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 A B S T R A C T 
In recent developments in treating volatile organic 

compounds (VOCs), there has been growing interest in using 
metal-doped TiO2 photocatalysts. This approach offers a 
practical, easily implementable, highly catalytic, non-toxic, and 
cost-efficient method for treating pollutants. It addresses some 
of the limitations of pristine TiO2, including its wide bandgap 
and limited surface area. The present study focuses on the 
one-step, environmentally friendly synthesize of a W-doped 
TiO2 catalyst at 200°C for 10 hours, not using surfactants or 
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1. Introduction
The release of volatile organic compounds (VOCs) has 

had obvious negative consequences on people’s health and the 
environment. They specifically induce a variety of symptoms 
such as headaches, dizziness, and irritability, and can even result 
in cancer and mutation1. This harmful emission is associated 
with the industrial manufacturing process, automobiles...2,3. 
There were numerous methods for eliminating VOCs from 
the air, including (i) biological filtration4, (ii) oxidation5,6, (iii) 
absorption7,8, and (iv) adsorption9. However, there are various 
limitations such as high cost9, necessitating interaction between 
VOCs and organisms4, elevated temperature6, or selective 
adsorption in wet conditions10.

Until now, researchers have been interested in another 
method of treating VOCs - using photocatalysts, with TiO2 
being one of the signature examples. Masato et al. produced 
the TiO2/Y-zeolite hybrid photocatalyst in 2012, which aids 
in the removal of aromatic chemicals such as toluene and 
benzene from the air phase11. Nataša Novak Tušar et al. created 
TiO2 - SiO2 films from organic-free colloidal TiO2 anatase 
nanoparticles in 201612. Scientists want to dope TiO2 because it 
is an environmentally friendly photocatalyst with high catalytic 
activity, is non-toxic, durable, and cost-effective13. TiO2 has 
three structural morphologies that correlate to anatase, rutile, 
and brookite. Brookite is difficult to prepare, hence there are few 
reports on it. Furthermore, it is less durable than rutile14. Anatase 
and rutile have tetrahedral crystal cells, with 1 Ti4+ bonded to 
6 O2- ions and 1 O2- ion bound to 3 Ti4+ ions. The distinctions 
between these morphologies, including their electrical structure 
and optical characteristics, are due to variations in lattice 
structure15. Anatase is expected to have higher catalytic activity 
than rutile due to its larger band distance (3.2eV), longer 
electron lifetime as a photobiotic electron-hole16, and better 
conduction band position17. Furthermore, the estimated average 
effective mass of electrons and smaller electron holes improve 
electron movement16, and a larger surface area leads to improved 
photocatalytic effectiveness17. However, there are certain limits 
to TiO2 applications, such as a large energy range (from 3.0 to 
3.2 eV) that only operates in the UV light zone, and nano TiO2 
is prone to agglomeration13. The transition of TiO2’s optical 
response from the ultraviolet to the visible light zone will have 
a significant impact on the material’s practical applicability18. 
Several research based on doping metals have been undertaken 
to reduce the band gap of TiO2 materials, with the hope that 
metal ions can occupy the various positions on the TiO2 surface. 
This method of improving photocatalytic capabilities has several 
advantages, including the formation of electron traps that 
inhibit electron and hole recombination, which increases VOCs 
adsorption to the material’s surface due to changes in surface 
charge, and increased interaction with VOCs18. Wenjun Liang’s 
research group used sol-gel methods to synthesize Ag/TiO2 and 
Ce/TiO2 materials in 2011, giving formaldehyde decomposition 
efficiencies of 87% and 90% respectively19. In 2017, Yaobin 

