
Hardware Fuzzer for the Type-C Host System

Priyank Rathod* and Anurag

Intel Corporation Folsom, CA, USA

Citation: Rathod P, Anurag. Hardware Fuzzer for the Type-C Host System. J Artif Intell Mach Learn & Data Sci 2023, 1(1), 418-
420. DOI: doi.org/10.51219/JAIMLD/priyank-anurag/116

Received: 01 March, 2023; Accepted: 18 March, 2023; Published: 20 March, 2023

*Corresponding author: Priyank Jayantilal Rathod, Intel Corporation Folsom, CA, USA, E-mail: rathodpriyank@gmail.com

Copyright: © 2023 Rathod P, et al., Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection.., This
is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

1

 A B S T R A C T
A hardware fuzzer, a unique testing tool, is designed to test hardware systems by introducing a variety of invalid, unexpected,

or random inputs. It's an extension of software fuzzing, which targets software applications to find issues through unconventional
input data. This type of fuzzer is particularly useful in developing embedded systems or crucial systems, including automotive,
aerospace, and medical devices. However, it can test any hardware that enables system interfaces. Many systems enabled in their
early stages can use this mechanism to see if the enablement has all the supported features enabled. There are many ways to test
the system, and such methods can be used to find vulnerabilities and defects in software and hardware-based systems. In the
current article, fuzzing Type-C devices involves applying unconventional inputs (test vectors) to test the device's behavior and
identify vulnerabilities or defects. It would include sending invalid or unexpected input to the device and observing its behavior
to identify potential vulnerabilities. Fuzzing a Type-C device can target various aspects such as the USB protocol, data transfer,
power delivery negotiation, and other features.

Keywords: Fuzzer, Hardware Fuzzing, Type-C Fuzzing, Device Fuzzer, Systems Fuzzer, Device Under Test for Fuzzer

Research ArticleVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/priyank-anurag/116

1. Introduction
Hardware has become increasingly complex in terms of IP

blocks in the last decade. Earlier, Moore’s law and Dennard
scaling came to a standstill, and hardware engineers had to find
novel ways to improve the performance gains of the hardware4,5.
USB Type-C ports are one main interface to communicate
with the system. It supports charging, audio, video, data, and
networking over it. Any attacker can control the host machine
utilizing devices where the device behavior is altered to exploit.
USB software devices and host software stacks are not designed
to withstand such exploits as they are uncommon and not widely
performed. They require physical access to the system, but
having a vulnerability can open many doors for attacks6. Many
types of USB Type-C devices communicate using standard
PD messages. These messages are transmitted using I2C lines
between the SOC and PD Controller and then to the device. These

messages are communicated to the Host Controller devices on
the SoC about the device type connected to the other end, and
device descriptors are set up so that the system can enumerate
and use the devices. Firmware is loaded into the PD controller
to decode these messages and perform certain operations to
and from the SoC. These modern attacks on the USB can
come from the USB stack to USB specifications. Fuzzing has
become the most popular tool for performing runtime testing on
software environments and is quickly becoming popular in the
hardware space. In many instances, fuzzing has revealed more
bugs than automated or manual testing in software stacks7,8.
Some tools have detected over 50+ bugs in the USB Linux
kernel subsystem9. All the current mechanisms to mitigate the
threats from USB peripherals are focused on defending the host
machines and checking for the USB host stack. However, many
devices have multiple functionalities, such as devices and host
functionalities combined in one device. It would make the stack

https://urfpublishers.com/journal/artificial-intelligence
https://doi.org/10.51219/JAIMLD/priyank-anurag/116

J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss:1Rathod P, et al.,

2

more prone to failures and vulnerabilities because two software
stacks need to be verified. Most USB Type-C bugs are found
around the enumeration rather than in the USB core logic;
hence, it has some stability in terms of the working functionality
but not much in enumeration, partly because the CC lines and
PD messages are doing that work.

2. Understanding of USB Stack
A typical USB Type-C stack has multiple layers. These layers

represent the respective part of the OS from where it is operated.
User space applications are covered using the HID device types
over the Type-C connector. Multiple data types are getting
transferred, such as audio, video, and files; hence, different
applications use these spaces to make access and operation more
accessible for the user.

The next layer in the stack is the kernel layer. Many software
stacks are glued together in these layers to make the USB
functional. Certain types of devices are classified into different
classes, from where they are enumerated and operated further.
Almost all USB devices have a core USB functionality where
the core specifications of any USB devices are programmed and
typically not altered or changed by any specific device type,
as classes manage those. The kernel layer is responsible for
communication with the hardware or the PHY layer, which uses
the devices to be enumerated/detected by the host system.

3. USB Software Stack Fuzzing
Most USB fuzzers follow the software stack on the host side.

Plenty of fuzzers are available to fuzz devices, such as USB
devices. Still, there would be scenarios where USB devices are
simulated to perform the fuzzing over the stack. In this case, the
device would be simulated randomly by a mutation performed
in the device class.

