
Handling External API Challenges for Bridging Frontend Applications

Chakradhar Avinash Devarapalli*

Software Developer, USA

Citation: Chakradhar Avinash Devarapalli. Handling External API Challenges for Bridging Frontend Applications. J Artif Intell 
Mach Learn & Data Sci 2022, 1(1), 165-169. DOI: doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/62

Received: December 03, 2022; Accepted: December 28, 2022; Published: December 30, 2022

*Corresponding author: Chakradhar Avinash Devarapalli, Software Developer, USA, E-mail: avinashd7@gmail.com

Copyright: © 2022 Devarapalli CA., This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

1

 A B S T R A C T 

API integration poses challenges in frontend development. Issues include data format compatibility, inadequate 
documentation, security risks, legacy system integration, scalability concerns, versioning issues, and error handling. Solutions 
involve standardizing formats, enhancing documentation, bolstering security, modernizing systems, ensuring scalability, 
managing versions, and handling errors effectively. The Axis Bank case study illustrates these solutions. Adapting to evolving 
tech is crucial for meeting digital consumer needs.

Keywords: API integration, Frontend developer, Challenges, Solutions

ReviewVol: 1 & Iss: 1

https://urfpublishers.com/journal/artificial-intelligence

Journal of Artificial Intelligence, Machine Learning and Data Science

ISSN: 2583-9888
DOI: doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/62

1. Introduction
Web and application development has been a constantly 

evolving niche since the 2000’s. Especially now, as people 
become more inclined to make purchase decisions not just 
because of the price, but also because of the experience they get, 
developers are under immense pressure to juggle better results, 
improved efficiency, and quicker turnaround.

In such an environment, Application Programming Interfaces 
(APIs) are considered critical tools for bridging frontend 
applications with backend services. APIs are the basic conduit 
through which frontend applications communicate with server-
side resources, enabling the seamless exchange of data and 
functionality that underpins today’s dynamic web experiences.

Over the years, the use of APIs in frontend development has 
developed further, integrating a large number of advantages into 
the mix.

APIs provide a standardized way for applications to 
interact with external services, irrespective of the underlying 
implementation details. This abstraction simplifies the 
development process, allowing developers to focus on creating 
engaging user interfaces without worrying about the problems 
relating to server-side operations.

APIs are also known for their ability to facilitate modularity 
in application design. They bridge a range of specific 
functionalities into distinct APIs, allowing developers to build 
applications that are relatively easier to maintain and scale. This 
modularity also promotes code reuse, as the same API can be 
leveraged across different parts of an application or even across 
different applications.

APIs also make room for real-time data access and 
manipulation. This is crucial for creating interactive and 
responsive web applications. A prime example of this is how Meta 
intends to use APIs for real-time academic information update 
via the Researcher API. Through APIs, frontend applications 
can retrieve, update, and display data from backend services in 
real-time, providing users with a dynamic and engaging user 
experience1.

However, despite these benefits, integrating APIs into 
frontend applications is not without its challenges. While APIs 
offer great potential, they also introduce new issues and potential 
pitfalls that developers must work through.

These challenges, which will be the focus of this paper, range 
from handling asynchronous operations and managing state, to 
securing sensitive data and ensuring application performance.

doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/62
https://urfpublishers.com/journal/artificial-intelligence
doi.org/10.51219/JAIMLD/chakradhar-avinash-devarapalli/62


J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Devarapalli CA.,

2

2. Literature Review
Various studies and reports have highlighted the challenges 

of API integration in frontend development, emphasizing issues 
such as the ones discussed here. 

IBM researchers have proposed several solutions including 
standardizing data formats, improving documentation, 
implementing robust security measures, modernizing legacy 
systems, ensuring scalability, managing API versions, and 
implementing effective error handling.

3. Current Landscape
API integration is at the heart of modern software 

development. It gives room for applications to communicate 
seamlessly and share data. However, this process comes with its 
own set of challenges.

