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 A B S T R A C T 
A hardware fuzzer, a unique testing tool, is designed to test hardware systems by introducing a variety of invalid, unexpected, 

or random inputs. It's an extension of software fuzzing, which targets software applications to find issues through unconventional 
input data. This type of fuzzer is particularly useful in developing embedded systems or crucial systems, including automotive, 
aerospace, and medical devices. However, it can test any hardware that enables system interfaces. Many systems enabled in their 
early stages can use this mechanism to see if the enablement has all the supported features enabled. There are many ways to test 
the system, and such methods can be used to find vulnerabilities and defects in software and hardware-based systems. In the 
current article, fuzzing Type-C devices involves applying unconventional inputs (test vectors) to test the device's behavior and 
identify vulnerabilities or defects. It would include sending invalid or unexpected input to the device and observing its behavior 
to identify potential vulnerabilities. Fuzzing a Type-C device can target various aspects such as the USB protocol, data transfer, 
power delivery negotiation, and other features.
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1. Introduction
Hardware has become increasingly complex in terms of IP 

blocks in the last decade. Earlier, Moore’s law and Dennard 
scaling came to a standstill, and hardware engineers had to find 
novel ways to improve the performance gains of the hardware4,5. 
USB Type-C ports are one main interface to communicate 
with the system. It supports charging, audio, video, data, and 
networking over it. Any attacker can control the host machine 
utilizing devices where the device behavior is altered to exploit. 
USB software devices and host software stacks are not designed 
to withstand such exploits as they are uncommon and not widely 
performed. They require physical access to the system, but 
having a vulnerability can open many doors for attacks6. Many 
types of USB Type-C devices communicate using standard 
PD messages. These messages are transmitted using I2C lines 
between the SOC and PD Controller and then to the device. These 

messages are communicated to the Host Controller devices on 
the SoC about the device type connected to the other end, and 
device descriptors are set up so that the system can enumerate 
and use the devices. Firmware is loaded into the PD controller 
to decode these messages and perform certain operations to 
and from the SoC. These modern attacks on the USB can 
come from the USB stack to USB specifications. Fuzzing has 
become the most popular tool for performing runtime testing on 
software environments and is quickly becoming popular in the 
hardware space. In many instances, fuzzing has revealed more 
bugs than automated or manual testing in software stacks7,8. 
Some tools have detected over 50+ bugs in the USB Linux 
kernel subsystem9. All the current mechanisms to mitigate the 
threats from USB peripherals are focused on defending the host 
machines and checking for the USB host stack. However, many 
devices have multiple functionalities, such as devices and host 
functionalities combined in one device. It would make the stack 
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more prone to failures and vulnerabilities because two software 
stacks need to be verified. Most USB Type-C bugs are found 
around the enumeration rather than in the USB core logic; 
hence, it has some stability in terms of the working functionality 
but not much in enumeration, partly because the CC lines and 
PD messages are doing that work.

2. Understanding of USB Stack
A typical USB Type-C stack has multiple layers. These layers 

represent the respective part of the OS from where it is operated. 
User space applications are covered using the HID device types 
over the Type-C connector. Multiple data types are getting 
transferred, such as audio, video, and files; hence, different 
applications use these spaces to make access and operation more 
accessible for the user. 

The next layer in the stack is the kernel layer. Many software 
stacks are glued together in these layers to make the USB 
functional. Certain types of devices are classified into different 
classes, from where they are enumerated and operated further. 
Almost all USB devices have a core USB functionality where 
the core specifications of any USB devices are programmed and 
typically not altered or changed by any specific device type, 
as classes manage those. The kernel layer is responsible for 
communication with the hardware or the PHY layer, which uses 
the devices to be enumerated/detected by the host system. 

3. USB Software Stack Fuzzing
Most USB fuzzers follow the software stack on the host side. 

Plenty of fuzzers are available to fuzz devices, such as USB 
devices. Still, there would be scenarios where USB devices are 
simulated to perform the fuzzing over the stack. In this case, the 
device would be simulated randomly by a mutation performed 
in the device class. 

Using the mutation on the device class, the host must 
enumerate or restart the enumeration process once the device 
resets the connection. In repetition, this process would expose 
the software stack to issues in the enumeration area where most 
vulnerabilities are found. Performing such tests in the loop 
would make the host device more secure regarding the USB core 
software stack. 