Li et al. developed Pd-doped TiO2 capable of metabolizing 
formaldehyde at a concentration of 300 ppm for 30 hours with 
an 80% efficiency20. Baoqing Duan’s team also successfully 
synthesized Zr-doped TiO2 using the sol-gel method, yielding 
an amazing 83% formaldehyde treatment result21.Studies on 
toluene processing are also of interest and are being carried 
out, such as the V-doped TiO2/PU material with a band gap of 
2.83 eV, with a toluene processing efficiency of 80% by the 
Byeong-Kyu Lee research group22. Many scholars throughout 
the world have also examined additional transition metals such 
as W, Fe, Cu, Mo, Mn, Zr, Ni and so on23-29. Not only metals but 
also nonmetallic elements are combined with TiO2

30,31, forming 
composite materials32,33 ...however, easy-to-form composite 
materials lack strength34, and nonmetal-doped TiO2 materials 
with low band energies are challenging to apply35. Although the 
option of doping metals into TiO2 has many advantages, some 
study results are limited owing to the high band energy (> 3.0 
eV), relatively low surface area (100 m2/g) due to the use of 
sol-gel method performed at high temperature (~ 500°C)30,36,37.

Tungsten doping has revealed numerous surprising novelties 
in investigations on doping metals into TiO2 to tackle the 
aforementioned difficulties. The valence region of TiO2 is 
primarily composed of 2p O states, whereas the conduction 
region mainly consists of 3d Ti, and for metal ions to be able 
to reduce recombination, a new energy level must be formed 
between these two bands38. Among metal ions, W6+ (rW = 0.600 
Å) has an ion radius similar to Ti4+ (rTi = 0.605Å), allowing 
for facile lattice substitution and the creation of a new band 
gap right below the semiconductor area39,40. At the same time, 
W-doped TiO2 catalysis can benefit from the visible source due 
to the lowered band gap of 2.90 eV23, since WO3 has a band 
gap energy of roughly 2.5 eV41 . In 2017, Ali’s team used the 
sol-gel method to investigate the best conditions for treating 
toluene with synthetic W-modified TiO2. At a concentration 
of 4000 ppm, the results showed that 0.52 wt.% W mass has 
the maximum efficiency, decomposing 59% more than the 
original. However, in this experiment, the optimum temperature 
for sample synthesize is up to 500°C36. Ti0.7W0.3O2 material 
was successfully synthesized in 2018 using the solvothermal 
solution method from WCl6 and TiCl4. Hau Quoc Pham et al. 
discovered that 220°C and 4 hours were ideal circumstances 
and that the synthesized sample had a high specific surface area 
(approximately 127 m2/g)42. In another work, Ti0.7W0.3O2 did not 
exhibit a WO3 peak in XRD analysis results after 10 hours at 
200°C, and the synthesized sample had a significantly increased 
specific surface area (201.5 m2/g)43. Even though these studies 
only looked at the effect of W-modifiers on electrochemical 
properties, the samples’ conductivity improved significantly, 
implying that W6+ may have formed intermediate energy levels 
between the valence and conduction regions of TiO2, which is 
required for metals to improve processing efficiency physics of 
photocatalysis.

In this paper, we suggest a single-step solvothermal 

post-reaction calcination. We systematically investigated the impact of different W doping ratios (0%, 0.5%, 1%, and 1.5%) on 
the catalyst's properties, yielding insightful outcomes. The resulting catalyst exhibited superior attributes, including an increased 
surface area of 175 m2/g, a uniform spherical morphology with particle sizes of 6 - 10 nm, and a reduced bandgap energy 
(2.88 eV). Notably, this catalyst demonstrated a feasible efficiency in VOCs treatment, achieving a decomposition efficiency of 
71.98% for formaldehyde. Consequently, the facile solvothermal synthesize of W-doped TiO2 photocatalysts holds promise as a 
prospective strategy for gas processing applications in the future.