3.1 Incompatible Data Formats

One of the significant hurdles encountered in API integration 
pertains to managing incompatible data formats. APIs often 
adopt diverse data representation formats, including JSON, 
XML, and CSV. 

For instance, while JSON has gained popularity due to 
its simplicity, XML remains prevalent in certain contexts. 
This diversity can lead to compatibility issues, necessitating 
additional effort to convert data between different formats. 

For example, in cases where an application receives data 
in XML format from one API endpoint it may need to process 
it in JSON format for compatibility with another system. This 
conversion process adds challenges and may introduce errors if 
not handled properly. The conversion process may also open the 
API and in turn the website or application to security risks at the 
backend2.

The frontend developer is primarily responsible for this, 
to collaborate with the backend developer to integrate this 
functionality and API properly.

3.2 Poor Documentation

Another obstacle that frequently impedes API integration is 
the prevalence of poor documentation. Effective utilization of 
APIs heavily relies on clear and up-to-date documentation. 

However, not all APIs come with comprehensive 
documentation, which can complicate developers’ understanding 
and lead to increased development time and errors3.

For instance, a developer trying to integrate a new API into 
an application may struggle to decipher its functionality due 
to poorly documented endpoints and parameters. This lack of 
clarity can significantly hinder the integration process and delay 
project timelines.

3.3 API Security

Security becomes a top priority in API integration as data 
flows between connected systems increase. Strong security 
measures like encryption, authentication, and authorization are 
crucial to protect against potential threats4.

3.4 Legacy Systems or APIs

Legacy systems without exposed endpoints pose another 
formidable challenge in API integration. These systems, 
not initially designed for seamless integration with modern 

applications, may lack the necessary interfaces to connect with 
external APIs. 

Retrofitting the legacy system or considering a complete 
overhaul becomes necessary to enable API integration5. For 
instance, imagine a company with an outdated inventory 
management system that lacks API support.

Integrating this system with a new e-commerce platform 
requires significant effort to develop custom APIs or migrate to 
a more modern system with built-in API capabilities.

3.5 Scalability if Applications of Websites

Scalability is yet another important consideration as 
applications and websites expand. As a result, they are seeing 
increased user traffic.

The surge in API calls can strain the system. This leads to 
performance issues and potential downtime. 

Ensuring scalability is vital right from the start. Take, for 
instance, a social media platform that’s rapidly gaining users. 
It needs to design its API infrastructure to handle more requests 
without sacrificing performance or reliability.

Rate limiting, a method used by API providers to manage 
the number of requests in a given timeframe, brings its own 
difficulties. While it’s important for preventing misuse and 
ensuring equitable usage, surpassing the rate limit can lead to 
unsuccessful API calls, diminishing the user experience.

3.6 API Versioning

API versioning introduces another layer of difficulty to the 
integration process. This strategy allows providers to introduce 
changes to the API without breaking existing integrations6.

However, managing different versions requires diligence on 
the part of developers. They must ensure compatibility with the 
API version in use and be prepared to update their application 
with each new release. 

3.7 Error Handling

Proper error handling emerges as a crucial factor for seamless 
API integration. APIs can return various error responses, ranging 
from server errors to validation issues. 

Currently, the most prominent challenges that the frontend 
development team has to face in terms of API integration include:

•	 Performance issues after integration (55%)

•	 Scalability (47%)

•	 Securing third party partnerships (43%) 

•	 Documentation-related issues (38%)7.

4. Proposed Solution
Addressing the challenges of API integration requires a 

rather broad approach. Here are some proposed solutions to the 
challenges discussed in the previous section:

4.1 Standardizing Data Formats and Protocols

To standardize data formats across APIs, JSON (JavaScript 
Object Notation) stands out as a widely accepted standard. 
JSON’s simplicity and compatibility with JavaScript, the primary 
language in frontend development, make it an ideal choice. Let’s 
see an example of how JSON simplifies data exchange:



3

Devarapalli CA., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

// Example JSON data representing a user profile
const userProfile = {
    “id”: 12345,
    “username”: “john_doe”,
    “email”: “john.doe@example.com”,
    “age”: 30,
    “city”: “New York” };
// Convert JSON data to string for transmission
const jsonData = JSON.stringify(userProfile);
// Transmit jsonData to the API endpoint
// Here, the API expects data in JSON format

In this example, we have a user profile represented as JSON 
data. The JSON.stringify() function converts the JavaScript 
object userProfile into a JSON string for transmission to the API 
endpoint. Using JSON ensures that data is formatted consistently, 
making it easier to handle on both the frontend and backend.