Type-C Fuzzing

Type-C is an extension of the USB stack where all the 
connectors follow the same USB spec in both cable orientations, 
making it a unique solution that accommodates different 
devices. It uses the CC line to connect the host and device 
with the power and alternate accessory modes as a part of the 
type-c device specification. Modifying the CC signal using a 
hardware simulator would change the device detection behavior 
using fuzzing. During the CC change, the device type messages 
would be mutated to simulate the virtual fuzzing device. Once 
the incorrect hardware behavior is recorded and stored, make 
sure that it will not be repeated in the next iteration of the 
steps to minimize the testing time. A hardware-based harness 
would trigger any user-desired actions based on the abnormal 
operation of the hardware detection. Using such a hardware 
fuzzer in a Type-C-based system would find PD firmware or 
other issues related to the power delivery negotiation sooner 
using the repetition in a continuous loop. Fortunately, Type-C 
PD communication uses I2C messages to negotiate or detect the 
devices and can be used to add the signal to the feedback loop.

This virtually mutated device would act as a device to the host 
system and start the enumeration process. The whole process 
takes place as a normal process from the host system’s point 
of view. Similar tools such as FuzzUSB combine static analysis 
and symbolic execution to extract internal state machines from 
USB gadget drivers and use them to achieve state-guided fuzzing 
through multi-channel inputs10. A similar tool to the earlier one 
is FirmUSB, which exercises the USB domain knowledge and 
finds security bugs in the FW of the USB device. Still, it would 
not attend to the statefulness and suffers from issues such as path 
explosion11. 

4. Related Work
Many software fuzzers support the different types of fuzzers 

inside the USB stack or any software stack. These software 
stacks are very good at logging the incorrect behavior of the 
stack getting fuzzed. Most software-based fuzzers are generic 
enough with slight modifications to be used by any software 
stack. Adding a hardware fuzzer is not a new approach but rather 
unique for the Type-C. Mainly, hardware fuzzers are designed 
for the application in the mind and custom to the use case. 
However, having the hardware and software-based fuzzers with 
the feedback loop would create a closed-loop system.
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5. Conclusion
Putting the Software and Hardware Fuzzer together is 

familiar. Having SW and HW fuzzers connected via a feedback 
loop would curate the following vector of inputs. These would 
enable most non-repetitive iterations and be productive in 
finding issues/bugs faster than before, as seen in the software-
based fuzzers approach. Such solutions would be scalable but 
easy to re-configure when needed as they work on a template-
based solution. 

6. References

1.	 USB type-c ® cable and connector specification.  2019. 

2.	 USB 3.2 specifications. 2017. 

3.	 Class definitions for communication devices 1.2. 2007.

4.	 Moore GE. Cramming more components onto integrated 
circuits. Electronics 1998;86. 

5.	 Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc 
AR. Design of ion-implanted mosfet’s with very small physical 
dimensions. IEEE Journal of Solid-State Circuits 1974; 256-268.

6.	 Kierznowski D, Mayes K. Badusb 2.0: USB man in the middle 
attacks. Royal Holloway 2016.

7.	 Peng H, Payer M. USBfuzz: A framework for fuzzing USB 
drivers by device emulation. 29th USENIX Security Symposium 
2020; 397-414. 

8.	 Patrick-Evans J, Cavallaro L, Kinder J. Potus: Probing off-the-
shelf usb drivers with symbolic fault injection. 11th USENIX 
Workshop on Offensive Technologies 2017.

9.	 Syzkaller. Linux kernel usb bugs found by syzkaller.

10.	 Kim K, Kim T, Warraich E, et al. FuzzUSB: Hybrid Stateful 
Fuzzing of USB Gadget Stacks. 2022 IEEE Symposium on 
Security and Privacy 2022; 2212-2229. 

11.	 Hernandez G, Fowze F, Tian D, Yavuz T, Butler KR. Firmusb: 
Vetting usb device firmware using domain informed symbolic 
execution. Proceedings of the 2017 ACM SIGSAC Conference 
on Computer and Communications Security 2017; 2245-2262. 

https://www.usb.org/usb-type-cr-cable-and-connector-specification
https://www.usb.org/document-library/usb-32-revision-11-june-2022
https://www.usb.org/document-library/class-definitions-communication-devices-12
https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
https://ieeexplore.ieee.org/document/1050511
https://ieeexplore.ieee.org/document/1050511
https://ieeexplore.ieee.org/document/1050511
https://docs.media.bitpipe.com/io_10x/io_102267/item_1306461/RH-2016-BadUSB-DavidKierznowski.pdf
https://docs.media.bitpipe.com/io_10x/io_102267/item_1306461/RH-2016-BadUSB-DavidKierznowski.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://ieeexplore.ieee.org/document/9833593
https://ieeexplore.ieee.org/document/9833593
https://ieeexplore.ieee.org/document/9833593
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050

