
Handling File Permissions to Create Secure and Efficient File Transfer Paths Across 
Servers

Prashanth Kodurupati*

Information Technology, Managed File Transfer Engineer, Minisoft Technologies LLC, Alpharetta, USA

Citation: Prashanth Kodurupati. Handling File Permissions to Create Secure and Efficient File Transfer Paths Across Servers. J 
Artif Intell Mach Learn & Data Sci 2024, 2(1), 153-156. DOI: doi.org/10.51219/JAIMLD/prashanth-kodurupati/59

Received: January 03, 2024; Accepted: January 03, 2024; Published: January 30, 2024

*Corresponding author: Prashanth Kodurupati, Information Technology, Managed File Transfer Engineer, Minisoft Technologies 
LLC, Alpharetta, United States of America. prashanth.bachi21@gmail.com

Copyright: © 2024 Kodurupati P., This is an open-access article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.

1

 A B S T R A C T 

This paper investigates the prevalent issue of file permission errors encountered during the transfer of files between servers, 
a challenge that significantly hinders operational efficiency and data security. Common permission configurations such as root 
level, user level, 755, and 777, often result in "permission denied" errors, obstructing file copying processes. We propose a solution 
that involves adjusting file permissions to 755 or 777 using Linux command chmod, tailored to circumvent these obstacles while 
maintaining system security and functionality. Through detailed analysis, real-world use cases, and comprehensive testing, this 
study demonstrates a pragmatic approach to managing file permissions, ensuring seamless file transfer and optimizing server-
to-server communication.

Keywords: File permissions; Server transfer; Linux; Chmod; Operational efficiency; Data security

 Research ArticleVol: 2 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/prashanth-kodurupati/59

1. Introduction
When it comes to managing servers and moving data around 

– be it in a remote or on-site environment, setting the right file 
permissions is crucial. File permissions are like deciding who 
gets keys to a room. These permissions control who can look at 
(read), change (write), or run (execute) files on a server. Getting 
this right keeps important data safe while making sure work gets 
done without unnecessary stops and starts. However, when files 
are moved from one server to another, a common issue often 
pops up: the system declines the transfer because of permission 
issues. This isn’t just a small hiccup that can be tackled by 
providing administrator privileges; it becomes a major hurdle 
that may end up requiring permission changes from the backend. 
This, in turn, can slow down work and put data at risk1.

This paper takes a close look at how file permissions work 
on Linux servers, focusing on why setting them correctly is 
so important for security and smooth operations. Yet, moving 
files between servers often runs into trouble with permissions 
leading to errors that stop files from being copied. These errors 

aren’t just annoying; they highlight the tricky balance between 
keeping data safe and making sure it’s available when and where 
it’s needed. 

With this paper, we are studying the challenges that come 
with managing these permissions, especially when it comes 
to transferring files. By understanding the nuts and bolts of 
permissions and how they affect file transfers, we can find better 
ways to handle them. This way, we ensure that data moves 
smoothly and securely from place to place, keeping everything 
running like a well-oiled machine.

2. Literature Review
The effective management of file permissions is critical in 

maintaining operational efficiency and ensuring data security 
during file transfers between servers. 

Literature and community discussions provide insights into 
the challenges and solutions associated with file permission 
settings. Charlie1231 discusses the practical issues and 
confusion surrounding the use of 777, 755, and 644 permissions, 

doi.org/10.51219/JAIMLD/prashanth-kodurupati/59
https://urfpublishers.com/journal/artificial-intelligence
doi.org/10.51219/JAIMLD/prashanth-kodurupati/59


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Kodurupati P.,

2

highlighting the need for clear guidelines in permission 
management. 

Taesoo Kim and Nickolai Zeldovich2 offer an overview 
of managing Linux permissions, emphasizing the balance 
between access and security. Community discussions, like those 
on PhoenixNAP3 and StackExchange4, further illustrate the 
complexities of setting appropriate permissions for web files 
and the broader implications of permissions management across 
server environments.

Trivedi5 also provides a foundational understanding of how 
Linux file permissions work, serving as an essential resource for 
anyone dealing with file management on Linux servers. These 
sources collectively underscore the importance of a strategic 
approach to file permissions, advocating for solutions that 
address both accessibility and security concerns.

3. Problem statement: file permission errors in server-
to-server transfers (755 & 777)

Transferring files between servers is a routine yet crucial task 
in the management of digital infrastructures. However, this task 
is frequently complicated by errors related to file permissions. 
Permissions dictate the level of access users or systems have to 
a file, including reading, writing, and executing2.

The most common stumbling block arises from permissions 
settings—be it root level, user level, or numerical permissions 
like 755 and 777. 

