 
harm is a game changer. 

Although there are significant improvements, the possibility 
of integrating AI across the whole software development process, 
from analysing requirements to maintenance, has not been fully 
explored. Prior studies have often concentrated on individual 
uses of AI such as network packet switching13 or decentralised 
finance Defi security14, without fully acknowledging the wider 
consequences and advantages of a comprehensive AI driven 
strategy across all stages of software development. 

This paper aims to address this gap by presenting a complete 
methodology for incorporating AI driven predictive analytics 
into all aspects of software development. There uniqueness of 
this technique is comprehensive viewpoints, which considers 
the interdependencies between all phases of the software 
development lifecycle and utilises AI to enhance the whole 
process. This framework utilises predictive analytics across the 
whole software development life cycle including requirement 
analysing, planning, design, development, testing, deployment 
and maintenance. Its objective is to optimise decision making, 
boost resource utilisation, and minimise time to market, all 
while ensuring exceptional software quality. 

This paper endeavours to make a scholarly contribution to 
the continuing academic discussions about the integration of 
artificial intelligence in software development. Its objective is 
to provide a complete methodology that explores the role of AI 
in refining software engineering techniques and achieving better 
project outcomes. 

2. AI Integration in Different Stages of Software 
Development

The incorporation of Artificial Intelligence (AI) into the 
software development lifecycle has fundamentally transformed 
the processes of software design, development, testing and 
maintenance. The capacity of AI to evaluate extensive amounts 
of data, forecast subsequent outcomes, automate various 
operations and augment decision making processes has rendered 
it a vital tool in tackling the intricacies and requirements of 
modern software systems.

2.1. Requirement gathering

The phase of requirement analysis holds significant 
importance in ensuring the success of software systems 
projects. In the conventional approach, this stage involves 
collection, documentation and verification of the requirements 
and expectations of the relevant stakeholders. Nonetheless the 
procedure might be tedious and prone to errors due to ambiguity 
and constant evolution of the requirements. The integration 
of natural language processing (NLP) in requirement analysis 
can greatly augment the process by enabling the analysis and 
interpretation of various forms of communications such as 
requirement documents, emails and textual materials.

Artificial intelligence (AI) tools provide the capability 
to autonomously extract essential requirements, identify 
inconsistencies, and predict modifications based on historical 
data. This approach not only yields a reduction in time and 
effort spent on manual analysis, but also guarantees that the 
requirements are unambiguous, thorough and aligned to project 
objectives. Moreover, AI has the capability to rank requirements 
by considering variables such as feasibility, cost and impact. 
This empowers teams to concentrate on the most critical aspects 
of the project right from the beginning. 

2.2. Design

The design phase includes the development of the software’s 
architecture and formulation of its detailed design. This phase 
holds significant importance since it establishes the fundamental 
base for the entire development process. Incorporating Artificial 
Intelligence (AI) into the design phase can effectively augment 
decision making capabilities and optimise decision processes. 
One example of the machine learning models is their ability to 
analyse historical design patterns and outcomes to propose the 
most optimal design strategies for the project. The utilisation of 
Artificial Intelligence (AI) can also facilitate the identification 
of potential design flaws by comparing the proposed design with 
both successful and unsuccessful designs from past projects.

Furthermore, AI powered technologies have the capability 
to automate the generation of design artifacts including 
UML diagrams, flowcharts and architectural blueprints. This 
automation significantly reduces the time and effort needed to 
manually construct these crucial documents. The use of these 
technologies can effectively promote uniformity and precision 
in design, hence assisting teams in avoiding prevalent challenges 
and guaranteeing that the design aligns with established norms 
and industry benchmarks. By providing immediate feedback 
and ideas, AI empowered designers to examine various design 
choices and make well informed judgments that augment the 
overall quality and efficacy of the product. 

2.3. Development

During the coding phase, software developers convert the 
design specifications into the executable code. AI can assume 
a crucial role during this phase by automotive repetitive coding 
processes, detecting and rectifying software defects, and 
enhancing code efficiency for improving performance. AI driven 
code generation systems can have the capability to aid developers 
by producing code snippets, proposing enhancements, and even 
composing whole functions based on developer input. These 
software applications employ machine learning algorithms 
that have been trained on extensive collections of code to offer 
suggestions that are contextually appropriate and adhere to 
establish coding conventions and best practices.



