
Handling Special Characters in File Naming Conventions for an Error-Free Pattern
Matching Approach

Prashanth Kodurupati*

Information Technology, Managed File Transfer Engineer, Minisoft Technologies LLC, Alpharetta, USA

Citation: Prashanth Kodurupati. Handling Special Characters in File Naming Conventions for An Error-Free Pattern Matching
Approach. J Artif Intell Mach Learn & Data Sci 2024, 2(1), 157-160. DOI: doi.org/10.51219/JAIMLD/prashanth-kodurupati/60

Received: February 02, 2024; Accepted: February 18, 2024; Published: February 20, 2024

*Corresponding author: Prashanth Kodurupati, Information Technology, Managed File Transfer Engineer, Minisoft Technologies
LLC, Alpharetta, USA, E-mail: prashanth.bachi21@gmail.com

Copyright: © 2024 Kodurupati P., This is an open-access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

1

 A B S T R A C T

This paper addresses the issue of file name pattern errors caused by special characters in files received from clients. Despite
the prevalence of standard file naming conventions, exceptions occur when clients incorporate special characters ($@(), among
others) into file names. These exceptions can disrupt file transmission processes, leading to files not reaching their intended
destinations. We propose a solution that involves configuring both producer and consumer file name patterns to accommodate
client-specific requirements through regular expressions (regex). Our methodology discusses a comprehensive strategy for
anticipating and resolving file name pattern errors, providing a robust framework for maintaining the integrity of file transmission
processes in a diverse client environment.

Keywords: File name pattern; Special characters; Regular expressions; File transmission; Data

Review ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/prashanth-kodurupati/60

1. Introduction
Considering the data management and file transmission niche,

the naming conventions adopted for files play a critical role in
ensuring the seamless exchange of information across systems
and stakeholders. Despite the critical nature of this aspect, it is
often overlooked, leading to operational inefficiencies and data
handling errors. The introduction of special characters in file
names by clients - including symbols such as $, @, (and) - poses
a unique set of challenges1. These characters, while seemingly
innocuous, can disrupt standard file transmission protocols and
result in files failing to reach their intended destinations. Such
discrepancies not only hinder operational processes but also
pose significant risks to data integrity and reliability.

In this paper, we discuss why it’s really important to have
good rules for naming files and how special characters can
cause trouble. These problems can make it hard for files to
move smoothly through computers and networks, just like how
a roadblock can stop traffic from moving. We will discuss that
these kinds of mistakes with file names happen more often than

they should, and they can really slow down work.

This paper suggests a smart way to fix this by using something
called regular expressions (regex). This is a techy method to
make sure file names can include these special symbols without
causing trouble. Our goal is to set up rules that automatically
adjust how files are named based on what each client needs. This
way, we can keep files moving smoothly and make sure they end
up in the right place without messing up the data they carry.

2. Literature Review
The management of file names within digital environments

is a nuanced subject that intersects various domains of data
management, computer science, and information security. Prior
research has highlighted the importance of adhering to specific
naming conventions to ensure the seamless transmission and
processing of digital files. Michigan Tech’s guidance on
characters to avoid in filenames1 provides a foundational
understanding of how certain characters can be problematic in
various digital contexts, emphasizing the need for standardized
naming practices.

doi.org/10.51219/JAIMLD/prashanth-kodurupati/60
https://urfpublishers.com/journal/artificial-intelligence
doi.org/10.51219/JAIMLD/prashanth-kodurupati/60

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Kodurupati P.,

2

Furthermore, the National Institutes of Health (NIH)2
discusses the implications of improperly named PDF attachments
in application processes, discussing the practical consequences
of naming convention errors.

Research by Karen Scarfone et al3 looks into the broader topic
of information security, indirectly touching upon the importance
of secure and standardized file naming as part of maintaining
data integrity.

The work of Mohammad Saiful Islam Mamun et al4 on
detecting malicious URLs through lexical analysis also sheds
light on the significance of pattern recognition in ensuring
digital security, offering parallels to the problem of file name
pattern errors.

Lastly, educational pieces on regular expressions by James
Tan5, provide practical insights and solutions to the challenges
presented by special characters in file names. Together, these
sources construct a comprehensive backdrop for the proposed
solution, underlining the necessity of dynamic and adaptable
approaches to file naming within digital systems.

3. Problem Statement: The Challenge of Special
Characters in File Naming

In the seamless operation of data management and file
transmission systems, the adherence to specific file naming
conventions emerges as a linchpin for success. However, this
seemingly straightforward process is often complicated by the
introduction of special characters into file names by clients.
Symbols include:

● $,

● @,

● (,),

● #,

● ?,

● &,

● %, and

● *2

These symbols can significantly disrupt the standard
protocols for file transmission, leading to a host of operational
inefficiencies and errors.

