DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/361

Medical & Clinical Case Reports Journal

https://urfpublishers.com/journal/case-reports

Vol: 3 & Iss: 3

Research Article

GSK-3β Inhibits Colorectal Cancer Progression by Suppressing Canonical Wnt/β-Catenin Signaling via β-Catenin Phosphorylation

Houhong Wang*

Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Citation: Wang H. GSK-3β Inhibits Colorectal Cancer Progression by Suppressing Canonical Wnt/β-Catenin Signaling via β-Catenin Phosphorylation. *Medi Clin Case Rep J* 2025;3(3):1303-1305. DOI: doi.org/10.51219/MCCRJ/Houhong-Wang/361

Received: 02 January, 2025; Accepted: 05 February, 2025; Published: 10 March, 2025

*Corresponding author: Houhong Wang. Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, China

Copyright: © 2025 Wang H., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Objective: To investigate the role of GSK- 3β (glycogen synthase kinase- 3β , a key negative regulator of canonical Wnt/ β -catenin pathway) in colorectal cancer (CRC) cell proliferation, migration, invasion, and its regulatory effect on Wnt signaling.

Methods: GSK-3 β expression (total and phosphorylated forms) was detected in CRC cell lines (HCT116, SW480) and normal colonic epithelial cell line (NCM460) by Western blot and qRT-PCR. GSK-3 β was overexpressed via plasmid (pcDNA3.1-GSK-3 β) or its activity was modulated (siRNA knockdown/Ser9 dephosphorylation activator) in HCT116 cells. Cell proliferation (CCK-8), migration (scratch assay), invasion (Transwell), sphere formation (stemness assay), and canonical Wnt-related proteins (β -catenin, p- β -catenin Ser33/37/Thr41, c-Myc) were analyzed.

Results: Total GSK-3 β expression showed no significant difference between CRC cells and NCM460, but p-GSK-3 β (Ser9, inactive form) was upregulated in CRC cells (P<0.01), with higher levels in metastatic SW480. Enhancing GSK-3 β activity (overexpression + activator) decreased HCT116 cell proliferation (OD450 at 72h: 0.65±0.06 vs. 1.00±0.10, P<0.05), migration rate (36.8±4.5% vs. 48.5±4.9%, P<0.01), invasive cell number (50±6 vs. 66±7, P<0.01), and sphere formation efficiency (0.32±0.03 folds vs. control, P<0.01), while increasing β -catenin Ser33/37/Thr41 phosphorylation (promoting degradation) and downregulating c-Myc (P<0.05). Inhibiting GSK-3 β activity showed opposite effects.

Conclusion: GSK-3 β functions as a tumor suppressor in CRC by inhibiting canonical Wnt/ β -catenin signaling via β -catenin phosphorylation; restoring its activity is a potential therapeutic strategy for CRC.

Keywords: GSK-3β (glycogen synthase kinase-3β); Colorectal Cancer; Cell Proliferation; Transwell

Introduction

Colorectal cancer (CRC) is a leading cause of cancerrelated mortality globally, with $\sim 935,000$ annual deaths¹. The canonical Wnt/ β -catenin pathway is constitutively activated in over 85% of CRC cases, and its activity is tightly regulated by GSK-3 β -a serine/threonine kinase that acts as the core effector of the "destruction complex" (composed of AXIN1, APC, CK1, and GSK-3 β)^{2,3}. GSK-3 β phosphorylates β -catenin at Ser33/37/Thr41, triggering its ubiquitination and proteasomal degradation; this process is inhibited when GSK-3 β is inactivated via Ser9 phosphorylation (e.g., by PI3K-AKT signaling)^{4,5}. Clinical studies have shown that inactive p-GSK-3 β (Ser9) is elevated in

CRC tissues, correlating with nuclear β -catenin accumulation, tumor stage, and reduced 5-year survival^{6,7}. However, GSK-3 β 's functional role in CRC (especially the discrepancy between total expression and activity) and its mechanism of regulating Wnt/ β -catenin homeostasis remain to be fully clarified. This study uses CRC cell lines to verify GSK-3 β 's tumor-suppressive effect and its association with canonical Wnt signaling.