3

Saha S., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1

AI has the capability to improve the quality of code by 
proactively identifying and forecasting potential defects and 
vulnerability prior to their escalation into significant problems. 
Through analysis of code metrics and previous bug data, AI has 
the capability to detect code segments that are prone to errors and 
suggest corrective actions. The capacity to foresee future events 
allows developers to proactively identify and resolve errors at an 
early stage of the development processes and hence minimising 
the necessity for prolonged debugging and subsequent rework. 
Furthermore, AI has the capability to enhance code performance 
by suggesting more effective algorithms and data structures, 
thereby guaranteeing that the end output satisfies performance 
criteria while minimising resource usage.

2.4. Testing

The testing phase holds significant importance in the software 
development life cycle. As it verifies the proper functioning of 
the software and each adherence to establish quality standards. 
Conventional testing methodologies can be perceived as time 
intensive, especially for large and complex systems. AI has a 
potential to significantly transform the testing phase through 
the automation of test case generation, test case execution 
and result analysis. Iterative testing solutions powered by AI 
have the capability of autonomously producing test cases in 
accordance with the software’s specifications and architecture 
hence guaranteeing thorough test coverage. 

In addition, AI has the capability to prioritise test cases 
by considering the probability of identifying defects, to align 
testers to concentrate on the most crucial aspects of the software. 
These prioritisation techniques are especially valuable in the 
context of regression testing, as they are crucial for the recent 
modifications in code that have not created any further defect. 
AI has the capability to dynamically adjust test cases in real 
time, considering the behaviour of the program throughout the 
testing phase. This capability enhances precision and operational 
efficiency of the testing procedure. 

Furthermore, AI has the potential to be employed in 
non-functional testing domains including performance testing, 
security testing and usability testing. AI enabled tools can 
provide the capability to replicate various scenarios and user 
behaviours to evaluate the effectiveness of software under 
different conditions. By doing an analysis of the results, AI can 
detect any bottlenecks, security vulnerabilities and usability 
concerns. This enables teams to gain valuable insights that can 
be utilised to enhance the product prior to the release.

2.5. Deployment

The deployment step involves releasing the software into 
the production environment. This stage is frequently beset with 
challenges such as compatibility issues, performance limitations 
and unforeseen errors. Automation of deployment tasks, 
anticipation of potential challenges, and facilitation of seamless 
transition from development to production are among the ways in 
which AI can enhance the efficiency of the deployment process. 

AI powered deployment technologies can automate the 
configuration, integrations and deployment of software in various 
environments. This can mitigate potential human errors and 
expedite the deployment process. In addition, these technologies 
can constantly monitor the operation of the software during its 
deployment, thereby promptly identifying and resolving any 
issues that may arise. The use of AI enables the anticipation 

of future compatibility concerns by analysing the software 
configurations and target environment. This empowers teams to 
proactively resolve these issues prior to their adverse effects on 
end user experience. 

In addition, AI can enhance resource allocation performance 
throughout the deployment process, thereby ensuring the 
optimal efficiency of the software on a designated infrastructure. 
Through the examination of past deployment data and real time 
metrics, AI can provide recommendations for the most efficient 
software configuration, thereby minimising the resource 
usage and enhancing overall performance. Implementing this 
proactive strategy for deployment management enables teams 
to consistently produce software of superior quality that aligns 
with user expectations and operates reliably in the production 
environment.

2.6. Maintenance

The maintenance phase is a continuous process that 
encompasses the routine upgrading of software and enhancements 
of software after its first release. This phase includes tasks such 
as bug fixes, improving system efficiency and incorporating 
novel functionalities. Advanced Artificial Intelligence has the 
potential to significantly contribute to maintenance operations 
through its ability to forecast future maintenance requirements, 
automate repetitive procedures and uphold software security and 
integrity.

AI has the capability to monitor system logs, user comments, 
and performance indicators to proactively detect potential issues 
before they become critical. As an illustration AI can forecast the 
probable failure of a component by analysing its usage pattern and 
historical data. This enables the team to take proactive measures 
in addressing the issue. This use of this predictive maintenance 
strategy effectively reduces downtimes and guarantees software 
reliability and accessibility for users.

Furthermore, AI can automate several routine maintenance 
operations, including but limited to patch application, 
dependency updates, and system health monitoring. Through 
the automation of these processes, AI liberates engineers from 
time constraints, enabling them to allocate their efforts towards 
more intricate and value-added activities. Advanced Artificial 
Intelligence can maintain the security of software by constantly 
checking potential vulnerabilities and promptly implementing 
necessary security updates.