Keywords: W-doped TiO2, TiO2 based, photocatalyst, VOCs degradation, nanomaterial, photocatalytic activity
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solution approach for producing nanostructured W-doped 
TiO2 photocatalysts for formaldehyde treatment. Our material 
is made here with no surfactants or other additives. The firing 
stage following the reaction simplifies the experimental process, 
reducing time, effort, and production costs. To boost catalytic 
activity, this approach was used to reduce particle size and 
increase the specific surface area of the photocatalyst material. 
Experiments with various low W ratios were also conducted 
to evaluate the impact on photodecomposition efficiency. As a 
result, we were able to successfully synthesize W-doped TiO2 
photocatalyst using a single-step solvothermal route, which 
promises good processing of volatile organic compounds and 
commercialization.

2. Methods
2.1 Chemicals

Tungsten (VI) chloride (CAS: 13283-01-7, WCl6,  99.9% trace 
metal basis) were original from Sigma-Aldrich, USA; Titanium 
tetrachloride (CAS: 7550-45-0, m = 500g, TiCl4, 99.0%) were 
obtained from Aladdin, China; Ethanol absolute (CAS:64-17-5, 
C2H5OH, ACS reagent) were obtained from Merck, Germany; 
Formaldehyde (CAS: 50-00-0,HCHO, >95.0%, 500ml ) came 
from Xilong Scientific, China; and Deionized water was utilized 
in all experiments.

2.2 Synthesizing photocatalyst W-doped TiO2 materials 

Tungsten-doped-TiO2 material was prepared by one-step 
solvothermal route without any surfactants or stabilizers. The 
detailed steps are described in Figure 1:

Firstly, an identical amount of WCl6 was dissolved in 50ml 
ethanol absolute to get the Tungsten’s mole percentage of 0.5 
mol%, 1 mol%, and 1.5 mol%, respectively and stirred for 20 
mins. After becoming a homogeneous solution, the container 
was cooled in an ice bath while stirring consistently. Next, 
adding 0.55 mL TiCl4 and putting the liquid solution above into a 
Teflon reaction sealed in an autoclave. The solvothermal reaction 
was conducted at 2000C in 10h, cooling at room temperature. 
The sample was obtained after centrifugation, washing with 
Deionized water. At the end, the product was dried at 800C for 
further process.

Figure 1 Synthesize process of TiW photocatalysis for VOCs 
treatment.

2.3 Sample Characterization

To determine the crystal structure of the material, Bruker D8 
Advance X-ray diffractometer (XRD) with Cu Kα radiation (λ = 
1.540598 nm) was utilized on the 2θ range of 10-70o at a 5 min-1

 
scanning rate, dwell time 0.7 s/o. The morphologies of the pure 
TiO2 and W-doped TiO2 samples were evaluated by transmission 

electron microscopy (TEM), filed emission scanning electron 
microscopy (SEM). The equipment used include: a JEM 1400 
(JEOL Ltd., Tokyo, Japan) operated at 100kV, JSM-IT200 SEM 
(JEOL Ltd., Tokyo, Japan) …, respectively.  X-ray fluorescence 
(XRF) measurement was applied on The model XRF5006-
HQ02 VietSpace with a FAST SDD X-ray receiver, energy 
resolution of 135 eV, the X-ray emitter is the Oxford Inc. Series 
5000. The sample is measured in a vacuum environment and 
processed digitally and calculated with an Amptek meter (USA). 
N2 adsorption/ desorption isotherms in Brunauer-Emmett-Teller 
(BET) methods were evaluated in Surfer (KGW-ISOTHERM, 
Germany) to examine the pore size and surface area of W-doped 
TiO2.  The US-Visible diffuse reflectance spectra (DRS) of 
sample were conducted on UV-2600i (Shimadzu Ltd., Kyoto, 
Japan) combined with Integral ball IR-2600 Plus in the range 
from 220-1400 nm, halogen and deuterium lamp source, PMT 
R928 receiver. The gas samples are collected into the TEDLAR 
BAG 3L for formaldehyde concentration determination by 
GC/ECD-FID-TCD gas chromatographer. The concentration 
of VOCs present in the gas sample was analyzed for gas 
chromatography according to NIOSH METHOD 3500 for 
formaldehyde. 