4.2 Improving Documentation

API documentation is a key aspect for ensuring ease of use. 
It is also importtant for better integration of the APIs. 

Swagger and Postman are tools that automate the creation 
and upkeep of API documentation, guaranteeing precision and 
ease of access for developers. Let’s take a look at how Swagger 
simplifies the process of documenting APIs.

# Swagger YAML example for documenting an API endpoint paths:
  /users/{userId}:
    get:
      summary: Get user by ID
      parameters:
        - in: path
          name: userId
          required: true
          description: ID of the user to retrieve
          schema:
            type: integer
            format: int64
      responses:
        ‘200’:
          description: Successful operation content:
            application/json:
              schema:
                $ref: ‘#/components/schemas/User’

In this instance, the YAML syntax offers a structured 
approach to documenting API endpoints, covering parameters, 
responses, and data schemas. This enables developers to grasp 
how to engage with the API and manage responses according to 
the documented guidelines.

4.3 Modernizing Legacy Systems

Modernizing legacy systems involves exposing APIs or 
utilizing middleware to integrate them with modern frontend 
applications. 

Via RESTful APIs, the functionality of a legacy system can 
be exposed. Here is a code snippet of how this can be achieved. 

// Example Java code for exposing legacy system functionality as RESTful 
APIs
@RestController
@RequestMapping(“/legacy”)
public class LegacyController {
    @Autowired
    private LegacyService legacyService;
    @GetMapping(“/data”)
    public ResponseEntity<List<Data>> getAllData() {
        List<Data> data = legacyService.getAllData();
        return ResponseEntity.ok().body(data);     }
    // Other API endpoints for CRUD operations
}

In this Java Spring Boot example, the Legacy Controller 
exposes endpoints to interact with legacy system data. 

4.4 Ensuring Scalability

Scalability is critical for handling increased loads as 
applications expand. Implementing caching mechanisms, 
deploying load balancers, and optimizing API performance are 
essential strategies. 

Caching can be used to improve scalability as follows:

// Example of client-side caching in a frontend application
const cache = {};

const fetchData = async (url) => {
    if (cache[url]) {
        return cache[url];
    } else {
        const response = await fetch(url);
        const data = await response.json();
        cache[url] = data;
        return data;
    }
};

4.5. Handling Rate Limiting

Effectively managing rate limiting is crucial for frontend 
applications to operate within API constraints and optimize 
resource utilization. Let’s explore some strategies and their 
implementation:

4.5.1. Retry logic implementation: Retry logic allows 
applications to automatically retry failed API requests after a 
brief delay. 

Here’s a simple example of implementing retry logic in Java 
Script:

const MAX_RETRIES = 3;
let retries = 0;

const fetchDataWithRetry = async (url) => {
    try {
        const response = await fetch(url);
        const data = await response.json();
        return data;
    } catch (error) {
        if (retries < MAX_RETRIES) {
            retries++;
            // Exponential backoff: increase delay with each retry
            const delay = Math.pow(2, retries) * 1000; // exponential 
backoff in milliseconds
            setTimeout(() => fetchDataWithRetry(url), delay);
        } else {
            throw new Error(‘Max retries reached’);
        }
    }
};

In this scenario, if the application’s request to an API fails, 
it tries again up to a set number of times, which is defined as 
MAX_RETRIES. The time gap between each retry increases 
exponentially with every attempt. This approach helps prevent 
the server from getting overloaded with too many requests 
happening simultaneously.