3. Limitations
Although the incorporation of AI into the software 

development lifecycle offers notable benefits, it is imperative 
to recognize and address several constraints associated with 
this integration. A significant constraint is in the reliance on 
good quality data. The efficacy of AI models is contingent on 
the availability of comprehensive and precise datasets, as any 
inadequacies in data quality might result in erroneous predictions 
and inferior results. Furthermore, the challenge of interpretability 
persists in AI models particularly in the case of complex 
machine learning algorithms such as deep learning. These 
algorithms often function as black boxes, posing difficulties for 
developers in comprehending the underlying rationale behind 
specific prediction or judgements. Integrating AI tools into 
pre-existing workflows can pose challenges, as it entails major 
changes to development procedures and necessitates extensive 
training for the development teams. Moreover, the dependence 



J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 1Saha S.,

4

on AI may bring about novel hazards, such as the possibility of 
over dependence on automated systems, which could result in 
complacency and a decline in critical thinking among developers. 
Furthermore, the expenses associated with deploying and 
upkeeping AI-powered systems might be a significant obstacle 
for smaller firms, hence restricting their ability to readily use 
these sophisticated technologies. The constraints underscore the 
necessity for meticulous deliberation and equitable execution 
when incorporating AI into software development procedures.

4. Conclusion
The incorporation of Artificial Intelligence (AI) into the 

software development lifecycle signifies a transformative 
advancement in the conceptualization, construction, and upkeep 
of software. Through the utilisation of artificial intelligence (AI) 
throughout many phases, including requirement analysis, design, 
coding, testing, deployment, and maintenance, businesses can 
attain enhanced operational effectiveness, enhance decision-
making processes, and attain superior software product quality. 
Artificial intelligence (AI) has demonstrated its immense value in 
effectively managing the increasing complexity of contemporary 
software systems by automating ordinary operations, predicting 
potential risks, and optimising procedures. This paper presents 
a complete framework for integrating AI, which showcases the 
significant impact of AI. It provides a clear plan for enterprises 
seeking to improve their development procedures and maintain 
competitiveness in a rapidly evolving digital landscape.

Nevertheless, the completion of incorporating AI into 
software development is not devoid of challenges. It is imperative 
to effectively address the constraints related to data quality, 
model interpretability, integration complexity, and cost to fully 
harness the advantages offered by artificial intelligence. It is 
imperative for organisations to adopt an in-depth understanding 
of the issues associated with AI integration and demonstrate a 
commitment to ongoing learning and adaptation. To ensure 
responsible and effective use of AI, it is imperative for the 
software development community to remain well-informed 
regarding the newest breakthroughs and best practices in AI 
technologies as they continue to progress. Artificial intelligence 
(AI) is anticipated to assume a more prominent position in the 
future of software development. This advancement is expected 
to foster innovation and facilitate the development of intelligent 
and adaptable software systems that effectively cater to the ever-
changing requirements of both consumers and enterprises.

5. References

1. Hall T, Beecham S, Bowes D, et al. A systematic literature review 
on fault prediction performance in software engineering. IEEE 
Transactions on Software Engineering, 2011; 38: 1276-1304.

2. Radjenović D, Heričko M, Torkar R, et al. Software fault 
prediction metrics: A systematic literature review. Information 
and software technology, 2013; 55: 1397-1418.

3. Zeller A. Why programs fail: a guide to systematic debugging. 
Morgan Kaufmann. 2009.

4. Kaur M, Kumari R. Comparative study of automated testing 
tools: Testcomplete and quicktest pro. International Journal of 
Computer Applications, 2011; 24: 1-7.

5. Jørgensen M. Forecasting of software development work effort: 
Evidence on expert judgement and formal models. International 
Journal of Forecasting, 2007; 23: 449-462.

6. Jana AK, Saha S. Improving energy efficiency in smart buildings 
with AI powered control systems. European Journal of Advances 
in Engineering and Technology, 2019; 6: 49-53.

7. Jana AK, Saha S. Financial optimization in electrical power 
systems using Artificial Intelligence. European Journal of 
Advances in Engineering and Technology, 2020; 7: 97-102.

8. Davenport TH. From analytics to artificial intelligence. Journal of 
Business Analytics, 2018; 1: 73-80.

9. Arsénio A, Serra H, Francisco R, et al. Internet of intelligent 
things: Bringing artificial intelligence into things and 
communication networks. In: Inter-cooperative collective 
intelligence: Techniques and applications, 2014; 1-37.