2.4 Formaldehyde Degradation Laboratory System

Figure 2 illustrates the experimental setup of the system 
used for the photocatalytic degradation tests. Formaldehyde 
concentrations were measured before and after the reaction. The 
first compressor (P1) pushed the air, which was subsequently 
filtered through two glass tubes. The first glass tube had silicates 
(3) in the middle to remove moisture from the air, while the second 
glass tube had activated carbon to purify the air and remove 
leftover moisture. To prevent air loss, they were both filled with 
glass wool (2) and sealed with a rubber cap (1). The stream was 
controlled using an F1 flow meter (F1). The sample drop (6), a 
combination of toluene and distilled water, was confined in a 
quartz tube (7) (5 mm in diameter). An alcohol burner (5) was 
located beneath the tube, evaporating the sample. The four-way 
cock was used to modify the stream’s direction. To stabilize the 
concentration of inflow gas, toluene-containing air was pumped 
into a TEDLAR 3L air bag (9). The air from this air bag was then 
withdrawn using the second compressor (P2) for photocatalytic 
degradation. The F2 flow meter (F2) controlled the air flow before 
it passed through the photocatalyst layer as well as the duration 
for collecting reacted air. As a packed-bed reactor, a quartz tube 
(10) (100 mm length, 5 mm diameter) was filled with previously 
manufactured W-doped TiO2 photocatalyst. As light sources, 
two identical UV lamps (12) (Ecomax, 25 W) with 132.6 W/m2 

irradiation power and a minimum wavelength of 255 nm were 
utilized. The fan (8) assisted in cooling these two bulbs. The 
reactive air was collected using another TEDLAR air bag (13) 
for further examination. The concentration of toluene in the input 
collected by bag (9) (C0) and the outlet collected by bag (13) (C) 
was then determined using gas chromatography (Agilent 6890 N 
Network Gas Chromatograph). Each experiment’s efficiency (E) 
was then determined as follows: E = 1 − CC0 · 100%. Finally, 
the air was forced through a glass tube containing activated 
carbon to confirm that the exit gas was safe.

The experiments were applied in bellowing steps:

- Attach the inlet sample air collection bag to the position 
connected to valve V3, open valve V6 (valve of the airbag), 
adjust the flowmeter F1 to 1 L/min, lock all valves, stuff 
glass and drip sample (including 0.05 mL formaldehyde and 
V mL distilled water) to the sample droplet tube, Light an 
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alcohol lamp and heat the glass tube containing the sample 
drop over the flame for 1 minute. 

- Open valves V5 and V3, turn on pump P1 and start 
countdown timer, collect air within 3 minutes for air to fill 
the bag, lock the V6 airbag valve in turn, turn off the pump 
and alcohol lamp, lock the remaining valves. Attach the air 
bag to the connection position with valve V11, open valve 
V12 of the airbag.

- Stuff 0.1 grams of synthesized catalytic material into 
the glass tube, divide the amount of catalyst into 3 equal 
segments alternately with glass wool samples so that the 
catalyst is evenly distributed over the tube. Turn on the 
radiator fan, light, let the lamp operate for 10 minutes before 
operation to ensure the amount of radiation emitted is stable. 

- Turn on compressor P2 with a fixed F2 flow rate of 300 mL/
min and collect air for 10 minutes until the airbag (9) has no 
sample left. Lock valves V11, V12 and remove the airbag 
containing the air sample, then turn off P2, turn off the light.

- After the gas collection is completed, clean the system 
again, the glass tubes containing the sample drop and 
catalytic column, lock the V3 valve, open the V2 and V13 
valves to blow air into the system cleaning, then lock all 
valves, prepare for the next experiment.

- The airbag containing the sample, after being labeled, is put 
into the tank and transferred to the analysis company for gas 
chromatography analysis to determine the concentration of 
formaldehyde.

