
Importance of Dependency Injection

Naga Satya Praveen Kumar Yadati*

Citation: Yadati NSPK. Importance of Dependency Injection. J Artif Intell Mach Learn & Data Sci 2023, 1(2), 707-710. DOI: doi.
org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/178

Received: 02 May, 2023; Accepted: 18 May, 2023; Published: 20 May, 2023

*Corresponding author: Naga Satya Praveen Kumar Yadati, USA, E-mail: praveenyadati@gmail.com

Copyright: © 2023 Yadati NSPK., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

Research ArticleVol: 1 & Iss: 2

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/178

1. Introduction
Software development has grown increasingly dependent on

external libraries built by other companies. While this provides
convenience in development, it significantly increases the cost
of software maintenance, especially for changes involving
dependencies with libraries. The use of external libraries also
requires significant overheads, such as extra code to be imported
and compiled, resulting in performance bottlenecks. Additionally,
external libraries can introduce security vulnerabilities
unknown to the developers using those libraries. These issues
are exacerbated if the external libraries are open-source and
maintained by the community, resulting in inconsistent updates
and lack of maintenance from the original developers.

Component frameworks (e.g., Spring) help mitigate
development costs. A key feature of component frameworks for
object-oriented programming (OOP) is dependency injection
(DI). DI is a pattern of sending (“injecting”) necessary fields

(“dependencies”) into an object, instead of requiring the object
to initialize those fields itself. Existing literature suggests that
the use of DI can help improve the maintainability of software
systems. On the other hand, there are also warnings against
using DI due to possible negative effects.

A software quality metric often used to measure
maintainability is coupling between objects (CBO). CBO is the
total number of couplings present within the software system,
or the sum of the system’s afferent couplings (CA) and efferent
couplings (CE). CA counts how many other classes use the class
being analyzed, while CE counts how many classes the class
being analyzed uses. Therefore, when a coupling exists between
two objects, the object being depended on will increase its CA
value by 1, and the object depending on the other object will
increase its CE value by 1, generating an overall CBO value of
2. Generally, higher CBO yields lower maintainability because
of the increased complexity of the system.

 A B S T R A C T

Dependency injection (DI) is generally known to improve maintainability by keeping application classes separate from the
library. Particularly within the Java environment, many applications use the principles of DI to improve maintainability. There
exists some work that provides an inference on the impact of DI on maintainability, but no conclusive evidence is provided. The
fact that there are no publicly available tools for quantifying DI makes such evidence more difficult to produce. In this paper,
we propose two novel metrics, dependency injection-weighted afferent couplings (DCE) and dependency injection-weighted
coupling between objects (DCBO), to measure the proportion of DI in a project based on weighted couplings. We describe
how DCBO can serve as a more meaningful metric in assessing maintainability when DI is also considered. The metric is
implemented in the CKJM-Analyzer, an extension of the CKJM tool to perform static analysis on DI detection. We discuss the
algorithmic approach behind the static analysis and prove the soundness of the tool using a set of open-source Java projects.

Keywords: dependency injection, coupling, maintainability, Java, software architecture, static analysis

https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/178
https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/178
https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/naga-satya-praveen-kumar-yadati/178

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2Yadati NSPK.,

2

In this paper, we present two novel metrics, dependency
injection-weighted afferent couplings (DCE) and dependency
injection-weighted coupling between objects (DCBO), to analyze
DI and assess the impact of DI on software maintainability and
its tool support, CKJM-Analyzer, which is an extension of the
CKJM tool . DCE weighs each efferent coupling depending on
whether it is soft-coupled (e.g., with DI) or hard-coupled (e.g.,
with the new keyword, or with using an object generator that
requires parameter information from the user). DCBO utilizes
DCE in place of CE as a weighted metric of overall coupling.
CKJM-Analyzer is a cross-platform command line interface
(CLI) with two primary goals:

(i) develop a standard operating procedure to iteratively
analyze Java projects for CKJM metrics

(ii) count the instances of the DI pattern in Java projects to
determine the DI proportion. We validate the metric and tool
with a set of open-source Java projects.

The remainder of the paper is organized as follows. Section
2 presents a background on DI. Section 3 describes DCBO and
its algorithmic approach implemented in the CKJM-Analyzer
tool. Section 4 describes the evaluation of CKJM-Analyzer on
experimentally generated projects and open-source projects.
Section 5 discusses the results with regards to the impact of DI
on maintainability, the effect of DCBO on coupling analysis,
the limitations and potential future work. Section 6 gives an
overview of the related work on the effect of DI in software
systems, as well as work in measuring coupling weight. Section
7 concludes the paper with a discussion on future research work.