10. Jana AK, Saha S. Making Smart Grids Robust using Artificial 
Intelligence for Threat Identification and Mitigation. European 
Journal of Advances in Engineering and Technology, 2020; 7: 
71-77.

11. Arghandeh R, Von Meier A, Mehrmanesh L, et al. On the 
definition of cyber-physical resilience in power systems. 
Renewable and Sustainable Energy Reviews, 2016; 58: 1060-
1069.

12. Xu L, Guo Q, Sheng Y, et al. On the resilience of modern power 
systems: A comprehensive review from the cyber-physical 
perspective. Renewable and Sustainable Energy Reviews, 
2021; 152:111642.

13. Jana AK, Saha S. AI-Powered Network Packet Switching-A Way 
Forward for Future-Ready Communication Systems. European 
Journal of Advances in Engineering and Technology, 2021; 8: 
37-41.

14. Jana AK, Saha S. Natural Language Processing and Artificial 
intelligence to guarantee security in Decentralized Finance 
(DeFi). European Journal of Advances in Engineering and 
Technology, 2021; 8: 58-63.

https://www.semanticscholar.org/paper/A-Systematic-Literature-Review-on-Fault-Prediction-Hall-Beecham/eb2640199a8bf20b85b54757a99e07942b5909ee
https://www.semanticscholar.org/paper/A-Systematic-Literature-Review-on-Fault-Prediction-Hall-Beecham/eb2640199a8bf20b85b54757a99e07942b5909ee
https://www.semanticscholar.org/paper/A-Systematic-Literature-Review-on-Fault-Prediction-Hall-Beecham/eb2640199a8bf20b85b54757a99e07942b5909ee
https://www.sciencedirect.com/science/article/abs/pii/S0950584913000426
https://www.sciencedirect.com/science/article/abs/pii/S0950584913000426
https://www.sciencedirect.com/science/article/abs/pii/S0950584913000426
https://typeset.io/pdf/comparative-study-of-automated-testing-tools-testcomplete-3o10oaus9i.pdf
https://typeset.io/pdf/comparative-study-of-automated-testing-tools-testcomplete-3o10oaus9i.pdf
https://typeset.io/pdf/comparative-study-of-automated-testing-tools-testcomplete-3o10oaus9i.pdf
https://www.sciencedirect.com/science/article/abs/pii/S016920700700074X
https://www.sciencedirect.com/science/article/abs/pii/S016920700700074X
https://www.sciencedirect.com/science/article/abs/pii/S016920700700074X
https://www.tandfonline.com/doi/full/10.1080/2573234X.2018.1543535
https://www.tandfonline.com/doi/full/10.1080/2573234X.2018.1543535
https://link.springer.com/book/10.1007/978-3-642-35016-0
https://link.springer.com/book/10.1007/978-3-642-35016-0
https://link.springer.com/book/10.1007/978-3-642-35016-0
https://link.springer.com/book/10.1007/978-3-642-35016-0
https://ejaet.com/PDF/7-12/EJAET-7-12-71-77.pdf
https://ejaet.com/PDF/7-12/EJAET-7-12-71-77.pdf
https://ejaet.com/PDF/7-12/EJAET-7-12-71-77.pdf
https://ejaet.com/PDF/7-12/EJAET-7-12-71-77.pdf
https://www.sciencedirect.com/science/article/abs/pii/S1364032115015762
https://www.sciencedirect.com/science/article/abs/pii/S1364032115015762
https://www.sciencedirect.com/science/article/abs/pii/S1364032115015762
https://www.sciencedirect.com/science/article/abs/pii/S1364032115015762
https://www.sciencedirect.com/science/article/abs/pii/S1364032121009175
https://www.sciencedirect.com/science/article/abs/pii/S1364032121009175
https://www.sciencedirect.com/science/article/abs/pii/S1364032121009175
https://www.sciencedirect.com/science/article/abs/pii/S1364032121009175
https://ejaet.com/PDF/8-4/EJAET-8-4-37-41.pdf
https://ejaet.com/PDF/8-4/EJAET-8-4-37-41.pdf
https://ejaet.com/PDF/8-4/EJAET-8-4-37-41.pdf
https://ejaet.com/PDF/8-4/EJAET-8-4-37-41.pdf

	_GoBack
	_GoBack