Figure 2: Schematic of formaldehyde degradation system. 1. 
Rubber cap; 2. Glass wool; 3. Silica gel; 4. Activated carbon; 5. 
Alcohol burner; 6. Drops of formaldehyde and water; 7. Quartz 
tube; 8. Cooling fan; 9. Sample gas inlet bag; 10. Catalyst tube; 
11. Catalytic materials; 12. Light; 13. Sample gas storage bag; 
P1: Compressor; P2. Compressor; F1: Flow meter for inlet gas; 
F2: Flow meter for gas passing through photocatalyst layer.

Figure 3: Psychrometric chart [44].

3. Results and Discussion
3.1 Results of analyzing the composition, morphology, and 
structure of the W-doped TiO2 nano photocatalytic material

XRD patterns of TiO2 and W-doped TiO2 catalyst samples 
with different ratios are shown in Figure 4a XRD patterns show 
diffraction peaks recorded at positions 25.3o, 37.8o, 48.0o, 53.9o, 
55.1o, 62.8o, corresponding to the (101), (004), (200), (105), 
(211) and (204) planes, showing the phase formation orientation 
of anatase TiO2 (JCPDS - 84 - 1286). There was no formation 
of WO3/TiO2 composite because the characteristic diffraction 
peaks of WO3 were not detected (JCPDS - 20 -1324) (at 2θ ~ 
23.0o, 23.7o, 24.0o) showing that the creation of oxide impurities 
of W does not occur, thereby confirming the substitution of 
W into the structural framework of TiO2. There is not much 
difference in the peak position of the W-doped TiO2 material 
samples compared to TiO2. This may be due to the negligible 
difference in radius between W6+ (0,600 Å) and Ti4+ (0,605 
Å), and the doping percentage is not much. The high-intensity 
peaks show a higher tendency to form anatase phase than rutile, 
possibly due to the synthesize conditions of 200oC for 10 hours. 
At this condition, amorphous TiO2 is completely transferred 
to the anatase, but not enough to convert the anatase to the 
rutile phase14. These results are also consistent with previous 
research45. Comparing W-doped TiO2 samples, as the doping W 
content increases, the signal intensity decreases, and the peak 
width increases. This shows that W-doped TiO2 has reduced 
the crystal size. The crystallite size of the catalyst samples 
was determined according to the Scherrer equation in Figure 
4b. These results show that low W-doped TiO2 material has an 
anatase phase-oriented crystal structure and a small crystal size, 
and is a potential photocatalytic material46.

Figure 4: a) XRD patterns of pure TiO2, TiW-0%, TiW-0.5%, 
TiW-1% and TiW-1.5%, b) Chart of crystallite size of various W 
ratios doped TiO2.

Figure 5 displayed the distribution of elements O, Ti, W in 
the material. It can be seen that the elements are distributed quite 
evenly. The results of elemental ratio analysis from the XRF 
spectrum and Table 1 indicate that the ratio of W in the material 
also reaches a value close to the theoretical calculated value. 
This could be attributed to the preparation by solvothermal 
method with low temperature (200°C in 10 hours), which is a 
suitable and effective route.

Table 1: Percentage of Tungsten in different samples obtained 
from XRF analysis.

No. Sample Mol% of Tungsten
1 0.5 mol% W-doped 0.4%
2 1.0 mol% W-doped 1.3%
3 1.5 mol% W-doped 1.5%
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Figure 5: EDS analysis elemental mapping of a) TiW-0.5%, 
b) TiW-1%, c) TiW-1.5% and EDS spectra of d) TiW-0.5%, e) 
TiW-1%, f) TiW-1.5% samples.

The SEM images in Figure 6 show that the TiW-0% 
sample has the phenomenon of small particles agglomerating 
into blocks of unspecified size and shape. In W-doped TiO2 
samples, the particles tend to form spherical or near-spherical 
shapes. In addition, as the amount of W – doped increases, the 
agglomeration tends to decrease. With 1.5 mol% W-doped on 
TiO2, the agglomeration recorded was the lowest, showing that 
the catalyst particles were distributed uniformly.