Using the mutation on the device class, the host must
enumerate or restart the enumeration process once the device
resets the connection. In repetition, this process would expose
the software stack to issues in the enumeration area where most
vulnerabilities are found. Performing such tests in the loop
would make the host device more secure regarding the USB core
software stack.

Type-C Fuzzing

Type-C is an extension of the USB stack where all the
connectors follow the same USB spec in both cable orientations,
making it a unique solution that accommodates different
devices. It uses the CC line to connect the host and device
with the power and alternate accessory modes as a part of the
type-c device specification. Modifying the CC signal using a
hardware simulator would change the device detection behavior
using fuzzing. During the CC change, the device type messages
would be mutated to simulate the virtual fuzzing device. Once
the incorrect hardware behavior is recorded and stored, make
sure that it will not be repeated in the next iteration of the
steps to minimize the testing time. A hardware-based harness
would trigger any user-desired actions based on the abnormal
operation of the hardware detection. Using such a hardware
fuzzer in a Type-C-based system would find PD firmware or
other issues related to the power delivery negotiation sooner
using the repetition in a continuous loop. Fortunately, Type-C
PD communication uses I2C messages to negotiate or detect the
devices and can be used to add the signal to the feedback loop.

This virtually mutated device would act as a device to the host
system and start the enumeration process. The whole process
takes place as a normal process from the host system’s point
of view. Similar tools such as FuzzUSB combine static analysis
and symbolic execution to extract internal state machines from
USB gadget drivers and use them to achieve state-guided fuzzing
through multi-channel inputs10. A similar tool to the earlier one
is FirmUSB, which exercises the USB domain knowledge and
finds security bugs in the FW of the USB device. Still, it would
not attend to the statefulness and suffers from issues such as path
explosion11.

4. Related Work
Many software fuzzers support the different types of fuzzers

inside the USB stack or any software stack. These software
stacks are very good at logging the incorrect behavior of the
stack getting fuzzed. Most software-based fuzzers are generic
enough with slight modifications to be used by any software
stack. Adding a hardware fuzzer is not a new approach but rather
unique for the Type-C. Mainly, hardware fuzzers are designed
for the application in the mind and custom to the use case.
However, having the hardware and software-based fuzzers with
the feedback loop would create a closed-loop system.

3

Rathod P, et al., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

5. Conclusion
Putting the Software and Hardware Fuzzer together is

familiar. Having SW and HW fuzzers connected via a feedback
loop would curate the following vector of inputs. These would
enable most non-repetitive iterations and be productive in
finding issues/bugs faster than before, as seen in the software-
based fuzzers approach. Such solutions would be scalable but
easy to re-configure when needed as they work on a template-
based solution.

6. References

1.	 USB type-c ® cable and connector specification. 2019.

2.	 USB 3.2 specifications. 2017.

3.	 Class definitions for communication devices 1.2. 2007.

4.	 Moore GE. Cramming more components onto integrated
circuits. Electronics 1998;86.

5.	 Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc
AR. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits 1974; 256-268.

6.	 Kierznowski D, Mayes K. Badusb 2.0: USB man in the middle
attacks. Royal Holloway 2016.

7.	 Peng H, Payer M. USBfuzz: A framework for fuzzing USB
drivers by device emulation. 29th USENIX Security Symposium
2020; 397-414.

8.	 Patrick-Evans J, Cavallaro L, Kinder J. Potus: Probing off-the-
shelf usb drivers with symbolic fault injection. 11th USENIX
Workshop on Offensive Technologies 2017.

9.	 Syzkaller. Linux kernel usb bugs found by syzkaller.

10.	 Kim K, Kim T, Warraich E, et al. FuzzUSB: Hybrid Stateful
Fuzzing of USB Gadget Stacks. 2022 IEEE Symposium on
Security and Privacy 2022; 2212-2229.

11.	 Hernandez G, Fowze F, Tian D, Yavuz T, Butler KR. Firmusb:
Vetting usb device firmware using domain informed symbolic
execution. Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security 2017; 2245-2262.

https://www.usb.org/usb-type-cr-cable-and-connector-specification
https://www.usb.org/document-library/usb-32-revision-11-june-2022
https://www.usb.org/document-library/class-definitions-communication-devices-12
https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf
https://ieeexplore.ieee.org/document/1050511
https://ieeexplore.ieee.org/document/1050511
https://ieeexplore.ieee.org/document/1050511
https://docs.media.bitpipe.com/io_10x/io_102267/item_1306461/RH-2016-BadUSB-DavidKierznowski.pdf
https://docs.media.bitpipe.com/io_10x/io_102267/item_1306461/RH-2016-BadUSB-DavidKierznowski.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://www.usenix.org/conference/woot17/workshop-program/presentation/patrick-evans
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://ieeexplore.ieee.org/document/9833593
https://ieeexplore.ieee.org/document/9833593
https://ieeexplore.ieee.org/document/9833593
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050
https://dl.acm.org/doi/10.1145/3133956.3134050