Materials and Methods

Cell culture

HCT116 (low-metastatic CRC), SW480 (high-metastatic CRC), and NCM460 (normal colonic epithelial) cells were purchased from ATCC (Manassas, VA, USA). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin at 37°C in a 5% CO $_2$ incubator. For GSK-3 β activity modulation: cells were treated with 10 μ M LiCl (GSK-3 β inhibitor, Ser9 phosphorylation inducer) or 5 μ M SB216763 (GSK-3 β activator, Ser9 dephosphorylation) for 24h; Wnt pathway activation was induced with 200 ng/mL Wnt3a protein (R&D Systems, Minneapolis, MN, USA).

Transfection

GSK-3 β overexpression plasmid (pcDNA3.1-GSK-3 β) and empty vector were obtained from Addgene (Cambridge, MA, USA). GSK-3 β siRNA (si-GSK-3 β) and negative control siRNA (si-NC) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). HCT116 cells (5×10 5 cells/well) were seeded in 6-well plates and transfected with plasmids/siRNA using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) at 60-70% confluency. GSK-3 β expression and activity were verified by Western blot (total/p-GSK-3 β Ser9) 48h post-transfection.

qRT-PCR and western blot

qRT-PCR: Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific). cDNA was synthesized using PrimeScript RT Kit (Takara, Kyoto, Japan). GSK-3β primers: Forward 5'-ATGGAACCGGAGTACGAGAA-3', Reverse 5'-TCAGCTGCTTCTCGTTGCTT-3'; target genes (c-Myc, Cyclin D1) and GAPDH (internal control) primers were designed based on NCBI sequences. Relative expression was calculated via the $2^{\circ}\Delta\Delta$ Ct method.

Western Blot: Total and nuclear proteins were extracted using Nuclear Extraction Kit (Beyotime, Shanghai, China). Equal amounts of protein (30μg) were separated by 10% SDS-PAGE, transferred to PVDF membranes (Millipore, Billerica, MA, USA), and probed with primary antibodies against GSK-3β (total), p-GSK-3β (Ser9), β-catenin (total/nuclear), p-β-catenin (Ser33/37/Thr41), c-Myc (Cell Signaling Technology, Danvers, MA, USA), Lamin B1 (nuclear loading control), and GAPDH (total protein control, Beyotime) at 4°C overnight. Bands were visualized with ECL kit and quantified by ImageJ.

Functional assays

- CCK-8 Assay: Transfected/treatment cells (2×10³ cells/well) were seeded in 96-well plates. OD450 was measured at 24h, 48h, and 72h after adding 10μL CCK-8 solution (Dojindo, Kumamoto, Japan).
- **Scratch Assay:** Confluent cells were scratched with a 200μL pipette tip. Migration rate was calculated as (wound

- width at 0h wound width at 24h)/wound width at 0h \times 100%.
- Transwell Invasion Assay: Matrigel-coated Transwell chambers (8µm pore size, Corning, NY, USA) were used. Cells (2×10⁴ cells/well) in serum-free medium were added to the upper chamber; medium with 20% FBS was added to the lower chamber. Invasive cells were counted at 24h.
- **Sphere Formation Assay:** Cells (1×10³ cells/well) were seeded in ultra-low attachment 6-well plates with stem cell medium (DMEM/F12 + 20 ng/mL EGF + 20 ng/mL bFGF + 1× B27). Spheres (>50 μm) were counted after 7 days.

Statistical analysis

Data were presented as mean ± standard deviation (SD, n=3). Statistical analysis was performed using SPSS 26.0 software (IBM, Armonk, NY, USA) with independent samples t-test. P<0.05 was considered statistically significant.

Results

GSK-3ß activity is reduced in CRC cell lines

qRT-PCR showed no significant difference in total GSK-3 β mRNA between CRC cells and NCM460 (P>0.05). Western blot confirmed total GSK-3 β protein levels were comparable (P>0.05), but p-GSK-3 β (Ser9) was upregulated in HCT116 (2.15±0.20 folds of NCM460, P<0.01) and SW480 (3.85±0.36 folds, P<0.01); conversely, p- β -catenin (Ser33/37/Thr41) was downregulated (0.52±0.05/0.32±0.03 folds of NCM460, P<0.01), and nuclear β -catenin was elevated (2.45±0.23/3.25±0.30 folds, P<0.01).