Figure 6: SEM images of a) TiW-0%, b) TiW-0.5%, c) 
TiW-1.0%, d) TiW-1.5%.

The HRTEM results of Figure 7 further confirm the uniform 
distribution of the W-doped TiO2 material. In addition, these 
results indicate that the 1.5 mol% W-doped TiO2 material has a 
particle size mainly between 6-10 nm. The particle size matches 
the crystallite size obtained from the XRD patterns.

N2 adsorption and desorption methods determined the 
specific surface area and pore size of the material. The analysis 
results are calculated according to the BET equation and are 
presented in Table 2. It is found that the specific surface area 
of the material gradually increases as the amount of W doped 
increases, with TiW-0%, TiW-0.5%, TiW-1%, and TiW-1.5% 
being the values respectively 160.0 m2/g, 164.6 m2/g, 168.6 

m2/g and 175.5 m2/g. This is also consistent with previous XRD 
and HRTEM results, the material has an anatase structure so 
the particle size is smaller leading to a larger specific surface 
area. The surface area of  W-doped TiO2 material is higher than 
that of other non-carbon supporting materials. The mentioned 
above can be elucidated by a simple one-step solvothermal 
process, using inorganic precursors, so the influence of organic 
macromolecules can be eliminated, as well as not using surface 
stabilizers or the next stage of heat treatment. This means that 
the single-step solvothermal method is suitable for nano-size, 
high crystalline properties, and specific surface area meets the 
requirements for photocatalytic materials.

Figure 7: (A) Crystallite size distribution chart of the W-doped 
TiO2 catalyst; (B-C-D) HRTEM images of TiO2.

Table 2: Specific surface area and pore size of catalytic samples.
No. Samples Specific surface area

SBET (m
2/g)

1 TiW-0% 160.0
2 TiW-0.5% 164.6
3 TiW-1% 168.6
4 TiW-1.5% 175.5

The values of W-doped TiO2 and other metal doped TiO2 
are briefly listed in Table 3, showing the results of comparisons 
between this study and other studies. It can be seen that the 
material synthesized at low temperature is oriented towards the 
development of the pure anatase structural phase, so the material 
has a higher specific surface area than the photocatalyst materials 
of TiO2 with a mixed phase structure between anatase-rutile-
brookite. In addition, the crystallite size of the material is also 
smaller. These values are probably caused by less agglomeration 
of composites.

3.2 Results of band gap energy analysis of W-doped TiO2 
nano photocatalyst material

UV-Vis diffuse reflectance spectroscopy method was used 
to determine the optical properties of W-doped TiO2 materials. 
Figure 8a shows the band gap energy of TiO2 and W-doped 
TiO2 catalyst samples with different ratios. The synthesized 
TiO2 sample has a band gap energy level at 3.02 eV, lower 
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than anatase TiO2 of 3.20 eV. The explanation for this may be 
because the particle size has been significantly reduced when 
synthesized by the one-stage solvothermal method52,53. W-doped 
TiO2 samples have a reduced band gap energy compared to TiO2, 
specially TiW-0.5%; TiW-1%; TiW-1.5% are 2.96 eV, 2.93 eV 
and 2.88 eV respectively. This has expanded the visible light 
absorption region by more than 430 nm (TiW-1.5%) (Figure 
8b, 8c). This decrease in band gap energy can be due to the 
formation of oxygen vacancies, as a result of the doping process. 
W substitution into the TiO2 lattice can create many oxygen 
vacancies, creating a small band below the conduction band of 
the TiO2 photocatalyst54.

Table 3: Surface area, crystallite size and pore size distribution of 
photocatalysts.