An attempt to copy files under restrictive permissions often 
results in a “permission denied” error, halting the transfer process 
and impacting both operational efficiency and data accessibility 
File permissions are foundational to security and functionality 
within Linux and Unix-like operating systems. Permissions 
are set at different levels, including root and user levels, with 
numerical codes—such as 755 for read/write/execute by the 
owner and read/execute by others, and 777 for full access by 

everyone—indicating specific access rights. The complexity of 
these permissions can lead to misconfiguration, especially when 
files are moved across different servers with varying security 
protocols.

3.1 The common culprit: “permission denied” error

The “permission denied” error is a direct consequence of 
attempting to transfer files without the requisite permissions. 
This error not only interrupts the file transfer process but also 
serves as a symptom of deeper issues in permission management, 
often requiring administrative intervention to resolve.

3.2 Impact on operational efficiency

File permission errors can significantly disrupt workflow and 
data management practices. When files fail to transfer, processes 
that depend on those files are delayed, leading to bottlenecks in 
operations and, in some cases, compromising data integrity and 
system security3.

3.3 Security implications

Incorrectly setting file permissions—either too restrictive 
or too lenient—can have serious security implications. Overly 
restrictive permissions may hinder necessary access, while 
overly permissive settings (e.g., 777) can expose sensitive data 
to unauthorized access, both of which pose risks in a server 
environment.

3.4 The challenge of managing permissions across servers

The task of managing file permissions becomes exponentially 
more complex when dealing with multiple servers, each 
potentially configured with different security protocols and 
operational requirements. This complexity often leads to 
the misconfiguration of file permissions, contributing to the 
prevalence of transfer errors and requiring a different approach 
to permission management4.

4. Academic Review of Key Challenges and Proposed Solutions

Research Challenge Solution 

Charlie1231 Confusion over when to use 777, 755, or 644 permissions, 
leading to potential security risks.

Advocates for understanding the implications of each permission 
setting and applying them appropriately.

Garn2 The difficulty of managing permissions for users, groups, 
and others in a Linux environment.

Provides guidelines for effective permission management, ensuring 
operational security and efficiency.

Community Discussion3 Determining the correct permissions for website files/
folders on a Linux web server.

Suggests best practices for setting file and folder permissions, 
balancing accessibility and security.

StackExchange4 Granting comprehensive permissions across server files 
without compromising ownership.

Discusses methods to extend permissions strategically, ensuring 
access without altering file ownership.

How-to Geek5 Fundamental challenges in understanding and implementing 
Linux file permissions.

Offers an educational overview of Linux file permissions, 
enhancing administrative competence.

5. Proposed Solution: Simplifying File Transfers with 
Chmod Command

When the transfer of files between servers is obstructed 
by “permission denied” errors, the problem often traces back 
to restrictive file permissions5. A straightforward yet effective 
approach to this issue involves modifying these permissions to 
more accommodating settings, such as 755 or 777, using the 
Linux chmod command. 

5.1 chmod Command Overview

The chmod (change mode) command in Linux is a powerful 
tool used to change the file permission settings. Permissions are 
represented numerically: for instance, 755 allows the file owner 

to read, write, and execute the file while letting others read and 
execute it. 

On the other hand, 777 grants all users full access to the file. 
By adjusting file permissions using chmod, users can overcome 
the common “permission denied” error during file transfers.

5.2 Implementing 755 Permission for Standard Operations

Setting permissions to 755 is generally safe for most files 
and directories, especially for scripts and web pages that need to 
be readable and executable by users other than the owner. This 
setting ensures that the file can be executed where necessary, 
while keeping write permissions exclusive to the owner, thus 
maintaining a level of security. 



3

Kodurupati P., J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2

For example, chmod 755 filename.txt makes filename.txt 
accessible and executable by all, but only editable by the owner.

5.3 Using 777 Permission: Considerations

While setting permissions to 777 allows unrestricted access 
to a file or directory, its use should be limited due to security 
concerns. Granting write permissions to everyone can expose 
sensitive data to unauthorized modifications. 

Therefore, 777 should only be used in specific contexts 
where it is absolutely necessary for all users to have full access, 
and even then, only temporarily.

The key to effectively managing file permissions lies in 
striking a balance between operational accessibility and data 
security. Permissions should be set to facilitate necessary 
operations without exposing systems and data to undue risk. 

Regular audits and permission reviews can help maintain 
this balance, ensuring that files have appropriate permissions 
based on current needs and security standards.