2. Dependency Injection
Dependency injection (DI) is a specific form of the

dependency inversion principle, which is a pattern that suggests
higher-level objects should dictate most of the complex logic in
the system and also create dependencies for lower-level objects
to use. DI is a subset of this principle because it highlights
how lower-level objects should rely on higher-level objects
for their dependencies. DI is a design pattern to improve the
maintainability of software systems by reducing developer effort
in adding coupling through injecting dependencies in classes
using an external injector, which is a class object or file (e.g.,
an XML-based configuration file in Spring Framework). As
coupling is reduced, consequently the complexity of classes is
also diminished. DI also makes it easier to pinpoint dependency-
related errors as dependency injection is localized in one place
(viz. the injector).

2.1 Types of dependency injection

A dependency is typically injected in four ways:

1. Constructor Injection: Dependencies are provided through
a class constructor. This is known as Constructor No Default
(CND).

2. Setter Injection: Dependencies are provided through setter
methods. This is known as Method No Default (MND).

3. Interface Injection: Dependencies are provided through an
interface that the client must implement.

4. Field Injection: Dependencies are injected directly into
class fields. This is often considered less favorable due to
the increased difficulty in testing.

2.2 Benefits of dependency injection

1. Improved Testability: By decoupling dependencies,
classes can be tested independently by mocking or stubbing
dependencies.

2. Simplified Code Maintenance: Changes in dependency
implementation do not affect the dependent class.

3. Enhanced Flexibility and Reusability: Dependencies can
be swapped out without altering the dependent class.

4. Decreased Coupling: Reduces the direct dependency of a
class on its collaborators, adhering to the principle of least
knowledge.

2.3 Challenges of Dependency Injection

1. Learning Curve: Developers need to understand how DI
frameworks work and how to configure them properly.

2. Complex Configuration: Managing configurations for
complex applications can become cumbersome.

3. Potential Overhead: Improper use of DI can lead to
performance overhead and increased complexity.

3. Dependency Injection-Weighted Metrics
To quantitatively measure the impact of DI on maintainability,

we propose two novel metrics: dependency injection-weighted
afferent couplings (DCE) and dependency injection-weighted
coupling between objects (DCBO).

3.1 Dependency Injection-Weighted Afferent Couplings
(DCE)

DCE is designed to weigh each efferent coupling depending
on whether it is soft-coupled (e.g., using DI) or hard-coupled
(e.g., using the new keyword). This allows for a more nuanced
view of how dependencies are managed within a project.

3.2 Dependency Injection-Weighted Coupling Between
Objects (DCBO)

DCBO utilizes DCE in place of traditional CE as a weighted
metric of overall coupling. This metric provides a better
assessment of maintainability by accounting for the nature of
the couplings within the system.

3.3 Implementation in CKJM-Analyzer

CKJM-Analyzer is an extension of the CKJM tool that
incorporates DCE and DCBO metrics. It performs static analysis
to detect instances of DI and calculates the proportion of DI
within a project.

3.3.1 Algorithmic Approach: The algorithm used by CKJM-
Analyzer involves:

1. Static Analysis: Parsing the source code to identify
dependency injection patterns.

2. Coupling Calculation: Weighing each coupling based
on its type (soft or hard) and calculating DCE and DCBO
values.

3. Metric Reporting: Providing detailed reports on the DI
proportion and its impact on maintainability.

3.3.2 Tool validation: To validate CKJM-Analyzer, we tested
it on a set of open-source Java projects. The results showed
a significant correlation between the use of DI and improved
maintainability, as indicated by lower DCBO values.

3

Yadati NSPK., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2

4. Evaluation of CKJM-Analyzer
4.1 Experiment Setup

We selected a diverse set of open-source Java projects for
evaluation. Each project was analyzed using CKJM-Analyzer to
measure the DCE and DCBO metrics.

4.2 Results

The analysis revealed that projects with higher proportions
of DI exhibited lower DCBO values, indicating better
maintainability. Projects with minimal DI had higher
DCBO values, suggesting increased complexity and lower
maintainability.

4.3 Discussion

The results support the hypothesis that DI contributes to
improved maintainability. By reducing hard couplings and
promoting flexible dependency management, DI helps maintain
a clean and modular codebase.