Photocat-
alysts

Properties

Surface 
area
(m2/g)

Crystal-
lite size 
(nm)

Pore 
size
(nm)

Structure Ref

TiO2-EG10 151.4 - 12.3 anatase-rutile [47]

Cu-doped 
TiO2

180-182 7.73-
7.86 - 100 wt.% 

anatase [48]

2.5 wt.% 
Fe-doped 

TiO2

116.1 7.1-10.3 -

54.1 wt.% ana-
tase, 3.6 wt.% 

rutile, 42.4 
wt.% brookite

[49]

Ni-doped 
TiO2

69 25.5-
116.7 10.9 H2Ti3O7, NiO, 

TiO2, brookite [50]

Ir-doped 
TiO2 156-170 10-15 - anatase-rutile [51]

Figure 8: a) Corresponding band gap of TiW-0%, TiW-0.5%, TiW-1% 
and TiW-1.5% samples, b) UV-Vis diffuse reflectance absorption 
spectra of TiW-0%, TiW-0.5%, TiW-1% and TiW-1.5% samples, c) 
Chart of band gap (Ebg) and absorbed light wavelength (λ) of catalytic 
samples.

3.3 Results of investigating the ability of W-doped TiO2 
nanophotocatalytic material to treat formaldehyde

Table 4 and Figure 9 show the formaldehyde concentration in 
the gas sample before and after going through the gas treatment 
system and when using a W-doped TiO2 catalyst with different 
W ratios and the treatment efficiency of the catalyst samples. 

Investigation reaction with formaldehyde sample drop volume 
of 0.05 mL and 0.024 mL of distilled water corresponding to 
70% humidity, air flow through the catalyst is 300 mL/min and 
collected for 10 minutes to fill the bag gas. After the experiment, 
the air bag was analyzed by gas chromatography analysis to 
determine formaldehyde concentration. The formaldehyde 
concentrations in the air bag samples corresponded to the 
catalyst samples TiW-0%, TiW-0.5%, TiW-1%, and TiW-1.5% 
respectively 73.0 mg/m3, 63.0 mg/m3, 57.5 mg/m3, 44.0 mg/
m3 with formaldehyde removal efficiency of 53.50%, 59.87%, 
63.38%, and 71.98%. It can be seen that the formaldehyde 
decomposition ability of TiW-0% catalytic material is not high. 
When using a W-doped TiO2 catalyst, the treatment efficiency 
increased with the highest TiW-1.5% sample being 71.98%. This 
may indicate that W doping helps increase the catalytic activity 
of the material. 

Figure 9: Effect of W doping rate on formaldehyde degradation 
efficiency.

Table 4: The results of gas chromatography analysis determine the 
concentration of formaldehyde in gas samples after the experiment.

Catalytic 
samples

Volunm 
of organic 
droplets
(mL)

Volunm 
of H2O 
droplets
(mL)

Air 
flow 
(mL/
min)

Sampling 
time (min)

Formalde-
hyde concen-
tration (mg/

m3)

-

0.05 0.024 300

10.21 157.0

TiW-0% 10.12 73.0

TiW-0.5% 10.24 63.0

TiW-1% 10.10 57.5

TiW-1.5% 10.32 44.0

Table 5: Preliminary results of surveying the ability to treat 
formaldehyde using photocatalysts.

Photocatalysts Initial 
formaldehyde 
concentration 

(mg/m3)

Formaldehyde 
concentration
after reaction
Cm (mg/m3)

Processing perfor-
mance
H (%)

TiW-0% 157.0 73.0 53.50

TiW-0.5% 63.0 59.87

TiW-1.0% 57.5 63.38

TiW-1.5% 44.0 71.98

Compared with some previous researches, W-doped TiO2 
photocatalyst shows a promising result in treating VOCs 
degradation (Table 8).
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Table 6: The comparison of W-doped TiO2 photocatalyst with previously studied TiO2-based materials.
No. Materials Synthesize 