4.6 Managing API Versions

Managing API versions ensures long-term compatibility 
and interoperability with evolving APIs. Let’s explore some 
techniques and their implementation:



J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1Devarapalli CA.,

4

4.6.1. URL versioning: URL versioning involves including the 
API version in the request URL. Here’s an example of URL 
versioning:

const API_URL = ‘https://api.example.com/v1’;

const fetchData = async () => {
    try {
        const response = await fetch(`${API_URL}/data`);
        const data = await response.json();
        return data;
    } catch (error) {
        console.error(‘An error occurred:’, error.message);
    }
};

In this example, the API version (v1) is included in the 
URL (https://api.example.com/v1/data). This allows developers 
to introduce changes to the API while maintaining backward 
compatibility for existing clients.

4.6.2. Header versioning: Header versioning involves 
specifying the API version in the request headers. Here’s how 
you can implement header versioning:

const headers = {
    ‘X-API-Version’: ‘2.0’
};
const fetchData = async () => {
    try {
        const response = await fetch(‘https://api.example.com/data’, 
{ headers });
        const data = await response.json();
        return data;
    } catch (error) {
        console.error(‘An error occurred:’, error.message);
    }
};

4.8. Implementing effective error handling

Effective error handling enhances application reliability and 
user satisfaction. Let’s explore some best practices and their 
implementation:

4.8.1. Retry mechanisms for transient errors: Using retry 
mechanisms can help reduce transient errors resulting from 

temporary network issues or server downtime. Here’s an example 
of how retry logic can be implemented for transient errors:

const MAX_RETRIES = 3;
let retries = 0;

const fetchDataWithRetry = async () => {
    try {
        const response = await fetch(‘https://api.example.com/data’);
        const data = await response.json();
        return data;
    } catch (error) {
        if (error instanceof TransientError && retries < MAX_
RETRIES) {
            retries++;
            setTimeout(fetchDataWithRetry, 1000); // Retry after 1 
second
        } else {
            console.error(‘An error occurred:’, error.message);
        }
    }
};

In this example, if the API request fails due to a transient 
error, the application retries the request up to a maximum number 
of times (MAX_RETRIES). This helps mitigate temporary issues 
and improves overall system resilience.

4.8.2. Providing informative user feedback

Providing informative user feedback helps users understand 
the nature of the error and how to proceed. For this;

const handleApiError = (error) => {
    if (error instanceof RateLimitExceededError) {
        alert(‘Rate limit exceeded. Please try again later.’);
    } else if (error instanceof AuthenticationError) {
        alert(‘Authentication failed. Please log in again.’);
    } else {
        alert(‘An unexpected error occurred. Please try again later.’);
    }
};

In this example, different types of errors (e.g., rate limit 
exceeded, authentication failure) trigger different alert messages, 
providing users with actionable information. This helps manage 
user expectations and enhances the overall user experience.

4. Academic Review of Perceived Challenges
Table 1: Table of studied literature regarding challenges.

Name Title Challenge Discussed

K. Kim APIs for real-time distributed object programming Real-time distributed object programming with APIs

Q. W. & L. G. Ronghua Sun Research Towards Key Issues of API Security Key security issues in API development

S. M. S. A. S. Michael Meng Optimizing API Documentation: Some Guidelines and Effects Guidelines and effects of optimized API documentation

V. Bourne 2021 State of Enterprise APIs Trends and challenges in enterprise API usage

S. Salmone Major Integration Challenges of Today and How to Overcome 
Them

Overcoming integration challenges in modern 
environments

S. Sohan, C. Anslow and F. 
Maurer

A Case Study of Web API Evolution Evolutionary patterns and challenges in Web API 
development

5. Case Study
Axis Bank, a prominent private sector bank in India, 

initiated a digital transformation initiative to enhance customer 
experiences and streamline banking services. However, they 
encountered various challenges related to API integration, 
notably poor documentation, legacy systems, and scalability 
concerns.

The incomplete and unclear API documentation posed 
a considerable barrier as well. It impacted the efficiency of 
integration processes. 