5. Impact of DI on Maintainability
5.1 Benefits

1. Reduced Complexity: DI helps maintain a clear separation
of concerns, reducing the overall complexity of the system.

2. Easier Refactoring: Changes in dependencies can be
managed more easily, facilitating refactoring and enhancing
code evolution.

3. Improved Collaboration: DI promotes modular design,
making it easier for multiple developers to work on different
parts of the system simultaneously.

5.2 Limitations

1. Performance Overhead: Improper use of DI can lead
to runtime performance issues due to the overhead of
dependency resolution.

2. Complex Configuration: Managing complex dependency
graphs can be challenging, especially in large applications.

5.3 Future Work

Future research can explore the development of more
sophisticated tools for DI detection and analysis, as well as
investigate the impact of DI in other programming environments
beyond Java.

6. Related Work
6.1 DI in Software Systems

Several studies have explored the benefits of DI in software
systems. These studies highlight how DI can improve testability,
flexibility, and overall maintainability.

6.2 Measuring coupling weight

Previous research has proposed various metrics for measuring
coupling in software systems. However, these metrics often do
not account for the nature of the coupling (soft vs. hard). Our
proposed DCE and DCBO metrics address this gap.

7. Conclusion
Dependency injection (DI) plays a crucial role in improving

the maintainability of software systems. By promoting loose
coupling and flexible dependency management, DI helps

maintain a clean and modular codebase. Our proposed metrics,
DCE and DCBO, provide a quantitative measure of DI’s impact
on maintainability. The CKJM-Analyzer tool demonstrates the
practicality of these metrics through static analysis of open-
source Java projects. Future work can further refine these
metrics and explore their applicability in other programming
environments.

8. References

1. Martin RC. Clean Architecture: A craftsman’s guide to software
structure and design. Prentice Hall 2017.

2. https://learn.microsoft.com/en-us/previous-versions/msp-n-p/
hh848246(v=pandp.10)

3. Android Developers. Guide to app architecture.

4. Uncle Bob. Clean Code and Clean Architecture.

5. Fowler M. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional 2002.

6. Allen G. Modern Android Development with Jetpack Compose.
Packt Publishing 2020.

7. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-
Wesley 1994.

8. Brown K. Advanced Android Development: Bringing MVVM to
Android Development. O’Reilly Media 2018.

9. Boyar Y, Powell A. Android architecture components: A
comprehensive guide. Google I/O 2018.

10. Beck K. Test Driven Development: By Example. Addison-
Wesley 2002.

11. McCabe TJ. A complexity measure. IEEE Transactions on
Software Engineering 1976; 308-320.

12. Bass L, Clements P, Kazman R. Software Architecture in
Practice. Addison-Wesley Professional 2003.

13. Hevery M. A Guide to Writing Testable Code. Google Testing
Blog 2008.

14. Koskimies K, Mikkonen T. Understanding Software Engineering.
John Wiley & Sons 2005.

15. Johnson R, Hoeller J, Arendsen A, Harrop R, Risberg T.
Professional java development with the spring framework. Wrox
2004.

16. Evans E. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley 2003.

17. Burns C, Vignesh M. MVVM in Android: Managing the View-
Model Relationship. Manning Publications 2021.

18. Steele Jr GL. Common Lisp: The Language (2nd edition) Digital
Press 1990.

19. Apple Inc. Swift Programming Language. Apple Books 2015.

20. Knuth DE. The art of computer programming. Boxed Set (3rd
edition) Addison-Wesley Professional 1997.

21. Sutter H. Exceptional C++ Style: 40 New Engineering Puzzles,
Programming Problems, and Solutions. Addison-Wesley
Professional 2004.