Method
Parameters Reaction Condition Object of research Degra-

dation 
Efficiency

Refer-
ence

1 Co-alloyed 
TiNbON photo-

catalyst

Urea-glass syn-
thesize method

- Particle diameter: 1-2m
- Surface area: 40.76 m

2
/g

- Crystalline structure: irreg-
ularly shaped surfaces
- Band gap: 2.3 eV

- RH: 25-65%

- Irradiation: 42-95 (W/m2) ( 400-
540 nm)

- Toluene concentration: 1-5 ppm

Toluene 58% [55]

3 W-doped TiO
2
 

photocatalyst 
The TiO

2
-W 

nanoparticles was 
obtained from US 

Nano Incorpo-
rated

- Particle diameter: 10nm

- Crystalline structure: 
Anatase

- T = 30, 40, 60 °C
- Photodegradation test: 30 - 180 
minutes
- Irradiation: UV lamps (10W, 30W, 
60W)
- Total concentration: 11.21 ppm

Mixture of 4 azo 
dyes

71% [56]

4 V-doped TiO
2
/

PU 

(6 wt.%V-TiO2)

Immobilization of 
amino titanosilox-
ane on  activated 

PU combined 
with utilizing 
NH4VO3 as a 

precursor

- Surface area: 192.5 m
2
/g

- Band gap: 2.83 eV for 6 
wt.% V-TiO2

- T = 25 
o
C

- RH= 50%

- ARF= 200 mL/min

- Irradiation: visible light source 
with minimum wavelength of 400 
nm

Toluene 80% [22]

5 xAg-Fe co-
doped TiO

2
 

nanoparticles

( x = 1, 1.5, 2 
mol%)

Sol–Gel Method - Particle diameter: 10-20nm

- Crystalline structure: 
anatase, brookite

- Band gap: 2.93 eV

- Irradiation: visible light 
( 400 – 750nm)
- Irradiation time: 0 - 180 minutes
- Methylene blue concentration: 
5.0 ppm

Methylene Blue 80% [57]

6 TiO
2
/Zeolite 

(5:95 wt%)

The doping pro-
cess of titanium 
dioxide on the 

zeolite

- Surface area: 53.64 m
2
/g

- Surface weight: 33.68 mg/
cm

2

- Flow rate: 500 – 2000 ml/min
- Relative humidity: 35%
- Irradiation: UV-C (100–280 nm, 
8W)
- Toluene concetration: 50ppm

Toluene 70% [58]

7 W-doped TiO
2
 

photocatalyst 
Solvothermal - Particle diameter: 6 – 9 nm

- Surface area: 175 m
2
/g

- Crystalline structure: 
Anatase
- Band gap: 2.88 eV

- T = 30 
o
C

- Flow rate: 300 ml/min
- Relative humidity: 70%
- Irradiation: UV lamp 

Formaldehyde 72% This 
work

4. Conclusion
In conclusion, we have successfully prepared the novel 

nanostructured W-doped TiO2 photocatalyst materials using a 
one-step, solvothermal method without using any surfactants or 
a high-temperature calcination phase after the reaction helped 
reduce the size significantly and increase the specific surface 
area of the W-doped TiO2 photocatalytic material, elevating 
the decomposition efficiency of formaldehyde. The resulting 
photocatalyst exhibits an anatase phase crystal structure without 
a WO3 peak, a spherical morphology, particle size (6 - 10 nm), and 
enhanced particle distribution. Notably, the TiW-1.5% sample 
stands out for these attributes. Through BET measurements, 
surface area analysis revealed the specific surface area of the 
TiW-1.5% catalyst, surpassing pure TiO2, with values of 175 m2/g 
and 160.0 m2/g, respectively. Incorporating W ions as W6+ into 
the TiO2 crystal lattice effectively reduces the band gap energy, 
particularly evident in the TiW-1.5% catalyst, which displays a 
reduced band gap energy of 2.88 eV. Our research underscores 
the potential of W modification in enhancing TiO2 photocatalytic 
activity, making it a promising candidate for treating VOCs.
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