Moreover, the presence of legacy systems, ill-equipped 
for modern API interactions, complicated integration efforts, 
necessitating a gradual modernization approach. As customer 
demands increased, Axis Bank faced the critical need for a 



5

Devarapalli CA., J Artif Intell Mach Learn & Data Sci | Vol: 1 & Iss: 1

 Despite the issues and potential pitfalls associated with API 
integration, frontend developers can use the solutions detailed 
above to improve the integration process for the present as well 
as the future. 

7. References

1.	 K Kim. APIs for real-time distributed object programming. 
Computer, 2000; 33: 72-80.

2.	 Ronghua Sun, Qianxun Wang, Liang Guo. Research towards 
key issues of API security. In: China Cyber Security Annual 
Conference, 2021;6: 4. 

3.	 Michael Meng, Stephanie M. Steinhardt, Andreas Schubert. 
Optimizing API documentation: Some guidelines and effects. 
Proceedings of the 38th ACM International Conference on 
Design of Communication, 2020; 24: 1-11.

4.	 https://rapidapi.com/uploads/WP_2021_Enterprise_So_AP_Is_
Report_f7fa0f3feb.pdf 

5.	 https://www.ibm.com/products/cloud-pak-for-integration

6.	 S Sohan, C Anslow, F Maurer. A case study of web API evolution. 
IEEE, 2015; 27: 6. 

7.	 https://dl.acm.org/doi/abs/10.1145/3470133

8.	 https://www.ibm.com/case-studies/axis-bank

scalable solution to accommodate the burgeoning API traffic.

To address these challenges, Axis Bank utilized industry-
standard JSON for API responses and requests, the bank 
standardized data formats and protocols. 

Complementing this standardization effort, Axis Bank 
also invested significantly in enhancing API documentation, 
providing clear usage instructions and best practices to facilitate 
seamless integration processes. 

Throughout the process, the bank undertook a phased 
approach to modernize its legacy systems, transitioning towards 
microservices architecture to expose specific functionalities via 
APIs.

Axis Bank used API gateways such as IBM API Connect to 
manage API traffic and enforce security protocols. The entire 
digital transformation was based on several programming 
languages including Java, Node.js, and Python, while using 
cloud platforms like Amazon Web Services and Microsoft Azure 
to host APIs, ensuring scalability and availability.

Axis Bank resultantly enhanced its digital banking services, 
improving customer experiences significantly in India. 
Furthermore, streamlined integration processes facilitated faster 
deployment of new features and services, reducing time-to-
market and increasing operational efficiency8.

6. Conclusion
The challenges of API integration in frontend development 

has no one-size-fits all approach. Instead, it requires a blend of 
different approaches that address compatibility, documentation, 
security, legacy systems, scalability, versioning, error handling, 
and performance issues.

https://ieeexplore.ieee.org/document/846321
https://ieeexplore.ieee.org/document/846321
https://link.springer.com/chapter/10.1007/978-981-16-9229-1_11
https://link.springer.com/chapter/10.1007/978-981-16-9229-1_11
https://link.springer.com/chapter/10.1007/978-981-16-9229-1_11
https://dl.acm.org/doi/abs/10.1145/3380851.3416759
https://dl.acm.org/doi/abs/10.1145/3380851.3416759
https://dl.acm.org/doi/abs/10.1145/3380851.3416759
https://dl.acm.org/doi/abs/10.1145/3380851.3416759
https://rapidapi.com/uploads/WP_2021_Enterprise_So_AP_Is_Report_f7fa0f3feb.pdf
https://rapidapi.com/uploads/WP_2021_Enterprise_So_AP_Is_Report_f7fa0f3feb.pdf
https://www.ibm.com/products/cloud-pak-for-integration
https://ieeexplore.ieee.org/document/7196531
https://ieeexplore.ieee.org/document/7196531
https://dl.acm.org/doi/abs/10.1145/3470133
https://www.ibm.com/case-studies/axis-bank