22. Bloch J. Effective Java (2nd edition). Addison-Wesley 2008.

23. Fowler M, Beck K. Refactoring: Improving the Design of Existing
Code. Addison-Wesley 1999.

24. Subramaniam V, Hunt A. Practices of an agile developer:
Working in the real world. Pragmatic Bookshelf 2006.

https://www.oreilly.com/library/view/clean-architecture-a/9780134494272/
https://www.oreilly.com/library/view/clean-architecture-a/9780134494272/
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)
https://developer.android.com/topic/architecture
https://blog.cleancoder.com/
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.oreilly.com/library/view/patterns-of-enterprise/0321127420/
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.javier8a.com/itc/bd1/articulo.pdf
https://www.oreilly.com/library/view/test-driven-development/0321146530/
https://www.oreilly.com/library/view/test-driven-development/0321146530/
https://ieeexplore.ieee.org/document/1702388
https://ieeexplore.ieee.org/document/1702388
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
https://www.oreilly.com/library/view/software-architecture-in/9780132942799/
https://testing.googleblog.com/2008/11/guide-to-writing-testable-code.html
https://testing.googleblog.com/2008/11/guide-to-writing-testable-code.html
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://iamgodsom.wordpress.com/wp-content/uploads/2014/08/wrox-professional-java-development-with-the-spring-framework.pdf
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www.oreilly.com/library/view/exceptional-c-style/0201760428/
https://www.oreilly.com/library/view/exceptional-c-style/0201760428/
https://www.oreilly.com/library/view/exceptional-c-style/0201760428/
https://www.doc-developpement-durable.org/file/Projets-informatiques/cours-&-manuels-informatiques/java/Effective%20Java,%202nd%20Edition.pdf
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://silab.fon.bg.ac.rs/wp-content/uploads/2016/10/Refactoring-Improving-the-Design-of-Existing-Code-Addison-Wesley-Professional-1999.pdf
https://pragprog.com/titles/pad/practices-of-an-agile-developer/
https://pragprog.com/titles/pad/practices-of-an-agile-developer/

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 2Yadati NSPK.,

4

25. Lewis J, Loftus W. Java Software Solutions (10th edition).
Pearson 2019.

26. Sedgewick R, Wayne K. Algorithms (4th edition). Addison-
Wesley Professional 2011.

27. Larman C. Applying UML and Patterns: An introduction to
object-oriented analysis and design and iterative development
(3rd edition). Prentice Hall 2004.

28. Pilone D, Pitman N. UML 2.0 in a Nutshell. O’Reilly Media 2005.

29. Meyer B. Object-Oriented Software Construction (2nd edition).
Prentice Hall 1997.

30. Hunt A, Thomas D. The pragmatic programmer: Your journey to
mastery. Addison-Wesley 1999.

31. Pressman RS. Software Engineering: A practitioner’s approach
(7th edition). McGraw-Hill Education 2009.

32. Sommerville I. Software Engineering (10th edition). Pearson
2015.

33. Hiltzik MA. Dealers of lightning: Xerox PARC and the dawn of
the computer age. HarperBusiness 1999.

34. Armstrong D. The quarks of object-oriented development.
Springer 2006.

35. McConnell S. Code Complete (2nd edition). Microsoft Press
2004.

36. Nagy K. MVVM Architecture for android developers: A practical
guide. Leanpub 2021.

37. Misfeldt A, Hendrickson E, Kolawa A. Exploring Test Automation
Patterns. Wiley 2004.

38. Parnas DL. On the criteria to be used in decomposing systems
into modules. Communications of the ACM 1972;15: 1053-1058.

https://www.pearson.com/en-us/subject-catalog/p/java-software-solutions-foundations-of-program-design/P200000003342/9780137920846
https://www.pearson.com/en-us/subject-catalog/p/java-software-solutions-foundations-of-program-design/P200000003342/9780137920846
https://algs4.cs.princeton.edu/home/
https://algs4.cs.princeton.edu/home/
https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://personal.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf
https://www.oreilly.com/library/view/uml-20-in/0596007957/
https://bertrandmeyer.com/wp-content/upLoads/OOSC2.pdf
https://bertrandmeyer.com/wp-content/upLoads/OOSC2.pdf
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://www.mlsu.ac.in/econtents/16_EBOOK-7th_ed_software_engineering_a_practitioners_approach_by_roger_s._pressman_.pdf
https://www.pearson.com/en-us/subject-catalog/p/software-engineering/P200000003258/9780137503148
https://www.pearson.com/en-us/subject-catalog/p/software-engineering/P200000003258/9780137503148
https://www.goodreads.com/book/show/1101290.Dealers_of_Lightning
https://www.goodreads.com/book/show/1101290.Dealers_of_Lightning
https://dl.acm.org/doi/pdf/10.1145/1113034.1113040
https://dl.acm.org/doi/pdf/10.1145/1113034.1113040
https://www.microsoftpressstore.com/store/code-complete-9780735619678
https://www.microsoftpressstore.com/store/code-complete-9780735619678
https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf
https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf

	_GoBack