3.1 Unpredictability of client-supplied file names

Clients may use a variety of special characters in file names
for their own organizational or operational reasons.

This diversity introduces an element of unpredictability into
the file transmission process. Files named with these special
characters may not be recognized or processed correctly by
standard file management systems, leading to their rejection or
misrouting.

3.2 Disruption to standard file transmission protocols

The core of the issue lies in how special characters in file
names can interfere with file transmission protocols. Many
systems use these characters for specific commands or functions;
thus, when they appear in file names, it can cause confusion or
errors in the system3. This disruption often results in files not
being delivered to their intended destinations, causing delays
and potential data loss.

3.3 Risks to data integrity and reliability

When files fail to reach their intended destinations due to
naming discrepancies, it poses significant risks to data integrity
and reliability. Essential data may not be available when needed,
leading to decision-making based on incomplete information4.
Moreover, the effort to track down and correct these errors can
consume valuable time and resources.

3.4 Operational inefficiencies

Troubleshooting and resolving issues caused by special
characters in file names contributes to operational inefficiencies.
IT departments may need to manually intervene to identify
the problem, rename the file, and resend it, which is a time-
consuming process that diverts resources from other critical
tasks5.

A one-size-fits-all approach to file naming conventions is
not viable. Instead, systems must be adaptable and capable of
configuring file naming patterns that can accommodate a broad
spectrum of special characters without compromising the file
transmission process.

The introduction of special characters in file names, while
a seemingly minor issue, can have far-reaching consequences
for data management and file transmission processes. The need
for a solution that can dynamically adjust to these challenges is
evident.

4. Academic review of key challenges and proposed solutions

Research Challenge Solution

Michigan Tech [1] Special characters in filenames can cause issues in digital
environments.

Advises on characters to avoid and promotes standard naming
conventions.

NIH [2] Improperly named PDF attachments affect application
processes.

Emphasizes the importance of adhering to specific naming
guidelines.

Karen Scarfone et al. [3] The broader challenge of maintaining information
security and integrity.

Suggests comprehensive testing and assessment
methodologies, including adherence to naming conventions.

Mohammad Saiful Islam
Mamun et al. [4]

The necessity of detecting malicious patterns in digital
content.

Demonstrates the use of lexical analysis for security,
analogous to regex for file naming.

James Tan [5] Lack of knowledge on regular expressions for handling
text patterns.

Provides an educational overview of regular expressions and
their application in managing complex text patterns.

5. Proposed solution: adapting file name patterns with regular expressions
Addressing the challenges posed by special characters in file names requires a flexible and dynamic approach. The solution lies

in configuring both the producer and consumer file name patterns to match client requirements closely.

3

Kodurupati P., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

This can be achieved through the use of regular expressions
(regex), a powerful tool for matching text patterns. By employing
regex, we can create a system that intelligently accommodates
various special characters in file names, ensuring that files are
correctly recognized, processed, and routed to their intended
destinations6.

5.1 Understanding Regular Expressions (Regex)

Regular expressions are a sequence of characters used to
search and identify specific patterns in text. In the context of
file naming, regex can be used to define acceptable patterns that
include special characters, ensuring that these file names are
handled correctly by the system.

This method allows for the customization of file name
validation rules to accommodate the unique requirements of
each client.

5.2 Configuring Producer and Consumer File Patterns

The first step in our solution is to configure the file name
patterns for both producers (those who send files) and consumers
(those who receive files) based on client-specific requirements.
This involves defining regex patterns that accurately represent
the allowed file names, including any special characters.

By doing so, we ensure that the system can correctly identify
and process files, regardless of the naming conventions used by
clients.

5.3 Regex Examples for Common Special Characters

To see how this solution works, let’s consider regex patterns
for some of the most common special characters found in file
names: $, @, (, and).

For instance, a regex pattern to include these characters
might look like ^[a-zA-Z0-9\$\@\(\)]+$, which allows file
names to contain alphanumeric characters along with $, @, (,
and), ensuring these files are not rejected or misrouted.

With the regex patterns defined, the next step is to implement
them within the file transmission system. This involves updating
the system’s file validation and processing mechanisms to use
the regex patterns for file name checking.

5.4 Ensuring Accurate File Delivery

The ultimate goal of this solution is to ensure that files,
regardless of their naming conventions, reach their intended
destinations without error. Employing regex-based validation,
we can accommodate a wide range of file names, reducing the
risk of misrouted files and enhancing the reliability of the file
transmission process.

This proposed solution, centered around the flexibility and
precision of regular expressions, offers a robust approach to
managing the complexities of file names with special characters.