5.4 Automated Permission Adjustment for Efficient Transfers

For organizations regularly transferring files between 
servers, automating the adjustment of file permissions can 
significantly streamline operations. Scripts or tools that apply 
chmod adjustments based on predefined criteria can reduce 
manual intervention, minimize transfer errors, and maintain a 
consistent security posture across server environments.

The entire process involves the following steps:

1. Start: Encounter a “permission denied” error during file 
transfer.
2. Check Current Permissions: Use ls -l [filename] to display 
the file’s current permissions.
3. Decide on New Permissions: Based on security needs, 
choose between 755 (for general use) and 777 (for full access).
4. Apply chmod Command: If 755 is chosen, execute chmod 
755 [filename]. If 777 is selected, execute chmod 777 [filename].
5. Test File Transfer: Attempt the file transfer again to ensure 
success.

6. End: File is successfully transferred, or further adjustments 
are made as needed.

With the help of the chmod command to thoughtfully adjust 
file permissions, administrators can mitigate transfer errors 
related to restrictive permissions.

Use Case
Scenario Setup

● Environment: A web hosting setup with separate staging and 
production servers.
● Task: Transfer updated website files (index.html and contact.
html) from the staging server to the production server.
● Challenge: The file transfer process is interrupted by a 
“permission denied” error due to restrictive file permissions on 
the production server.

Upon attempting to copy the files, the administrator receives 
the following error for both files: “permission denied.” 

Recognizing this as a file permission issue, the administrator 
decides to check the current permissions on the production 
server using the ls -l command:

ls -l index.html contact.htmll

The output reveals that the files are set to 640 (owner read/
write, group read, no others), explaining why the transfer was 
blocked.

To resolve the issue while maintaining security, the 
administrator opts to change the permissions of these files 
to 755, allowing the owner full access and others to read and 
execute, which is sufficient for web content. The administrator 
executes the following commands:

chmod 755 index.html

chmod 755 contact.html

This command adjusts the permissions of index.html and 
contact.html to 755, enabling the web server to serve these files 
to visitors without granting unnecessary write access

7. Conclusion
The challenge of “permission denied” errors during server-

to-server file transfers is a widespread issue that can disrupt 
operations and compromise security. This paper has outlined a 
systematic approach to navigating these challenges, focusing on 
the strategic adjustment of file permissions as a viable solution. 
Through the detailed exploration of file permissions, the impact 
of errors on operational efficiency and security, and the proposed 
solution using the chmod command, we have demonstrated a 
practical pathway to resolving permission-related transfer issues.

This paper emphasizes the importance of understanding 
the underlying principles of file permissions in Linux systems. 
Knowledge of how permissions impact file accessibility and 
security is crucial for anyone responsible for managing server 
environments. The proposed solution not only addresses the 
immediate problem of permission errors but also contributes 
to a broader understanding of effective system administration 
practices.

References
1. Charlie123. 777, 755 and 644 problems with CHMOD 

permissions Community Discussion. PrestaShop 2015. 

https://www.prestashop.com/forums/topic/200692-777-755-and-644-problem-with-chmod-permissions-im-begging-for-help-please/
https://www.prestashop.com/forums/topic/200692-777-755-and-644-problem-with-chmod-permissions-im-begging-for-help-please/


J Artif Intell Mach Learn & Data Sci | Vol: 2 & Iss: 2Kodurupati P.,

4

2. Kim T, Nickolai Zeldovich N. Making Linux Protection 
Mechanisms Egalitarian with UserFS. USENIX Security 
Symposium 2010. 

3. CS What permissions should my website files/folders have on 
a Linux webserver? Community Discussion PheonixNAP 2013. 

4. Felt AP, Wang HJ, Moshchuk A, Hanna S. Permission 
Re-Delegation: Attacks and Defenses. University of California, 
Berkeley 2018;4-12.

5. Trivedi Y. How Do Linux File Permissions Work?, How-to Geek 
2016.

https://www.usenix.org/conference/usenixsecurity10/making-linux-protection-mechanisms-egalitarian-userfs
https://www.usenix.org/conference/usenixsecurity10/making-linux-protection-mechanisms-egalitarian-userfs
https://www.usenix.org/conference/usenixsecurity10/making-linux-protection-mechanisms-egalitarian-userfs
https://betterstack.com/community/questions/what-permissions-should-my-website-directory-have-on-linux/
https://betterstack.com/community/questions/what-permissions-should-my-website-directory-have-on-linux/
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.usenix.org/legacy/event/sec11/tech/full_papers/Felt.pdf
https://www.redhat.com/sysadmin/linux-file-permissions-explained
https://www.redhat.com/sysadmin/linux-file-permissions-explained

	_heading=h.1fob9te