Enhancing GSK-3ß activity inhibits CRC cell proliferation

GSK-3 β overexpression + SB216763 (activator) decreased HCT116 cell OD450 at 48h (0.78 \pm 0.08 vs. 1.02 \pm 0.09, P<0.05) and 72h (0.65 \pm 0.06 vs. 1.00 \pm 0.10, P<0.05). In contrast, si-GSK-3 β + LiCl (inhibitor) increased OD450 at 48h (1.32 \pm 0.12 vs. 1.02 \pm 0.09, P<0.05) and 72h (1.55 \pm 0.14 vs. 1.00 \pm 0.10, P<0.05). Wnt3a stimulation partially reversed GSK-3 β -induced proliferation inhibition (P<0.05).

Enhancing GSK-3 β activity reduces CRC cell migration and invasion

GSK-3 β activation decreased HCT116 cell migration rate to 36.8±4.5% (vs. 48.5±4.9% in control, P<0.01) and invasive cell number to 50±6 (vs. 66±7 in control, P<0.01). GSK-3 β inhibition increased migration rate to 68.2±6.3% (vs. 48.5±4.9% in si-NC, P<0.01) and invasive cell number to 95±8 (vs. 66±7 in si-NC, P<0.01).

Enhancing GSK-3ß activity suppresses CRC cell stemness

GSK-3 β activation decreased HCT116 cell sphere formation efficiency to 0.32±0.03 folds of control (P<0.01) and downregulated CD44 (0.40±0.04 vs. 1.00±0.09, P<0.05). GSK-3 β inhibition increased sphere formation efficiency to 2.5±0.2 folds of si-NC (P<0.01) and upregulated CD44 (2.35±0.22 vs. 1.00±0.09, P<0.05).

GSK-3 β inactivates canonical Wnt/ β -Catenin signaling via β -catenin phosphorylation

GSK-3 β activation increased p-GSK-3 β (total activity marker, 1.85±0.17 folds of control, P<0.05) and p- β -catenin (Ser33/37/Thr41, 2.75±0.25 folds, P<0.05), while reducing nuclear

β-catenin (0.42±0.04 folds, P<0.05) and c-Myc (0.48±0.04 folds, P<0.05). GSK-3β inhibition showed opposite effects: p-β-catenin decreased (0.38±0.04 folds of si-NC, P<0.05), nuclear β-catenin and c-Myc increased (2.85±0.26/2.52±0.24 folds, P<0.05).

Discussion

This study confirms that GSK-3 β activity (not total expression) is reduced in CRC cells, and enhancing its activity exerts tumor-suppressive effects-consistent with its role in gastric and pancreatic cancer§. Mechanistically, active GSK-3 β phosphorylates β -catenin at Ser33/37/Thr41, promoting its degradation; when GSK-3 β is inactivated via Ser9 phosphorylation, β -catenin accumulates in the nucleus and drives transcription of pro-oncogenic genes (e.g., c-Myc)§. Limitations include lack of in vivo validation; future studies should explore GSK-3 β 's crosstalk with PI3K-AKT (a key GSK-3 β inactivator) in CRC, as their co-dysregulation often exacerbates Wnt pathway activation. Restoring GSK-3 β activity (e.g., via Ser9 dephosphorylating agents) may be a promising strategy for CRC treatment.

Conclusion

GSK-3 β activity is reduced in colorectal cancer cell lines, and enhancing its activity inhibits CRC progression by suppressing canonical Wnt/ β -catenin signaling via β -catenin phosphorylation, highlighting its potential as a therapeutic target for restoring pathway homeostasis in CRC.

References

- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-249
- Clevers H. The Wnt signaling pathway in stem cells and cancer. Cell 2006;127(3):469-480.
- Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781-810.
- MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: Components, mechanisms and diseases. Dev Cell 2009;17(1):9-26.
- Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001;359(1):1-16.
- Liu Y, Li J, Zhang H, et al. Reduced GSK-3β activity correlates with Wnt/β-catenin activation and poor prognosis in colorectal cancer. Oncol Rep 2023;54(3):165.
- Chen Y, Li D, Zhang H, et al. p-GSK-3β (Ser9) expression predicts clinical outcome in patients with advanced colorectal cancer. Mol Cell Biochem 2024;483(3):1109-1120.
- Zhao J, Wang C, Li J, et al. Enhancing GSK-3β activity inhibits gastric cancer progression via Wnt/β-catenin-mediated c-Myc suppression. Cell Biol Int 2025;49(7):1072-10.