6. Use Case
In this use case, we consider the application of the proposed

solution within a healthcare data exchange scenario.

A healthcare provider needs to send patient records to a
research institution. The files contain special characters in
their names, such as parentheses for date information (e.g.,
Patient_Record_(2024-03-20).txt) and dollar signs to denote
billing information (e.g., Bill_$500_2024-03-20.txt). The goal
is to configure both the healthcare provider’s (producer) and the

research institution’s (consumer) systems to ensure these files
are correctly transmitted and received.

Step 1: Define Regex Patterns for File Names

The first step involves defining a regex pattern that
accommodates the special characters expected in the file names.
The pattern needs to allow alphanumeric characters, underscores
(_), parentheses (), and dollar signs ($). The regex pattern for
this scenario could be as follows:

$a-zA-Z0-9_\$\(\)\-]+\.txt[^
This pattern ensures that the file names can include letters, num-
 bers, underscores, dollar signs, parentheses, hyphens, and must
.end with a .txt extension

 Step 2: Implement the Regex Pattern in the Producer
System

The healthcare provider’s system is configured to validate
file names against the defined regex pattern before sending. This
can be implemented in the system’s code, ensuring that only files
matching the pattern are transmitted. For example, using Python
for the implementation:

import re

Define the regex pattern

pattern = r’^[a-zA-Z0-9_\$\(\)\-]+\.txt$’

Function to validate file names

def validate_file_name(file_name):

return re.match(pattern, file_name) is not None

Example file names

file_names = [“Patient_Record_(2024-03-20).txt”,
“Bill_$500_2024-03-20.txt”, “InvalidFile#2024.txt”]

Validate each file name

for file in file_names:

 if validate_file_name(file):

)”.print(f ”{file} is valid and ready for transmission

 else:

 print(f”{file} does not match the pattern and will not
be sent.”)

 Step 3: Configure the Consumer System to Recognize
the Pattern

Similarly, the research institution’s (consumer) system is con-
 figured to recognize and accept files matching the same regex
pattern. This ensures that upon receiving, files are correctly pro-
.cessed and stored, facilitating seamless data exchange

Use Case Outcome

Through the application of the defined regex pattern, all valid
files (Patient_Record_(2024-03-20).txt and Bill_$500_2024-
03-20.txt) are successfully transmitted and received, while the

J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Kodurupati P.,

4

invalid file (InvalidFile#2024.txt) is identified and excluded
from transmission.

6. Conclusion
The challenge of handling file names with special characters

in the context of data management and file transmission is
not trivial. As demonstrated through the discussion and the
healthcare data exchange use case, special characters such as $,
@, (,), #, ?, %, &, and * can significantly disrupt standard file
transmission protocols.

Without proper handling, these disruptions can lead to files not
reaching their intended destinations, operational inefficiencies,
and risks to data integrity and reliability. However, the solution
proposed in this paper—utilizing regular expressions (regex)
to dynamically configure file name patterns based on client-
specific requirements—offers a viable and robust approach to
overcoming these challenges.

The implementation of regex for validating and configuring
file names ensures that systems can accommodate a wide range
of naming conventions, including those with special characters.
This flexibility is crucial in today’s diverse digital environment,
where data exchange occurs across various domains and
stakeholders with unique requirements.

7. References

1.	 Michigan Tech. Characters to Avoid in Filenames and Directories.
Michigan University Website: Guidelines 2017.

2.	 NIH Staff. Why Do I Need to be Careful Naming the PDF
Attachments for My Application?. National Institutes of Health
2015.

3.	 Karen Scarfone. Technical Guide to Information Security
Testing and Assessment. National Institute of Standards and
Technology 2008.

4.	 Mohammad Mamun. Detecting Malicious URLs Using Lexical
Analysis. International Conference on Network and System
Security 2016.

5.	 James Tan Parsing File Names Using Regular Expressions.
Medium 2018.

https://www.mtu.edu/umc/services/websites/writing/characters-avoid/
https://www.mtu.edu/umc/services/websites/writing/characters-avoid/
https://csrc.nist.gov/pubs/sp/800/115/final
https://csrc.nist.gov/pubs/sp/800/115/final
https://csrc.nist.gov/pubs/sp/800/115/final
https://www.researchgate.net/publication/308365207_Detecting_Malicious_URLs_Using_Lexical_Analysis
https://www.researchgate.net/publication/308365207_Detecting_Malicious_URLs_Using_Lexical_Analysis
https://www.researchgate.net/publication/308365207_Detecting_Malicious_URLs_Using_Lexical_Analysis
https://medium.com/@jamestjw/parsing-file-names-using-regular-expressions-3e85d64deb69
https://medium.com/@jamestjw/parsing-file-names-using-regular-expressions-3e85d64deb69

